JPH09272060A - Grinding wheel tool and its manufacture - Google Patents

Grinding wheel tool and its manufacture

Info

Publication number
JPH09272060A
JPH09272060A JP8811896A JP8811896A JPH09272060A JP H09272060 A JPH09272060 A JP H09272060A JP 8811896 A JP8811896 A JP 8811896A JP 8811896 A JP8811896 A JP 8811896A JP H09272060 A JPH09272060 A JP H09272060A
Authority
JP
Japan
Prior art keywords
grindstone
self
manufacturing
fluxing alloy
sizing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8811896A
Other languages
Japanese (ja)
Inventor
Kazunori Kotani
谷 一 典 小
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Goei Seisakusyo Co Ltd
Original Assignee
Goei Seisakusyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Goei Seisakusyo Co Ltd filed Critical Goei Seisakusyo Co Ltd
Priority to JP8811896A priority Critical patent/JPH09272060A/en
Publication of JPH09272060A publication Critical patent/JPH09272060A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve holdability of an abrasive grain, by applying a mixture dried of an organic sizing agent and self melting alloy powder to a surface treated grinding wheel edge mounting part, further with the organic sizing agent applied, scattering the abrasive grain dried, and heating it to a specific temperature in the non-oxidation atmosphere, thereafter cooled. SOLUTION: Blast treating is applied to a steel base material 1, a surface is cleaned, next, an organic sizing agent 3 diluting water soluble methyl cellulose with water and self melting alloy powder 2A of binding material are mixed, to be applied to the steel base material 1 by using an injection machine. These materials are dried, the organic sizing agent 3 is volatilized, also the self melting alloy powder 2A of binding material is connected to adhere to an abrasive grain 4 in a manner of substitution. Inside a heating furnace is vacuumized, for about 7 hours, heating to, for instance, 870 deg.C, the organic sizing agent 3 is volatilized to be removed, thereafter by a rise to 900 to 1150 deg.C heating temperature, by holding for 10 to 15 minutes for instance, thereafter the abrasive grain is gradually cooled to an ordinary temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、石材や鋼管など
種々の材料のワークの切断、研磨、切削、穿孔あるいは
掘削を行うダイヤモンド粒や超硬粉末などの砥粒を備え
る砥石工具に係り、特に、製造工程が簡易で、砥石刃先
が強固に基材に結合することができる砥石工具およびそ
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grindstone tool provided with abrasive grains such as diamond grains and cemented carbide powder for cutting, polishing, cutting, boring or excavating works made of various materials such as stones and steel pipes, and more particularly, The present invention relates to a grindstone tool having a simple manufacturing process and capable of firmly bonding a grindstone edge to a base material, and a manufacturing method thereof.

【従来の技術】[Prior art]

【0002】従来、砥石工具におけるダイヤモンド粒子
や立方晶窒化ほう素粒子などを利用した砥石工具の一般
的な形成方法としては、電着結合法および金属焼結結合
法がある。前記電着結合法は、例えば、鋼基材を被メッ
キ材とし、メッキを施さない部分をメッキ用レジストな
どでマスキングした後、下地ニッケルメッキを施し、次
いで界面活性剤の所定量のダイヤモンド粒子を分散させ
た分散液を混合したニッケルメッキ液を用いて電気メッ
キを行い、共析するダイヤモンド粒子を電着ニッケルで
固定する方法である。
Conventionally, as a general method for forming a grindstone tool utilizing diamond particles or cubic boron nitride particles in the grindstone tool, there are an electrodeposition bonding method and a metal sinter bonding method. The electrodeposition bonding method is, for example, using a steel base material as a material to be plated, masking an unplated portion with a resist for plating, and then performing nickel plating as a base, and then applying a predetermined amount of diamond particles of a surfactant. This is a method in which electroplating is performed using a nickel plating solution in which the dispersed dispersion is mixed and the eutectoid diamond particles are fixed with electrodeposited nickel.

【0003】また、金属焼結結合法は、例えば、ダイヤ
モンド粒子とコバルト粉末あるいはコバルトと銅と錫と
の混合粉末などを混合し、窒素雰囲気中で900〜10
00°Cの温度に保持しながら250Kg/cm2 の圧
力で加圧するいわいるホットプレス法により、前記金属
粉末を圧粉焼結させてダイヤモンド粒子を固定した焼結
チップをつくり、この焼結チップを蝋付けまたはレーザ
ー溶接などにより鋼基材に取り付ける方法である。
Further, in the metal-sinter bonding method, for example, diamond particles and cobalt powder or a mixed powder of cobalt, copper and tin, etc. are mixed and the mixture is heated in a nitrogen atmosphere at 900 to 10 to 10.
The metal powder was pressed and sintered by a hot pressing method in which a pressure of 250 Kg / cm 2 was applied while maintaining the temperature at 00 ° C to produce a sintered chip with diamond particles fixed, and this sintered chip Is attached to a steel substrate by brazing or laser welding.

【0004】さらに、ダイヤモンド工具を製造する場
合、ブラスト処理した鋼基材に有機糊剤を塗布し、その
有機糊剤上に自溶合金の粉末を散布した後、前記有機糊
剤を乾燥し、再び前記有機糊剤を塗布し、ダイヤモンド
粒子を散布した後、前記有機糊剤を乾燥させ、次いで、
非酸化性雰囲気中において950〜1150°Cの温度
で加熱し、前記自溶合金の融着により前記鋼基材に前記
ダイヤモンド粒子を固定し、徐々に冷却する製造方法も
提案されている。
Further, in the case of manufacturing a diamond tool, an organic sizing agent is applied to a blasted steel base material, a self-fluxing alloy powder is sprinkled on the organic sizing agent, and the organic sizing agent is dried. After applying the organic paste again, after spraying the diamond particles, the organic paste is dried, then,
A manufacturing method has also been proposed in which heating is performed at a temperature of 950 to 1150 ° C. in a non-oxidizing atmosphere, the diamond particles are fixed to the steel base material by fusion bonding of the self-fluxing alloy, and gradually cooled.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、天然ダ
イヤモンドの一部を除いてほとんどのダイヤモンドは絶
縁性であり、前者の電着結合法においては、図4に示し
たように、ダイヤモンド粒子5は、鋼基材6上に電着金
属7によって保持されるものであり、ダイヤモンド粒子
5間において電着金属7は盛り上がりを示すが、ダイヤ
モンド粒子5に対する電着金属7の付着性は悪く、いわ
ゆる濡れ性の悪い状態となるので、ダイヤモンド粒子5
は実質的に電着金属7の抱き力に依存する状態になる。
However, most diamonds except some natural diamonds are insulative, and in the former electrodeposition bonding method, as shown in FIG. The electrodeposited metal 7 is held on the steel base material 6, and the electrodeposited metal 7 swells between the diamond particles 5, but the adherence of the electrodeposited metal 7 to the diamond particles 5 is poor and the so-called wettability is high. The diamond particles 5
Becomes substantially dependent on the holding force of the electrodeposited metal 7.

【0006】したがって、ダイヤモンド粒子の切刃の露
呈状況からは使用時の切れ味は良好であるけれども、ダ
イヤモンド粒子の保持力が弱く、特に、研削などの作業
時、発生熱によるニッケル等電着金属の熱膨張があると
ダイヤモンド粒子の固定に緩みを生じ、ダイヤモンド粒
子が脱落し易くなるので、冷却水を使用する湿式研削を
必要とし、それでもなお、被研削材料によっては対応し
がたい場合があった。また、工具としての寿命も短いと
いう問題点があった。
[0006] Therefore, although the sharpness at the time of use is good according to the exposed condition of the cutting edge of the diamond particles, the holding power of the diamond particles is weak, and especially during the work such as grinding, the electrodeposited metal such as nickel due to the heat generated is generated. If there is thermal expansion, the diamond particles are loosened in fixing and the diamond particles are likely to fall off, so wet grinding using cooling water is required, and it may still be difficult to handle depending on the material to be ground. . There is also a problem that the tool life is short.

【0007】また、ホットプレスによる焼結結合法にお
いては、ダイヤモンド粒子を焼結結合金属内に複層に保
持させることができるが、焼結金属とダイヤモンド粒子
との間における濡れ性は悪く、図4で示された前記の電
着結合法の場合と同様に、ダイヤモンド粒子の保持は囲
繞する焼結金属の収縮と内部歪みとによる抱き込み力に
依存しているので、保持力が弱く、湿式研削を必要と
し、また、ダイヤモンド粒子の利用効率が悪いという問
題があり、さらに、基材に直接形成できず、生産性にも
問題があった。
In the sinter-bonding method by hot pressing, the diamond particles can be held in multiple layers in the sinter-bonded metal, but the wettability between the sintered metal and the diamond particles is poor, and As in the case of the above-mentioned electrodeposition bonding method shown by 4, the holding of the diamond particles depends on the holding force due to the shrinkage and the internal strain of the surrounding sintered metal, so that the holding force is weak and There is a problem that grinding is required, the utilization efficiency of diamond particles is poor, and further, it cannot be directly formed on a substrate, and there is a problem in productivity.

【0008】そして、砥粒としての立方晶窒化ほう素粒
子についても、融点は非常に高いが、電気絶縁性で電着
金属の付着性が悪く、熱膨張率が低く、また、溶融金属
との濡れ性が悪いので、上記のダイヤモンド粒子の場合
と同様の問題を有していた。
The cubic boron nitride particles as abrasive grains also have a very high melting point, but are electrically insulating and have poor adhesion of electrodeposited metal, have a low coefficient of thermal expansion, and have a high melting point with molten metal. Since it had poor wettability, it had the same problem as in the case of the above diamond particles.

【0009】さらに、ダイヤモンド工具の製造方法で
は、工程数が多いために、さらなる製造工程の短縮が望
まれていた。
Further, in the method for manufacturing a diamond tool, since the number of steps is large, it has been desired to further shorten the manufacturing steps.

【0010】この発明は、上記の問題点に鑑み創案され
たもので、製造工程が簡単で、ダイヤモンド粒などの砥
粒の保持性が良く、さらに、被研削材の種類を問わず冷
却水を必要としない乾式研削が可能な砥石刃先を有する
砥石工具およびその製造方法を提供することを目的とす
る。
The present invention was devised in view of the above problems, has a simple manufacturing process, has good retention of abrasive grains such as diamond grains, and further provides cooling water regardless of the type of material to be ground. An object of the present invention is to provide a whetstone tool having a whetstone edge capable of performing dry grinding which is not necessary, and a manufacturing method thereof.

【0011】[0011]

【課題を解決するための手段】前記目的を達成するた
め、この発明は、刃保持部材の先端に切削、研磨用の砥
石刃先を備えた砥石工具の製造方法において、化学的ま
たは物理的に表面処理された前記砥石刃取付部に、有機
糊剤と結合材として自溶合金粉末を混合したものを塗布
し、その後乾燥させ、さらに有機糊剤を塗布し、砥粒を
散布し、乾燥させ次いで、非酸化性雰囲気中において9
00〜1150°Cの加熱温度に加熱し、前記自溶合金
の融着により前記砥石刃取付部に前記砥粒を固定し、前
記加熱温度から徐々に冷却する砥石工具の製造方法とし
て構成した。
In order to achieve the above object, the present invention provides a method of manufacturing a grindstone tool in which a tip of a blade holding member is provided with a grindstone tip for cutting and polishing, and the surface is chemically or physically The treated whetstone blade mounting portion is coated with a mixture of an organic sizing agent and a self-fluxing alloy powder as a binder, and then dried, further coated with an organic sizing agent, sprayed with abrasive grains, and then dried. , In a non-oxidizing atmosphere 9
It was constituted as a method of manufacturing a grindstone tool which is heated to a heating temperature of 0 to 1150 ° C., the abrasive grains are fixed to the grindstone blade attachment portion by fusion of the self-fluxing alloy, and gradually cooled from the heating temperature.

【0012】また、刃保持部材の先端に切削、研磨用の
砥石刃先を備えた砥石工具の製造方法において、化学的
または物理的に表面処理された前記砥石刃取付部に、有
機糊剤を塗布した後に、砥粒を散布し、その後結合材と
して自溶合金粉末を散布し、乾燥させ、次いで、非酸化
性雰囲気中において900〜1150°Cの加熱温度に
加熱し、前記自溶合金の融着により前記砥石刃取付部に
前記砥粒を固定し、前記加熱温度から徐々に冷却する砥
石工具の製造方法として構成した。
Further, in a method of manufacturing a grindstone tool having a grindstone blade tip for cutting and polishing at the tip of a blade holding member, an organic sizing agent is applied to the grindstone blade mounting portion which is chemically or physically surface-treated. After that, the abrasive grains are sprinkled, then the self-fluxing alloy powder is sprinkled as a binder, dried, and then heated to a heating temperature of 900 to 1150 ° C. in a non-oxidizing atmosphere to melt the self-fluxing alloy. The abrasive grains were fixed to the whetstone blade attachment portion by wearing, and the grinding stone tool was manufactured by gradually cooling from the heating temperature.

【0013】さらに、刃保持部材の先端に切削、研磨用
の砥石刃先を備えた砥石工具の製造方法において、化学
的または物理的に表面処理された前記砥石刃取付部に、
有機糊剤および結合材として自溶合金粉末を混合して塗
布し、砥粒を散布した後、乾燥させ、次いで、非酸化性
雰囲気中において900〜1150°Cの加熱温度に加
熱し、前記自溶合金の融着により前記砥石刃取付部に前
記砥粒を固定し、前記加熱温度から徐々に冷却する砥石
工具の製造方法として構成した。
Further, in the method of manufacturing a grindstone tool having a grindstone blade tip for cutting and polishing at the tip of the blade holding member, the grindstone blade mounting portion chemically or physically surface-treated,
A self-fluxing alloy powder is mixed and applied as an organic sizing agent and a binder, and after spraying abrasive grains, it is dried and then heated to a heating temperature of 900 to 1150 ° C. in a non-oxidizing atmosphere, and The abrasive grains are fixed to the grindstone blade attachment portion by fusion welding of a molten alloy, and the abrasive grain tool is constructed by gradually cooling from the heating temperature.

【0014】また、刃保持部材の先端に切削、研磨用の
砥石刃先を備えた砥石工具の製造方法において、化学的
または物理的に表面処理された前記砥石刃取付部に、有
機糊剤、結合材として自溶合金粉末および砥粒を混合し
て塗布した後、乾燥させ、次いで、非酸化性雰囲気中に
おいて900〜1150°Cの加熱温度に加熱し、前記
自溶合金の融着により前記砥石刃取付部に前記砥粒を固
定し、加熱温度から徐々に冷却する砥石工具の製造方法
として構成した。
Further, in the method of manufacturing a grindstone tool having a grindstone cutting edge for cutting and polishing at the tip of the blade holding member, an organic sizing agent and a bonding agent are attached to the grindstone blade mounting portion which has been chemically or physically surface-treated. After mixing and applying self-fluxing alloy powder and abrasive grains as a material, it is dried and then heated to a heating temperature of 900 to 1150 ° C. in a non-oxidizing atmosphere, and the self-fluxing alloy is fusion-bonded to the grindstone. The above-mentioned abrasive grains were fixed to the blade attachment portion, and a grinding stone tool was manufactured by gradually cooling from the heating temperature.

【0015】さらに、前記結合材として、重量%で50
%未満の遷移金属を含み、残分を自溶合金とする混合物
の粉末を用いることや、前記結合材として、重量%で5
0%未満の遷移金属の合金を含み、残分を自溶合金とす
る混合物の粉末を用いる前記砥石工具の製造方法として
も良い。
Further, the binder is 50% by weight.
% Of the transition metal and the balance is a self-fluxing alloy powder, and the binder is 5% by weight.
The method for producing the above-mentioned grindstone tool may use a powder of a mixture containing an alloy of a transition metal of less than 0% and the remainder being a self-fluxing alloy.

【0016】さらに、前記非酸化性雰囲気が1×10-4
〜5×10-4Torrの真空であると都合が良い。そし
て、前記非酸化性雰囲気がアルゴンガス雰囲気であるこ
とや、水素ガス雰囲気であると都合が良い。
Further, the non-oxidizing atmosphere is 1 × 10 -4.
A vacuum of ~ 5 x 10 -4 Torr is convenient. It is convenient that the non-oxidizing atmosphere is an argon gas atmosphere or a hydrogen gas atmosphere.

【0017】また、前記した砥石工具の製造方法によっ
て得られた砥石刃先または/刃保持部材面を有するカッ
ターや、コアビット、ブレード、カップホイール、ダイ
ヤモンドワイヤソーなど研磨、研削、切断、掘削、穿孔
等に使用される砥石工具として構成した。
Further, for a cutter having a grindstone blade edge or / blade holding member surface obtained by the above-mentioned method for manufacturing a grindstone tool, and for polishing, grinding, cutting, excavating, piercing, etc. of a core bit, a blade, a cup wheel, a diamond wire saw, etc. Configured as the whetstone tool used.

【0018】[0018]

【発明の実施の形態】以下、この発明の実施の一形態を
図面に基づいて説明する。図1(a)(b)は、砥石工
具の製造工程を示すブロック図、図2(a)(b)は、
砥石工具の製造工程を示すブロック図、図3(a)
(b)はダイヤモンド粒子を用いた砥石工具における、
ダイヤモンド粒子の保持状況を示す部分模式図、であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. 1 (a) and 1 (b) are block diagrams showing the manufacturing process of the grindstone tool, and FIGS. 2 (a) and 2 (b) are
Block diagram showing the manufacturing process of the grindstone tool, FIG.
(B) is a grindstone tool using diamond particles,
It is a partial schematic diagram which shows the holding condition of a diamond particle.

【0019】図1(a)で示すように、鋼基材を化学的
あるいは物理的な表面加工処理を行い、有機糊剤と自溶
合金の混合物をその表面加工処理した鋼基材に塗布し、
乾燥させた後、再び有機糊剤を塗布し、さらに、ダイヤ
モンド粒子などの砥粒を散布し、乾燥させ、加熱し、冷
却することで砥石工具を製造する。この工程をさらに詳
しく述べると以下のようになる。
As shown in FIG. 1A, a steel base material is chemically or physically surface-treated, and a mixture of an organic sizing agent and a self-fluxing alloy is applied to the surface-treated steel base material. ,
After drying, the organic paste is applied again, and further abrasive grains such as diamond particles are sprayed, dried, heated, and cooled to manufacture a grindstone tool. This process will be described in more detail below.

【0020】はじめに、鋼基材として軟鋼からなる10
cm径のカッター用基材を用い、この鋼基材に、24メ
ッシュのアルミナ砥粒を6kg/cm2 の圧力で5分間
吹きつける表面処理工程としてのブラスト処理を施し、
表面を清浄化させる。つぎに、前記鋼基材に市販の水溶
性メチルセルロースを約3.3倍量の水で希釈した有機
糊剤と、結合材の自溶合金粉末として、重量%で、16
%のクロム、4.0%のモリブデン、2.4%のタング
ステン、および、0.5%の炭素を含み、残部がニッケ
ルからなるニッケル基自溶合金のあらかじめ合金化した
市販のアトマイズ粉と混合しディスペンサなどの射出機
を使用して鋼基材に塗布する。
First, 10 made of mild steel as a steel base material.
Using a base material for a cutter having a diameter of cm, the steel base material is subjected to a blast treatment as a surface treatment step of spraying 24 mesh alumina abrasive grains at a pressure of 6 kg / cm 2 for 5 minutes,
Clean the surface. Next, an organic sizing agent prepared by diluting commercially available water-soluble methyl cellulose with about 3.3 times the amount of water on the steel base material and a self-fluxing alloy powder of the binder, in a weight percentage of 16%
% Chromium, 4.0% molybdenum, 2.4% tungsten, and 0.5% carbon mixed with a pre-alloyed commercial atomized powder of nickel-based self-fluxing alloy with the balance nickel. Apply to the steel substrate using an injection machine such as a dispenser.

【0021】このとき、表面処理加工としてのブラスト
処理を施すことにより鋼基材は、表面が清浄活性化され
ると共にそのアンカー効果により、有機糊剤および結合
材の付着性が良好になる。水溶性の有機糊剤は、砥粒を
付着保持し、約500°C以上の加熱によって乾燥させ
ることで、有機糊剤を揮発すると共に、結合材を置換的
に砥粒に付着結合させる。有機糊剤としては、メチルセ
ルロース、ヒドロキシプロピルメチルセルロースあるい
はヒドロキシエチルメチルセルロース等のセルロースエ
ーテルがその希釈濃度に応じて高粘性高弾性を示し、作
業性が良好であると共に砥粒の保持性が良好である。そ
して、再び、有機糊剤を塗布する。
At this time, the surface of the steel base material is cleaned and activated by performing the blast treatment as the surface treatment treatment, and the anchor effect improves the adhesion of the organic sizing agent and the binder. The water-soluble organic sizing agent adheres and holds the abrasive grains, and is dried by heating at about 500 ° C. or more to volatilize the organic sizing agent and replace and bond the bonding material to the abrasive grains. As an organic sizing agent, cellulose ether such as methyl cellulose, hydroxypropyl methyl cellulose or hydroxyethyl methyl cellulose exhibits high viscosity and high elasticity depending on its dilution concentration, and has good workability and good retention of abrasive grains. Then, the organic paste is applied again.

【0022】ついで、砥粒として40〜50メッシュの
ダイヤモンド粒子1カラット(0.2g)を散布し、加
圧により突出状態の調整を行い、80°Cで10分と1
50°Cで20分の有機糊剤を飛ばす乾燥を行った。な
お、乾燥を2段階で行うのは、有機糊剤の水分が急激に
沸騰するのを避ける意味がある。この時のダイヤモンド
粒子の保持状況を図3(a)に示す。すなわち、ブラス
ト処理を施された鋼基材1上に自溶合金粉末2Aが敷装
され、その上に有機糊剤3を介してダイヤモンド粒子4
が保持されている状態にある。
Next, 1 carat (0.2 g) of diamond particles of 40 to 50 mesh was sprayed as abrasive grains, and the protruding state was adjusted by pressurizing, and at 10 ° C. for 10 minutes and 1 minute.
Drying was performed at 50 ° C. for 20 minutes to remove the organic sizing agent. It should be noted that performing the drying in two steps has the meaning of avoiding rapid boiling of water in the organic sizing agent. The state of holding the diamond particles at this time is shown in FIG. That is, the self-fluxing alloy powder 2A is laid on the steel base material 1 that has been subjected to the blast treatment, and the diamond particles 4 are placed on the self-fluxing alloy powder 2A via the organic sizing agent 3.
Is being held.

【0023】つぎに、加熱処理炉内の真空度を3×10
-4Torrとし、約7時間で870°Cまで加熱し、前
記有機糊剤を充分に揮発除去させた。ついで、この87
0°Cの状態で1時間保持し、自溶合金の組成の安定を
図る、その後、約15分間で900°Cから1150°
Cの範囲の加熱温度(ここでは1100°Cで行った)
まで上昇させた状態で、10〜15分間保持した。その
後、加熱処理炉内の真空などの非酸化性雰囲気中で常温
まで徐々に冷却(徐冷)し、図3(b)に示したよう
に、ダイヤモンド粒子を単一層に保持したカッター試料
を得た。すなわち、自溶合金2Bは、鋼基材1に融着
し、また、盛り上がる形にダイヤモンド粒子4を濡れ性
の良好な状態とし、ダイヤモンド粒子4と化学的に融着
している。
Next, the degree of vacuum in the heat treatment furnace is set to 3 × 10.
The pressure was set to -4 Torr and the temperature was raised to 870 ° C in about 7 hours to sufficiently volatilize and remove the organic sizing agent. Then, this 87
Hold at 0 ° C for 1 hour to stabilize the composition of the self-fluxing alloy, then 900 ° C to 1150 ° C for about 15 minutes.
Heating temperature in the range of C (here, performed at 1100 ° C)
The temperature was raised to 10 minutes. Then, the sample is gradually cooled (gradually cooled) to room temperature in a non-oxidizing atmosphere such as a vacuum in a heat treatment furnace to obtain a cutter sample in which diamond particles are held in a single layer as shown in FIG. 3 (b). It was That is, the self-fluxing alloy 2B is fused to the steel substrate 1, and the diamond particles 4 are chemically fused to the diamond particles 4 in a swelling state with good wettability.

【0024】なお、自溶合金などの結合材の融着加熱に
際して酸素は有害で、僅かな酸素の存在によっても砥粒
表面の酸化が行われ、ダイヤモンド粒子の場合、さらに
黒鉛化が促進され、融着が阻害される。これを防止する
にはアルゴンガスや水素ガスを導入して非酸化性雰囲気
とすることも有効であるが、この場合、特に、置換導入
にあたり、真空吸引工程を介在させ、酸素の残存を極力
さけることにより、融着加熱後の効果はさらに良好なも
のとなる。また、非酸化性雰囲気として真空雰囲気を採
用する場合は、1×10-4〜5×10-4Torrの高真
空度が好ましく、この範囲以下に真空度が低下すると、
砥粒の酸化防止が不十分であり、この範囲以上の高真空
度にしても効果は余り変わらない。
Oxygen is harmful during fusion heating of a binder such as a self-fluxing alloy, and the presence of a slight amount of oxygen oxidizes the surface of the abrasive grains. In the case of diamond particles, graphitization is further promoted. Fusion is hindered. In order to prevent this, it is also effective to introduce argon gas or hydrogen gas to create a non-oxidizing atmosphere. In this case, however, a vacuum suction step is intervened particularly in the introduction of substitution to prevent oxygen from remaining as much as possible. As a result, the effect after fusion heating is further improved. When a vacuum atmosphere is adopted as the non-oxidizing atmosphere, a high vacuum degree of 1 × 10 −4 to 5 × 10 −4 Torr is preferable, and when the vacuum degree falls below this range,
Oxidation protection of the abrasive grains is insufficient, and the effect is not so different even if the degree of vacuum is higher than this range.

【0025】また、結合材が融着する加熱温度は、90
0°C未満では、自溶合金粉末等結合材と砥粒との融着
が不十分で砥粒の保持力が悪く、1150°Cを越える
と、液相化した結合材の過剰流動により砥粒の保持状態
が悪くなり、また、砥粒の酸化による脆化が始まる。ダ
イヤモンド粒子の場合、さらに、鋼基材が鉄分を含む場
合、その鉄とダイヤモンド粒子の炭素が反応し、脆いセ
メンタイトを生じ易くなるので、ダイヤモンド工具とし
て使用できなくなる恐れがある。
The heating temperature at which the binder is fused is 90
If the temperature is lower than 0 ° C, the fusion between the binder such as self-fluxing alloy powder and the abrasive grains is insufficient and the holding power of the abrasive grains is poor. Grain retention becomes poor and embrittlement due to oxidation of the abrasive grains begins. In the case of diamond particles, further, when the steel base material contains iron, the iron and the carbon of the diamond particles react with each other, and brittle cementite is likely to be generated, which may make it unusable as a diamond tool.

【0026】さらに、融着加熱を終了した砥石工具は、
その冷却過程で急速に冷却すると鋼基材に歪みを発生
し、製品として使用する際に振れることがあるので、加
熱温度から徐々に冷却し、好ましくは、加熱処理炉の真
空など非酸化性雰囲気内でそのまま加熱温度から徐々に
冷却する炉内冷却(徐冷)を行う。
Further, the grindstone tool which has finished the fusion heating is
If rapidly cooled in the cooling process, distortion may occur in the steel base material and it may shake when used as a product, so cool gradually from the heating temperature, preferably in a non-oxidizing atmosphere such as the vacuum of a heat treatment furnace. The inside of the furnace is gradually cooled from the heating temperature as it is (cooling).

【0027】前記自溶合金は、ニッケル基にほう素と珪
素を添加したもの(以下自溶合金Aという)または、ニ
ッケル−クロム基にほう素と珪素を添加したもの(以下
自溶合金Bという)あるいはコバルト基にほう素と珪素
と添加したもの(以下自溶合金Cという)を主体とした
耐磨耗性溶射用合金の総称で、市販されている多種類の
ものが利用できる。
The self-fluxing alloy is obtained by adding boron and silicon to a nickel base (hereinafter referred to as self-fluxing alloy A), or is obtained by adding boron and silicon to a nickel-chromium base (hereinafter referred to as self-fluxing alloy B). ), Or a general term for wear-resistant thermal spraying alloys mainly composed of a cobalt-based material containing boron and silicon (hereinafter referred to as self-fluxing alloy C), and various commercially available ones can be used.

【0028】例えば、前記自溶合金Aに鉄および炭素を
加えたものや、前記自溶合金Bに鉄とタングステンを加
えたものや、前記自溶合金Bに鉄とモリブデンを加えた
ものや、前記自溶合金Bに鉄および炭素を加えたもの
(以下自溶合金Dという)でも良い。また、前記自溶合
金Dにタングステンを加えたものや、自溶合金Cに銅を
加えたものや、自溶合金Cに銅とタングステンを加え、
リン(P)、アルミニウム(Al)、イオウ(S),チ
タン(Ti),ジルコニウム(Zr)(以下添加物類と
いう)を1.0重量%以下の範囲で添加したものや、自
溶合金Cに銅とモリブデンおよびタングステンを加える
と共に、前記添加物類を添加したものや、自溶合金Dに
タングステンカーバイトを加えると共に、前記添加物類
を添加したもの等が利用できる。
For example, the self-fluxing alloy A to which iron and carbon have been added, the self-fluxing alloy B to which iron and tungsten have been added, the self-fluxing alloy B to which iron and molybdenum have been added, A material obtained by adding iron and carbon to the self-fluxing alloy B (hereinafter referred to as self-fluxing alloy D) may be used. In addition, the self-fluxing alloy D added with tungsten, the self-fluxing alloy C added with copper, the self-fluxing alloy C added with copper and tungsten,
Phosphorus (P), aluminum (Al), sulfur (S), titanium (Ti), zirconium (Zr) (hereinafter referred to as additives) added in a range of 1.0 wt% or less, and self-fluxing alloy C In addition to copper, molybdenum, and tungsten, the above additives are added, and the self-fluxing alloy D to which tungsten carbide is added and the above additives are added can be used.

【0029】また、前記自溶合金Cに、クロムおよびタ
ングステンを加えたものや、前記自溶合金Cにタングス
テンおよびニッケルを加えたものや、前記自溶合金Cに
クロムとニッケルおよびモリブデンを加えたものでも良
い。さらに、前記自溶合金Cにクロムとタングステンと
炭素およびその他のものを加えたものや、前記自溶合金
Cにクロムとタングステンと炭素とニッケルおよび鉄を
加えたものや、前記自溶合金Cにクロムと炭素とニッケ
ルと鉄およびモリブデンを加えたものであっても構わな
い。
Further, chromium and tungsten are added to the self-fluxing alloy C, tungsten and nickel are added to the self-fluxing alloy C, and chromium, nickel and molybdenum are added to the self-fluxing alloy C. Anything is fine. Further, the self-fluxing alloy C to which chromium, tungsten, carbon and other substances are added, the self-fluxing alloy C to which chromium, tungsten, carbon, nickel and iron are added, and the self-fluxing alloy C to It is possible to add chromium, carbon, nickel, iron and molybdenum.

【0030】なお、前記ニッケル基の自溶合金の重量%
は、クロム5〜29%、ほう素1.0〜4.0%、珪素
2.0〜5.0%、鉄1.0〜5.0%、炭素0.05
〜1.0%、チタン5%以下、リン12%以下、銅1.
0〜4.0%、モリブデン1.0〜3.0%、タングス
テン2.0〜39%、タングステンカーバイト50%以
下の範囲で使用すると都合が良い。
The weight% of the nickel-based self-fluxing alloy
Is chromium 5 to 29%, boron 1.0 to 4.0%, silicon 2.0 to 5.0%, iron 1.0 to 5.0%, carbon 0.05.
~ 1.0%, titanium 5% or less, phosphorus 12% or less, copper 1.
It is convenient to use in the range of 0-4.0%, molybdenum 1.0-3.0%, tungsten 2.0-39%, and tungsten carbide 50% or less.

【0031】また、前記コバルト基の自溶合金の重量%
は、クロム30%以下、ほう素4.0%以下、珪素8.
0%以下、タングステン15.0%以下、炭素2.5%
以下、ニッケル50%以下、鉄2.5%以下、モリブデ
ン7.0%以下での範囲で使用されると都合が良い。な
お、ここに挙げた自溶合金は、その一例であり、すでに
公知のものも使用できることは勿論である。
In addition, the weight% of the cobalt-based self-fluxing alloy
Are chromium 30% or less, boron 4.0% or less, silicon 8.
0% or less, tungsten 15.0% or less, carbon 2.5%
Hereinafter, it is convenient to use nickel in an amount of 50% or less, iron 2.5% or less, and molybdenum 7.0% or less. The self-fluxing alloys listed here are only examples, and it is needless to say that known ones can be used.

【0032】また、自溶合金と同じ働きをする例えば、
チタンロー(銀−銅−チタン、銀−銅−インジュウム−
チタン、銅−チタン−ジルコニウム−ニッケル、銅−チ
タン−ジルコニウム、それぞれ銀60〜70%、銅20
〜50%、インジュウム14%、チタン2〜40%、ジ
ルコニウム20〜25%、ニッケル20%、それぞれ重
量%)や、ニッケルロー(リン−ニッケル、クロム−リ
ン−ニッケル、リン10〜11%、クロム13〜25
%、残分ニッケル、それぞれ重量%)を使用しても構わ
ない。
Further, the same function as the self-fluxing alloy is obtained, for example,
Titanium Rho (silver-copper-titanium, silver-copper-indium-
Titanium, copper-titanium-zirconium-nickel, copper-titanium-zirconium, silver 60 to 70%, copper 20
~ 50%, Indium 14%, Titanium 2-40%, Zirconium 20-25%, Nickel 20%, each weight%), Nickel Rho (phosphorus-nickel, chromium-phosphorus-nickel, phosphorus 10-11%, chromium) 13-25
%, Balance nickel, each weight%) may be used.

【0033】なお、この実施の形態では、ニッケル基自
溶合金を使用する場合、好ましくは、重量%で、クロム
を10〜20%、珪素を2〜5%、ほう素を2〜5%、
銅を2〜4%、モリブデンを2〜4%、タングステンを
2〜4%、炭素を0.3〜1.0%および鉄を5%以下
含み、残がニッケルのニッケル基自溶合金であるものを
使用した。
In this embodiment, when a nickel-based self-fluxing alloy is used, preferably, by weight, 10 to 20% of chromium, 2 to 5% of silicon, and 2 to 5% of boron are used.
Copper is 2-4%, molybdenum is 2-4%, tungsten is 2-4%, carbon is 0.3-1.0% and iron is 5% or less, and the balance is nickel based self-fluxing alloy. I used one.

【0034】また、コバルト基自溶合金を使用する場
合、好ましくは、重量%で、クロムを10〜20%、珪
素を2〜5%、ほう素を2〜5%、銅を2〜4%、モリ
ブデンを2〜4%、タングステンを2〜4%、炭素を
0.3〜1.0%、鉄を5%以下およびニッケルを10
〜20%含み、残がコバルトのコバルト基自溶合金であ
るものを使用した。
When a cobalt-based self-fluxing alloy is used, preferably, by weight, chromium is 10 to 20%, silicon is 2 to 5%, boron is 2 to 5%, and copper is 2 to 4%. , Molybdenum 2-4%, tungsten 2-4%, carbon 0.3-1.0%, iron 5% or less and nickel 10%.
Used was a cobalt-based self-fluxing alloy containing -20% and the balance being cobalt.

【0035】その理由として、前記自溶合金におけるク
ロムは、ニッケルおよび/またはコバルトとの組み合わ
せによって硬さおよび耐磨耗性を向上させるが、使用し
た自溶合金では、特に、砥粒との化学反応性を高め濡れ
性を改善するのに有意義である。クロムは5%未満では
これらの効果が余り期待できず、29%を越えてもこれ
らの効果の向上は望めない。珪素とほう素は、加熱によ
り生成するその酸化物がフラックス作用をし、融合金属
の融点を下げ、流動性を増し、砥粒への濡れ性や融着性
を向上させるものであるが、それぞれ2%以下では効果
が少なく、5%以上でもその効果の向上は望めない。
The reason for this is that chromium in the self-fluxing alloy improves hardness and wear resistance by combination with nickel and / or cobalt. It is significant for increasing reactivity and improving wettability. If chromium is less than 5%, these effects cannot be expected so much, and if it exceeds 29%, improvement of these effects cannot be expected. Silicon and boron are those whose oxides produced by heating act as a flux, lower the melting point of the fused metal, increase the fluidity, and improve the wettability and fusion property to the abrasive grains. If it is 2% or less, the effect is small, and if it is 5% or more, the effect cannot be expected to be improved.

【0036】この自溶合金における銅は、溶融合金の融
点を下げ、砥粒の濡れ性を改善するのに効果があり、モ
リブデンは、融着加熱に際し、骨材として分散し液相化
した自溶合金の過剰流動を防止し砥粒の移動を防止す
る。また、この自溶合金におけるモリブデンは、この砥
石工具製品を使用した際、潤滑作用を示し、活性フィラ
ーとしての効果を示す。この銅とモリブデンはそれぞれ
2%未満ではその効果が期待できず、5%以上になって
も添加した程には効果の向上は望めない。
Copper in this self-fluxing alloy has the effect of lowering the melting point of the molten alloy and improving the wettability of the abrasive grains, and molybdenum is dispersed as an aggregate during the fusion heating to form a liquid phase. Prevents excessive flow of molten alloy and prevents movement of abrasive grains. Further, molybdenum in this self-fluxing alloy exhibits a lubricating action when this grindstone tool product is used, and exhibits an effect as an active filler. If the content of each of copper and molybdenum is less than 2%, the effect cannot be expected. Even if the content of each of copper and molybdenum is more than 5%, the effect cannot be expected to be improved as much as the addition thereof.

【0037】また、この自溶合金におけるタングステン
は、前記の成分範囲内において有効な耐磨耗性の向上を
示し、鉄と炭素は、不純物として入ることが多いが、こ
の炭素はクロムと化合物をつくり合金中に細かく分散し
て強度を改善する作用をも有する。コバルトはまた、前
記の成分範囲内において合金の耐磨耗性の外、特に耐熱
性を改善する効果を有し、比較的高い発熱を伴う難研削
材には有利である。
Tungsten in this self-fluxing alloy exhibits effective improvement in wear resistance within the above-mentioned range of components, and iron and carbon often enter as impurities, but this carbon forms a compound with chromium. It also has the function of finely dispersing in the casting alloy to improve the strength. Cobalt also has an effect of improving not only the wear resistance of the alloy but also the heat resistance within the above-mentioned range of components, and is advantageous for a difficult-to-grind material having a relatively high heat generation.

【0038】そして、結合材として、前記自溶合金と重
量%で50%未満の遷移金属または遷移金属の合金との
混合物の粉末とすることにより、その性能をほどんど阻
害することなく、さらに結合材の融点を下げ、また自溶
合金による内部応力を緩和させることができ、砥石製造
工程において、ダイヤモンド粒子や立方晶窒化ほう素粒
子による砥粒を傷めることなく固定保持させることがで
きる。なお、前記遷移金属はチタン、マンガン、鉄、ジ
ルコニウム、モリブデンなど原子番号21〜30および
39〜48、高融点固体金属である。また、原子番号7
4タングステンを含む原子番号57〜78までを遷移金
属として使用しても良い。さらに、前記遷移金属の合金
を使用しても構わない。
Then, by using a powder of a mixture of the self-fluxing alloy and less than 50% by weight of a transition metal or an alloy of transition metals as a binder, the binder is further bonded without substantially impairing its performance. The melting point of the material can be lowered, and the internal stress due to the self-fluxing alloy can be relaxed, and in the grindstone manufacturing process, the abrasive grains due to the diamond particles or the cubic boron nitride particles can be fixed and held without being damaged. The transition metal is a solid metal having a high melting point such as titanium, manganese, iron, zirconium, molybdenum and having atomic numbers 21 to 30 and 39 to 48. Also, atomic number 7
Atomic numbers 57 to 78 including 4 tungsten may be used as the transition metal. Further, an alloy of the above transition metal may be used.

【0039】さらに、前記砥粒は、一般的にはダイヤモ
ンド粒子を使用するが、超砥粒つまり、ダイヤモンド粒
子や、立方晶窒化ほう素粒子や、アルミナやアランダ
ム、炭化珪素あるいは超硬粉末などを単体あるいは複数
または全部を混合して使用しても構わない。
Further, although diamond particles are generally used as the abrasive grains, superabrasive grains, that is, diamond particles, cubic boron nitride particles, alumina, alundum, silicon carbide or superhard powder, etc. May be used alone or in combination of plural or all.

【0040】つぎに、図1(b)で示すように、製造方
法として実施の第2形態について説明する。はじめに、
鋼基材の表面を化学的または物理的に処理し(ここでは
ブラスト処理を行っている)、鋼基材の表面を清浄化さ
せ、その後、有機糊剤を塗布する。そして、ダイヤモン
ド粒子などの砥粒を散布し、ついで、自溶合金も散布す
る。さらに、乾燥作業を行い、加熱温度で加熱し、加熱
温度から徐々に冷却して砥石工具を製造する。なお、上
記工程では砥粒と自溶合金の散布の順序が変わっても構
わない。この製造工程では、図1(a)で説明した製造
工程より一工程、作業が短縮できる。
Next, as shown in FIG. 1B, a second embodiment as a manufacturing method will be described. First,
The surface of the steel base material is chemically or physically treated (blasting is performed here) to clean the surface of the steel base material, and then an organic sizing agent is applied. Then, abrasive grains such as diamond particles are dispersed, and then a self-fluxing alloy is also dispersed. Further, a drying operation is performed, heating is performed at a heating temperature, and cooling is gradually performed from the heating temperature to manufacture a grindstone tool. In the above process, the order of spraying the abrasive grains and the self-fluxing alloy may be changed. In this manufacturing process, the process can be shortened by one step compared to the manufacturing process described with reference to FIG.

【0041】つぎに、図2(a)で示すように、製造方
法として実施の第3形態について説明する。図2(a)
で示すように、鋼基材の表面を表面処理加工としてブラ
スト処理を行い、有機糊剤と自溶合金とを混合した混合
物をディスペンサなどの射出機で塗布し、砥粒を散布す
る。その後乾燥作業を行い、加熱温度に加熱して自溶合
金を融着させ、徐々に冷却して砥石工具を製造する。こ
の製造工程では、図1(b)で示す製造工程よりさらに
一工程の作業が短縮することができる。
Next, as shown in FIG. 2A, a third embodiment as a manufacturing method will be described. FIG. 2 (a)
As shown in, the surface of the steel base material is subjected to a blasting treatment, and a mixture of an organic sizing agent and a self-fluxing alloy is applied by an injection machine such as a dispenser, and abrasive grains are sprayed. After that, a drying operation is performed, and the self-fluxing alloy is fused by heating to a heating temperature and gradually cooled to manufacture a grindstone tool. In this manufacturing process, the work of one process can be further shortened as compared with the manufacturing process shown in FIG.

【0042】さらに、図2(b)で示すように、製造方
法として実施の第3の形態について説明する。図2
(b)で示すように、はじめに、鋼基材の表面をブラス
ト処理を行い、有機糊剤と自溶合金および砥粒との混合
物を塗布する。その後、乾燥作業を行い、加熱温度で加
熱して、自溶合金を融着させ、徐々に冷却して砥石工具
を製造する。この製造工程では、前記図2(a)で示す
製造工程よりさらに一工程短縮することが可能となる。
Further, as shown in FIG. 2B, a third embodiment as a manufacturing method will be described. FIG.
As shown in (b), first, the surface of the steel substrate is blasted, and a mixture of an organic sizing agent, a self-fluxing alloy and abrasive grains is applied. After that, a drying operation is performed, and the self-fluxing alloy is fused by heating at a heating temperature and gradually cooled to manufacture a grindstone tool. In this manufacturing process, it is possible to further shorten the manufacturing process by one step as compared with the manufacturing process shown in FIG.

【0043】なお、前記した図1(b)図2(a)
(b)で示した製造工程の各表面加工処理、有機糊剤の
塗布、自溶合金の融着、乾燥、加熱、および徐冷する各
工程は図1(a)で説明したものと同じであるため概略
だけを述べた。
The above-mentioned FIG. 1 (b) and FIG. 2 (a)
Each surface processing treatment, application of an organic sizing agent, fusion of a self-fluxing alloy, drying, heating, and slow cooling in the manufacturing process shown in (b) are the same as those described in FIG. 1 (a). Therefore, only an outline is given.

【0044】[0044]

【実施例】つぎに、上記のようにして得られたカッター
試料を、研削工具(サンダー)に取り付けて研削試験に
供した。すなわち、この研削工具を試験装置に取り付
け、5kgの錘を付した研削工具が斜降するガイドに沿
ってスライドし、そのカッター部分が自然落下状態で被
研削材に負荷されるようにすると共に、被研削材をコン
クリートと赤御影石による石材とし、それぞれ35カッ
トを冷却水を使用しない乾式状態で研削し、その研削速
度を調査した。また、同じ方法により、35カットの結
晶化ガラスについて、その切断性を調査した。石材と結
晶化ガラスはそれぞれ2cm厚さ×300cm長さの寸
法のものである。
EXAMPLE Next, the cutter sample obtained as described above was attached to a grinding tool (sander) and subjected to a grinding test. That is, this grinding tool is attached to a test device, and a grinding tool with a 5 kg weight slides along a guide that descends obliquely so that the cutter part is naturally loaded and applied to the material to be ground. The materials to be ground were stones made of concrete and red granite, and 35 cuts were ground in a dry state without using cooling water, and the grinding speed was investigated. Further, the same method was used to investigate the cuttability of 35-cut crystallized glass. The stone material and the crystallized glass are each 2 cm thick and 300 cm long.

【0045】なお、同じ寸法のカッター試料を前記した
従来の電着結合法および金属結合法で製作し、比較例1
および比較例2とし、前記の本製造方法で製作した実施
例のカッター試料と同様にして研削試験を行った結果を
表1に示す。
Cutter samples of the same size were manufactured by the conventional electrodeposition bonding method and metal bonding method described above, and Comparative Example 1
Table 1 shows the results of the grinding test performed as the comparative example 2 and the cutter sample of the example manufactured by the above-described manufacturing method.

【0046】[0046]

【表1】 [Table 1]

【0047】上記の表1で分かるように、この発明のカ
ッター試料によると、コンクリートや石材に対して、従
来の電着結合法によるものに比べて約1.5倍、金属焼
結結合法によるものに比べて約2倍の研削速度で研削で
きる切れ味を示し、結晶化ガラスに対しても、前記比較
例1、2によるものに比べて4〜7倍の切断能力のある
ことを示した。
As can be seen from Table 1 above, according to the cutter sample of the present invention, it is about 1.5 times as large as that by the conventional electrodeposition bonding method on the concrete or stone material and by the metal sinter bonding method. It showed a sharpness that can be ground at a grinding speed about twice as high as that of the glass of the present invention, and showed that the crystallized glass also had a cutting ability of 4 to 7 times as high as that of the glass of Comparative Examples 1 and 2.

【0048】つぎに、内径20mmのダイヤモンドビッ
ト試料を作成した。40〜50メッシュのダイヤモンド
粒子を全部で1.5カラットの量を塗布した外は前記カ
ッター試料の場合と同様にした。製造したダイヤモンド
ビット試料を25kgの錘を付した電気ドリル工具に取
り付け、自由落下状態で、冷却水を用いない乾式仕様で
研削による穿孔試験を行った。
Next, a diamond bit sample having an inner diameter of 20 mm was prepared. The procedure was the same as for the cutter sample, except that diamond particles of 40 to 50 mesh were applied in a total amount of 1.5 carats. The produced diamond bit sample was attached to an electric drill tool with a weight of 25 kg, and a drilling test by grinding was performed in a free fall state and in a dry type without using cooling water.

【0049】また、上記の実施例によるダイヤモンドビ
ット試料と同様基材寸法のものについて、前記した電着
結合法と焼結金属結合法とによってダイヤモンドビット
試料を製作し、それぞれ比較例3および比較例4として
同様に試験を行った結果を表2に示す。
Further, diamond bit samples having the same substrate size as the diamond bit samples according to the above-mentioned Examples were manufactured by the above-mentioned electrodeposition bonding method and sintered metal bonding method, and Comparative Example 3 and Comparative Example respectively. The results of the same test as No. 4 are shown in Table 2.

【0050】[0050]

【表2】 [Table 2]

【0051】上記したように、この発明のダイヤモンド
ビット試料は、鉄筋コンクリート材に対し、12穴の穿
孔を行っても異常はなく、従来の電着結合法および金属
焼結結合法によるものに比べて少なくても数倍の穿孔能
力のあることを示し、石材に対しても、20穴の穿孔を
行っても異常がなく、ほぼ同様の穿孔能力が期待でき
た。
As described above, in the diamond bit sample of the present invention, there is no abnormality even if 12 holes are drilled in the reinforced concrete material, which is more than that by the conventional electrodeposition bonding method and metal sinter bonding method. It was shown that the drilling ability was at least several times higher, and even if the stone material was drilled with 20 holes, there was no abnormality and almost the same drilling ability could be expected.

【0052】なお、この発明の砥石工具における鋼基材
としては、一般構造用圧延鋼材(SS490等)、機械
構造用炭素鋼(S45C等)、強靱鋼(SCM等)、炭
素工具鋼(SK鋼等)、合金工具鋼(SKS等)あるい
は不銹鋼(SUS)などによる鋼基材およびタングステ
ンを主成分とした超硬合金基材が用途に応じて選択使用
できる。
As the steel base material in the grindstone tool of the present invention, rolled steel for general structure (SS490 etc.), carbon steel for machine structure (S45C etc.), tough steel (SCM etc.), carbon tool steel (SK steel). Etc.), a steel base material made of alloy tool steel (SKS, etc.) or stainless steel (SUS), and a cemented carbide base material containing tungsten as a main component can be selectively used according to the application.

【0053】この発明の製造方法によって得られるダイ
ヤモンド工具の利用範囲は広く、上記実施例のカッター
やビットに限ることはなく、9インチ以上の径を有する
ブレード、カップホイール、コアビット、ダイヤモンド
ワイヤソー等にも適用でき、被研削対象物としても、コ
ンクリート、鉄筋コンクリート、煉瓦、石材、結晶化ガ
ラス、建材ブロック、磁器タイル、瓦、硬質カーボン、
FRP,金属等対象物を選ばず、冷却水を使用せず乾式
法で研削加工ができるものである。
The diamond tool obtained by the manufacturing method of the present invention has a wide range of applications, and is not limited to the cutters and bits of the above-mentioned embodiments, but is applicable to blades having a diameter of 9 inches or more, cup wheels, core bits, diamond wire saws, etc. It can also be applied to concrete objects such as concrete, reinforced concrete, bricks, stones, crystallized glass, building material blocks, porcelain tiles, roof tiles, hard carbon,
It is possible to grind by dry method without using cooling water, regardless of the object such as FRP and metal.

【0054】[0054]

【発明の効果】この発明は、上記のように構成したので
次のような優れた効果を奏する。 (1) 製造工程が簡単であり、かつ、有機糊剤を介して自
溶合金は鋼基材とダイヤモンド粒子との濡れ性が良く、
かつ、融着結合するので、鋼基材のダイヤモンド粒子保
持力が強固で工具の耐久性が向上する。
The present invention has the following advantages because it is configured as described above. (1) The manufacturing process is simple, and the self-fluxing alloy has good wettability between the steel base material and the diamond particles through the organic paste,
In addition, since the fusion bonding is performed, the diamond particle holding force of the steel base material is strong and the durability of the tool is improved.

【0055】(2) 製造工程が簡単で、かつ、ダイヤモン
ド粒子の保持力が強く、比較的少ない自溶合金粉末で、
ダイヤモンド粒子の突出量を大きくできるので、切れ味
の良いものが製造できる。
(2) A relatively small self-fluxing alloy powder which has a simple manufacturing process and a strong holding force for diamond particles.
Since the protrusion amount of the diamond particles can be increased, it is possible to manufacture a product with good sharpness.

【0056】(3) 製造工程が簡単で、かつ、ダイヤモン
ド粒子の切れ味が良いので、発生熱が少なく、自溶合金
などの構成材料の耐熱性がよいのと相まって、被研削材
の如何に係わらず、冷却水を使用しない乾式研削加工が
できる。
(3) Since the manufacturing process is simple and the sharpness of the diamond particles is good, less heat is generated, and the heat resistance of the constituent materials such as self-fluxing alloy is good, which makes it suitable for any material to be ground. In addition, dry grinding can be performed without using cooling water.

【0057】(4) 製造工程が簡単で、かつ、有機糊剤の
粘度調整、自溶合金粉末の粒度や供給量の調整およびダ
イヤモンド粒子塗布時の加圧調整などにより、ダイヤモ
ンド粒子の突出量の調整が容易に可能である。
(4) The production process is simple, and the protrusion amount of diamond particles can be controlled by adjusting the viscosity of the organic sizing agent, adjusting the particle size and supply amount of the self-fluxing alloy powder, and adjusting the pressure applied during diamond particle application. Adjustment is easily possible.

【0058】(5) 製造工程が簡単で、かつ、製造時にお
けるダイヤモンド粒子の散布は任意に行えるので、ダイ
ヤモンド粒子の分布密度を任意に調整できる。 (6) 製造時、ダイヤモンド粒子や自溶合金は有機糊剤で
仮固定できるので、従来の電着結合法のようにマスキン
グの必要がない。また、鋼基材を対象に直接ダイヤモン
ド粒子を配置できるので、金属焼結結合法のように、焼
結チップの溶接のような複雑な工程を必要としない。そ
のため、工程が簡単であるから生産性が良い。
(5) Since the manufacturing process is simple and the dispersion of the diamond particles during the manufacturing can be arbitrarily performed, the distribution density of the diamond particles can be arbitrarily adjusted. (6) Since diamond particles and self-fluxing alloy can be temporarily fixed with an organic sizing agent during manufacturing, masking is not required unlike the conventional electrodeposition bonding method. Further, since the diamond particles can be directly placed on the steel base material, a complicated process such as welding of sintered chips unlike the metal sinter bonding method is not required. Therefore, productivity is good because the process is simple.

【0059】(7) 製造工程が簡単で、かつ、生産性が良
いため、多量生産が可能で、安価に製品を提供できる。 (8) 製造工程が簡単で、かつ、有機糊剤を介するダイヤ
モンド粒子と自溶合金粉末との組み合わせは複層化が可
能なので、ダイヤモンド粒子の配置は単一層でも複層で
も任意に形成できる。
(7) Since the manufacturing process is simple and the productivity is good, mass production is possible and the product can be provided at a low cost. (8) Since the manufacturing process is simple and the combination of diamond particles and self-fluxing alloy powder via an organic paste can be multilayered, the diamond particles can be arranged in either a single layer or multiple layers.

【0060】(9) 製造工程が簡単で、かつ、ダイヤモン
ド粒子の保持力が良く、切れ味がよいので、被研削物の
種類を選ばず乾式研削が可能となり、用途が広範囲に渡
って使用できる。
(9) Since the manufacturing process is simple, the holding power of diamond particles is good, and the sharpness is good, dry grinding is possible regardless of the kind of the object to be ground, and it can be used in a wide range of applications.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)(b)はこの発明の砥石工具の製造方法
を示すブロック図である。
1A and 1B are block diagrams showing a method for manufacturing a grindstone tool of the present invention.

【図2】(a)(b)はこの発明の砥石工具の製造方法
を示すブロック図である。
2 (a) and 2 (b) are block diagrams showing a method for manufacturing a grindstone tool of the present invention.

【図3】この発明の製造方法による砥石工具における、
砥粒の保持状況を示す部分模式図で、(a)は加熱工程
前の状態を示し、(b)は加熱工程後の状況を示す模式
図である。
FIG. 3 shows a grindstone tool manufactured by the method of the present invention,
It is a partial schematic diagram which shows the holding | maintenance state of an abrasive grain, (a) shows the state before a heating process, (b) is a schematic diagram which shows the state after a heating process.

【図4】従来の電着結合法によるダイヤモンド粒子を用
いた砥石工具における、ダイヤモンド粒子の保持状況を
示す部分模式図である。
FIG. 4 is a partial schematic view showing a state of holding diamond particles in a grindstone tool using diamond particles by a conventional electrodeposition bonding method.

【符号の説明】[Explanation of symbols]

1 鋼基材 2A 自溶合金粉末 2B 自溶合金 3 有機糊剤 4 ダイヤモンド粒子(砥粒) 1 Steel substrate 2A Self-fluxing alloy powder 2B Self-fluxing alloy 3 Organic paste 4 Diamond particle (abrasive grain)

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】刃保持部材の先端に切削、研磨用の砥石刃
先を備えた砥石工具の製造方法において、 化学的または物理的に表面処理された前記砥石刃取付部
に、有機糊剤と結合材として自溶合金粉末の混合物を塗
布し、その後乾燥させ、さらに有機糊剤を塗布し、砥粒
を散布し、乾燥させ次いで、非酸化性雰囲気中において
900〜1150°Cの加熱温度に加熱し、前記自溶合
金の融着により前記砥石刃取付部に前記砥粒を固定し、
前記加熱温度から徐々に冷却することを特徴とする砥石
工具の製造方法。
1. A method for manufacturing a grindstone tool having a grindstone edge for cutting and polishing at the tip of a blade holding member, wherein an organic sizing agent is bonded to the grindstone blade mounting portion that has been chemically or physically surface-treated. As a material, a mixture of self-fluxing alloy powder is applied, then dried, then an organic sizing agent is applied, abrasive particles are sprayed, dried, and then heated to a heating temperature of 900 to 1150 ° C in a non-oxidizing atmosphere. Then, by fixing the abrasive grains to the grindstone blade attachment portion by fusion of the self-fluxing alloy,
A method for manufacturing a grindstone tool, which comprises gradually cooling from the heating temperature.
【請求項2】刃保持部材の先端に切削、研磨用の砥石刃
先を備えた砥石工具の製造方法において、 化学的または物理的に表面処理された前記砥石刃取付部
に、有機糊剤を塗布した後に、砥粒を散布し、その後、
結合材として自溶合金粉末を散布し、乾燥させ、次い
で、非酸化性雰囲気中において900〜1150°Cの
加熱温度に加熱し、前記自溶合金の融着により前記砥石
刃取付部に前記砥粒を固定し、前記加熱温度から徐々に
冷却することを特徴とする砥石工具の製造方法。
2. A method for manufacturing a grindstone tool having a grindstone tip for cutting and polishing at the tip of a blade holding member, wherein an organic sizing agent is applied to the grindstone blade mounting portion that has been chemically or physically surface-treated. After that, sprinkle abrasive grains, then,
The self-fluxing alloy powder is sprayed as a binder, dried, and then heated to a heating temperature of 900 to 1150 ° C. in a non-oxidizing atmosphere, and the self-fluxing alloy is melt-bonded to the grindstone blade attachment portion to the grind. A method for manufacturing a grindstone tool, which comprises fixing grains and gradually cooling from the heating temperature.
【請求項3】刃保持部材の先端に切削、研磨用の砥石刃
先を備えた砥石工具の製造方法において、 化学的または物理的に表面処理された前記砥石刃取付部
に、有機糊剤および結合材としての自溶合金粉末の混合
物を塗布し、砥粒を散布した後、乾燥させ、次いで、非
酸化性雰囲気中において900〜1150°Cの加熱温
度に加熱し、前記自溶合金の融着により前記砥石刃取付
部に前記砥粒を固定し、前記加熱温度から徐々に冷却す
ることを特徴とする砥石工具の製造方法。
3. A method of manufacturing a grindstone tool having a grindstone tip for cutting and polishing at the tip of a blade holding member, wherein an organic sizing agent and a bond are attached to the grindstone blade mounting portion that has been chemically or physically surface-treated. A mixture of self-fluxing alloy powder as a material is applied, abrasive grains are sprayed, then dried, and then heated to a heating temperature of 900 to 1150 ° C. in a non-oxidizing atmosphere to fuse the self-fluxing alloy. The abrasive grain is fixed to the grindstone blade mounting portion by the method and gradually cooled from the heating temperature.
【請求項4】刃保持部材の先端に切削、研磨用の砥石刃
先を備えた砥石工具の製造方法において、 化学的または物理的に表面処理された前記砥石刃取付部
に、有機糊剤、結合材としての自溶合金粉末、および砥
粒の混合物を塗布した後、乾燥させ、次いで、非酸化性
雰囲気中において900〜1150°Cの加熱温度に加
熱し、前記自溶合金の融着により前記砥石刃取付部に前
記砥粒を固定し、前記加熱温度から徐々に冷却すること
を特徴とする砥石工具の製造方法。
4. A method of manufacturing a grindstone tool having a grindstone tip for cutting and polishing at the tip of a blade holding member, wherein an organic sizing agent and a bonding agent are attached to the grindstone blade mounting portion that has been chemically or physically surface-treated. After applying a mixture of self-fluxing alloy powder as a material and abrasive grains, the mixture is dried, and then heated to a heating temperature of 900 to 1150 ° C. in a non-oxidizing atmosphere, and the fusion of the self-fluxing alloy described above is performed. A method for manufacturing a grindstone tool, characterized in that the abrasive grains are fixed to a grindstone blade mounting portion and gradually cooled from the heating temperature.
【請求項5】前記結合材として、重量%で50%未満の
遷移金属を含み、残分を自溶合金とする混合物の粉末を
用いることを特徴とする請求項1、2、3または4に記
載の砥石工具の製造方法。
5. The powder of a mixture containing less than 50% by weight of a transition metal and the balance being a self-fluxing alloy is used as the binder. A method for manufacturing the described grindstone tool.
【請求項6】前記結合材として、重量%で50%未満の
遷移金属の合金を含み、残分を自溶合金とする混合物の
粉末を用いることを特徴とする請求項1、2、3または
4に記載の砥石工具の製造方法。
6. A powder of a mixture containing an alloy of a transition metal in an amount of less than 50% by weight, the balance being a self-fluxing alloy, is used as the binder. 4. The method for manufacturing a grindstone tool according to item 4.
【請求項7】前記非酸化性雰囲気が1×10-4〜5×1
-4Torrの真空であることを特徴とする請求項1、
2、3、4、5または6に記載の砥石工具の製造方法。
7. The non-oxidizing atmosphere is 1 × 10 −4 to 5 × 1.
A vacuum of 0 -4 Torr.
The manufacturing method of the grindstone tool according to 2, 3, 4, 5 or 6.
【請求項8】前記非酸化性雰囲気がアルゴンガス雰囲気
であることを特徴とする請求項1、2、3、4、5、6
または7に記載の砥石工具の製造方法。
8. The non-oxidizing atmosphere is an argon gas atmosphere, 1, 2, 3, 4, 5, 6.
Or the manufacturing method of the grindstone tool according to 7.
【請求項9】前記非酸化性雰囲気が水素ガス雰囲気であ
ることを特徴とする請求項1、2、3、4、5、6また
は7に記載の砥石工具の製造方法。
9. The method for manufacturing a grindstone tool according to claim 1, wherein the non-oxidizing atmosphere is a hydrogen gas atmosphere.
【請求項10】前記請求項1ないし9に記載の砥石工具
の製造方法によって得られたことを特徴とする砥石工
具。
10. A grindstone tool obtained by the method for manufacturing a grindstone tool according to any one of claims 1 to 9.
JP8811896A 1996-04-10 1996-04-10 Grinding wheel tool and its manufacture Pending JPH09272060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8811896A JPH09272060A (en) 1996-04-10 1996-04-10 Grinding wheel tool and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8811896A JPH09272060A (en) 1996-04-10 1996-04-10 Grinding wheel tool and its manufacture

Publications (1)

Publication Number Publication Date
JPH09272060A true JPH09272060A (en) 1997-10-21

Family

ID=13933991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8811896A Pending JPH09272060A (en) 1996-04-10 1996-04-10 Grinding wheel tool and its manufacture

Country Status (1)

Country Link
JP (1) JPH09272060A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001315060A (en) * 2000-05-01 2001-11-13 Goei Seisakusho:Kk Dressing grinding wheel and its manufacturing method
JP2010000583A (en) * 2008-06-23 2010-01-07 Nakamura Choko:Kk Wire saw and its manufacturing method
JP2010000584A (en) * 2008-06-23 2010-01-07 Nakamura Choko:Kk Wire saw and its manufacturing method
JP2010131698A (en) * 2008-12-04 2010-06-17 Akita Univ Saw wire and method of manufacturing the same
JP2016035092A (en) * 2014-08-04 2016-03-17 第一高周波工業株式会社 Formation method of functional self-fluxing alloy coating layer
JP2020199598A (en) * 2019-06-11 2020-12-17 島根県 Manufacturing method for tool for cutting or grinding
BE1027775B1 (en) * 2019-12-13 2021-09-16 Zhengzhou Res Inst Mechanical Eng Co Ltd Abrasion-resistant cladding composition, abrasion-resistant welding wire, and methods for making and using them

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001315060A (en) * 2000-05-01 2001-11-13 Goei Seisakusho:Kk Dressing grinding wheel and its manufacturing method
JP2010000583A (en) * 2008-06-23 2010-01-07 Nakamura Choko:Kk Wire saw and its manufacturing method
JP2010000584A (en) * 2008-06-23 2010-01-07 Nakamura Choko:Kk Wire saw and its manufacturing method
JP2010131698A (en) * 2008-12-04 2010-06-17 Akita Univ Saw wire and method of manufacturing the same
JP4590513B2 (en) * 2008-12-04 2010-12-01 国立大学法人秋田大学 Saw wire and manufacturing method thereof
JP2016035092A (en) * 2014-08-04 2016-03-17 第一高周波工業株式会社 Formation method of functional self-fluxing alloy coating layer
JP2020199598A (en) * 2019-06-11 2020-12-17 島根県 Manufacturing method for tool for cutting or grinding
BE1027775B1 (en) * 2019-12-13 2021-09-16 Zhengzhou Res Inst Mechanical Eng Co Ltd Abrasion-resistant cladding composition, abrasion-resistant welding wire, and methods for making and using them

Similar Documents

Publication Publication Date Title
CA2322421C (en) Superabrasive wire saw and method for making the saw
US5997597A (en) Abrasive tool with knurled surface
US6102024A (en) Brazed superabrasive wire saw and method therefor
US3650714A (en) A method of coating diamond particles with metal
KR900002701B1 (en) Diamond sintered body for tools and method of manufacturing the same
JP3193690B2 (en) Peelable binder composition for polishing tool, method for bonding abrasive grains using the same, and polishing tool
US9868100B2 (en) Brazed diamond tools and methods for making the same
JP2000516156A (en) Polishing tool
JPH02160429A (en) Super-abrasive cutting element
CN1014306B (en) Low pressure bonding of pcd bodies and method
JP2000512220A (en) Diamond polishing tool and its manufacturing method
CN101434827A (en) Grinding medium containing ceramic particle, preparation and use thereof
WO1998005466A1 (en) Wear resistant bond for an abrasive tool
KR100375649B1 (en) Removable bond for abrasive tool
CN101890679B (en) Superabrasive tool and correlated method thereof
JPH08108369A (en) Grinding wheel tool and its manufacture
JPH09272060A (en) Grinding wheel tool and its manufacture
CN109571291A (en) Multifunctional mill cuts diamond-impregnated wheel and its preparation process
JP4653922B2 (en) Method of attaching a coating to a substrate composed of diamond or a diamond-containing material
TWI249449B (en) Brazing abrasive wire saw and method for producing the same
CN109551386A (en) Multifunctional mill cuts diamond-impregnated wheel
JP2002046072A (en) Grinding wheel tool and method of manufacturing it
JP3751160B2 (en) Hard material abrasive grain densification structure
JP3151705B2 (en) Structure of porous diamond cutting blade and method of manufacturing the same
US6338907B1 (en) Abrasive tool