JPH08108369A - Grinding wheel tool and its manufacture - Google Patents

Grinding wheel tool and its manufacture

Info

Publication number
JPH08108369A
JPH08108369A JP7107472A JP10747295A JPH08108369A JP H08108369 A JPH08108369 A JP H08108369A JP 7107472 A JP7107472 A JP 7107472A JP 10747295 A JP10747295 A JP 10747295A JP H08108369 A JPH08108369 A JP H08108369A
Authority
JP
Japan
Prior art keywords
self
manufacturing
fluxing alloy
abrasive grains
sizing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7107472A
Other languages
Japanese (ja)
Inventor
Kazunori Kotani
小谷一典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Goei Seisakusyo Co Ltd
Original Assignee
Goei Seisakusyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Goei Seisakusyo Co Ltd filed Critical Goei Seisakusyo Co Ltd
Priority to JP7107472A priority Critical patent/JPH08108369A/en
Publication of JPH08108369A publication Critical patent/JPH08108369A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PURPOSE: To provide a grinding wheel tool which is excellent in the cutting quality of an abrasive grain and is excellent in holding performance of the abrasive grain and capable of forming the plural layer distribution of the abrasive grain and cutting concrete and stone or the like without requiring cooling water, and its manufacturing method which is excellent in productivity. CONSTITUTION: An organic paste agent is applied to a base material on which blast processing is performed, and powder of a mixture of self-fluxing alloy powder or self-fluxing alloy and transition metal or transition metal alloy is sprayed on this organic paste agent as a binding agent, and the organic paste agent is dried, and after organic paste agent is reapplied, an abrasive grain by a diamond particle or a cubic crystal boron nitride particle is sprayed. After this organic paste agent is dried, it is heated to a temperature of 900 to 1150 deg.C in a nonoxidating atmosphere such as a vacuum atmosphere, and the binding agent is fused, and the abrasive grain is fixed to the base material, and this is annealed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は研削用として使用するダ
イヤモンド工具等砥石工具及びその製造方法に関し、特
に、砥粒を自溶合金等によって強固に基材に結合させる
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grindstone tool such as a diamond tool used for grinding and a method for producing the same, and more particularly to a method for firmly bonding abrasive grains to a substrate by a self-fluxing alloy or the like.

【0002】[0002]

【従来の技術】砥粒としてダイヤモンド粒子や立方晶窒
化ほう素粒子を利用した砥石工具における砥石の一般的
な形成方法としては、電着結合法及び金属焼結結合法が
ある。
2. Description of the Related Art As a general method for forming a grindstone in a grindstone tool using diamond particles or cubic boron nitride particles as abrasive grains, there are an electrodeposition bonding method and a metal sinter bonding method.

【0003】前者の電着結合法は、例えば、鋼基材を被
めっき材とし、非めっき部分をめっき用レジスト等でマ
スキングした後、下地ニッケルめっきを施し、次いで界
面活性剤に所定量の砥粒を分散させた分散液を混合した
ニッケルめっき液を用いて電気めっきを行い、共析する
砥粒を電着ニッケルで固定する方法である。
In the former electrodeposition bonding method, for example, a steel substrate is used as a material to be plated, a non-plated portion is masked with a resist for plating, nickel plating is applied to the base material, and then a surfactant is used to polish a predetermined amount. This is a method in which electroplating is performed using a nickel plating solution in which a dispersion liquid in which particles are dispersed is mixed and the eutectoid particles to be co-deposited are fixed with electrodeposited nickel.

【0004】後者の金属焼結結合法は、例えば、砥粒と
コバルト粉末あるいはコバルトと銅と錫との混合粉末等
を混合し、窒素雰囲気中で900〜1000℃の温度に
保持しながら250kg/cm2 の圧力で加圧するいわ
ゆるホットプレス法により、前記の金属粉末を圧粉焼結
させて砥粒を固定した焼結チップをつくり、この焼結チ
ップを蝋付け又はレーザー溶接等により鋼基材に取り付
ける方法である。
In the latter metal-sinter bonding method, for example, abrasive grains and cobalt powder or mixed powder of cobalt, copper and tin, etc. are mixed and kept at a temperature of 900 to 1000 ° C. in a nitrogen atmosphere while maintaining a pressure of 250 kg /. By a so-called hot pressing method in which a pressure of cm 2 is applied, the above-mentioned metal powder is powder-sintered to form a sintered chip with abrasive grains fixed, and the sintered chip is brazed or laser-welded to form a steel base material. It is a method of attaching to.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、天然ダ
イヤモンドの一部を除いて殆どの砥粒は絶縁性であり、
ダイヤモンド粒子を用いる前者の電着結合法において
は、図3に示したように、ダイヤモンド粒子5は、鋼基
材6上に電着金属7によって保持されるものであり、ダ
イヤモンド粒子5間において電着金属7は盛り上がりを
示すが、ダイヤモンド粒子5に対する電着金属7の付着
性は悪く、所謂濡れの悪い状態となるので、ダイヤモン
ド粒子5は実質的に電着金属7の抱き力に依存する状態
になる。従って、ダイヤモンド粒子の切刃の露呈状況か
らは使用時の切れ味は良好であるけれども、ダイヤモン
ド粒子の保持力が弱く、特に、研削時、発生熱によるニ
ッケル等電着金属の熱膨張があるとダイヤモンド粒子の
固定に緩みを生じ、ダイヤモンド粒子が脱落し易くなる
ので、冷却水を使用する湿式研削を必要とし、それでも
なお、被研削材料によっては対応しがたい場合があり、
また、工具としての寿命も短いという問題があった。さ
らにまた、この電着結合法ではダイヤモンド粒子の配置
は単一層に限られるという問題もあった。
However, most of the abrasive grains except a part of natural diamond are insulating,
In the former electrodeposition bonding method using diamond particles, as shown in FIG. 3, the diamond particles 5 are held on the steel base material 6 by the electrodeposited metal 7, and between the diamond particles 5 there is no electrodeposition. The deposited metal 7 shows swelling, but the adhesion of the electrodeposited metal 7 to the diamond particles 5 is poor, and the so-called poor wetting state occurs. Therefore, the diamond particles 5 substantially depend on the holding force of the electrodeposited metal 7. become. Therefore, although the sharpness during use is good depending on the exposed condition of the cutting edge of the diamond particles, the holding power of the diamond particles is weak, and especially when grinding, there is thermal expansion of the electrodeposited metal such as nickel due to generated heat Since loosening occurs in the fixing of the particles and the diamond particles are likely to fall off, wet grinding using cooling water is necessary, and it may still be difficult to handle depending on the material to be ground,
There is also a problem that the tool life is short. Furthermore, this electrodeposition method has a problem that the arrangement of diamond particles is limited to a single layer.

【0006】また、ダイヤモンド粒子を用いる後者のホ
ットプレスによる焼結結合法においては、ダイヤモンド
粒子を焼結金属内に複層に保持させることができるが、
焼結金属とダイヤモンド粒子との間における濡れ性は悪
く、図3で示された前記の電着結合法の場合と同様に、
ダイヤモンド粒子の保持は囲繞する焼結金属の収縮と内
部歪みとによる抱き込み力に依存しているので、保持力
が弱く、湿式研削を必要とし、また、ダイヤモンド粒子
の利用効率が悪いという問題があり、さらには、基材に
直接形成できず、生産性が悪いという問題もあった。
Further, in the latter sinter-bonding method by hot pressing using diamond particles, the diamond particles can be held in multiple layers in the sintered metal,
The wettability between the sintered metal and the diamond particles is poor, and similar to the case of the electrodeposition bonding method shown in FIG.
Since the retention of diamond particles depends on the holding force due to the shrinkage and internal strain of the surrounding sintered metal, the retention force is weak, wet grinding is necessary, and the utilization efficiency of diamond particles is poor. In addition, there is a problem that productivity cannot be obtained because it cannot be directly formed on the substrate.

【0007】そして、砥粒としての立方晶窒化ほう素粒
子についても、融点は非常に高いが、電気絶縁性で電着
金属の付着性が悪く、熱膨張率が低く、また、溶融金属
との濡れ性が悪いので、上記のダイヤモンド粒子の場合
と同様の問題を有していた。
The cubic boron nitride particles as abrasive grains also have a very high melting point, but they are electrically insulating and have poor adhesion of electrodeposited metal, and have a low coefficient of thermal expansion. Since it had poor wettability, it had the same problem as in the case of the above diamond particles.

【0008】このような状況に鑑み、本発明は、砥粒の
切れ味がよく、砥粒の保持性がよく、砥粒の複層分布の
形成も可能で、また、被研削材の種類を問わず冷却水を
必要としない乾式研削が可能な砥石工具及び生産性のよ
い砥石工具の製造方法の提供を目的とする。
In view of such a situation, the present invention has good sharpness of the abrasive grains, good retention of the abrasive grains, is capable of forming a multi-layer distribution of the abrasive grains, and is not limited to the kind of the material to be ground. An object of the present invention is to provide a grindstone tool capable of dry grinding that does not require cooling water and a method of manufacturing a grindstone tool with high productivity.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は、ブラスト処理を施した基材に有機糊剤を
塗布し、該有機糊剤上に結合材として自溶合金の粉末を
散布した後、前記有機糊剤を乾燥し、再び前記有機糊剤
を塗布し、砥粒としてダイヤモンド粒子を散布した後、
前記有機糊剤を乾燥し、次いで、非酸化性雰囲気中にお
いて900〜1150℃の温度に加熱し、前記結合材の
融着により前記基材に前期砥粒を固定した後、徐冷する
ことからなる砥石工具の製造方法を、また、前記砥粒と
して立方晶窒化ほう素粒子を用いる砥石工具の製造方法
を、そして、前記自溶合金は、重量%で、クロムを10
〜20%、珪素を2〜5%、ほう素を2〜5%、銅を2
〜4%、モリブデンを2〜4%、タングステンを2〜4
%、炭素を0.3〜1.0%及び鉄を5%以下含み、残
がニッケルのニッケル基自溶合金であるところの砥石工
具の製造方法を、さらに、前記自溶合金は、重量%で、
クロムを10〜20%、珪素を2〜5%、ほう素を2〜
5%、銅を2〜4%、モリブデンを2〜4%、タングス
テンを2〜4%、炭素を0.3〜1.0%、鉄を5%以
下及びニッケルを10〜20%含み、残がコバルトのコ
バルト基自溶合金であるところの砥石工具の製造方法
を、さらにまた、前記結合材として、重量%で50%未
満の遷移金属を含み、残分が自溶合金からなる混合物の
粉末を用いる砥石工具の製造方法を、あるいは、前記結
合材として、重量%で50%未満の遷移金属の合金を含
み、残分が自溶合金からなる混合物の粉末を用いる砥石
工具の製造方法を、そして、前記非酸化性雰囲気が1×
10-4〜5×10-4torrの真空であるところの砥石
工具の製造方法を、又は、前記非酸化性雰囲気がアルゴ
ンガス雰囲気であるところの砥石工具の製造方法を、又
は、前記非酸化性雰囲気が水素ガス雰囲気であるところ
の砥石工具の製造方法を、そしてまた、これらの製造方
法で得られる砥石工具を提案するものである。
In order to achieve the above-mentioned object, the present invention applies an organic sizing agent to a blasted base material, and a self-fluxing alloy powder as a binder on the organic sizing agent. After spraying, the organic sizing agent is dried, the organic sizing agent is applied again, and after spraying diamond particles as abrasive grains,
The organic paste is dried, then heated to a temperature of 900 to 1150 ° C. in a non-oxidizing atmosphere, and the abrasive grains are fixed to the base material by fusion bonding of the binder, followed by gradual cooling. And a method of manufacturing a grindstone tool using cubic boron nitride particles as the abrasive grains, wherein the self-fluxing alloy contains 10% chromium by weight.
~ 20%, 2-5% silicon, 2-5% boron, 2 copper
-4%, molybdenum 2-4%, tungsten 2-4
%, Carbon 0.3 to 1.0% and iron 5% or less, and the balance is a nickel-based self-fluxing alloy of nickel, wherein the self-fluxing alloy is% by weight. so,
Chromium 10-20%, Silicon 2-5%, Boron 2-2
5%, 2-4% of copper, 2-4% of molybdenum, 2-4% of tungsten, 0.3-1.0% of carbon, 5% or less of iron and 10-20% of nickel, and the rest Is a cobalt-based self-fluxing alloy of cobalt, and a powder of a mixture containing a transition metal as a binder in an amount of less than 50% by weight and the balance being a self-fluxing alloy. Or a method for producing a grindstone tool using a powder of a mixture containing a transition metal alloy in an amount of less than 50% by weight and the remainder being a self-fluxing alloy, as the binder. And the non-oxidizing atmosphere is 1 ×
A method for producing a grindstone tool in a vacuum of 10 −4 to 5 × 10 −4 torr, or a method for producing a grindstone tool in which the non-oxidizing atmosphere is an argon gas atmosphere, or the non-oxidizing method. The present invention proposes a method for manufacturing a grindstone tool in which the characteristic atmosphere is a hydrogen gas atmosphere, and also a grindstone tool obtained by these manufacturing methods.

【0010】[0010]

【作用】上記の工程に従って、ブラスト処理を施した基
材に有機糊剤を介して自溶合金粉末等結合材及びダイヤ
モンド粒子等砥粒を塗布して高温加熱することにより、
結合材は基材に融着すると共に流動的に濡らす状態に砥
粒と融着する。
According to the above steps, by applying a binder such as self-fluxing alloy powder and abrasive grains such as diamond particles to the blasted base material through an organic sizing agent and heating at high temperature,
The bonding material fuses to the base material and also to the abrasive grains in a fluidly wet state.

【0011】ブラスト処理を施すことにより基材は表面
が清浄活性化されると共にそのアンカー効果により、有
機糊剤及び結合材の付着性が良好になる。水溶性の有機
糊剤は、砥粒を付着保持し、約500℃以上の加熱によ
って揮発すると共に、結合材を置換的に砥粒に付着接合
させる。有機糊剤としては、メチルセルロース、ヒドロ
キシプロピルメチルセルロースあるいはヒドロキシエチ
ルメチルセルロース等のセルロースエーテルがその希釈
濃度に応じた高粘性高弾性を示し、本発明方法において
作業性が良好であると共に砥粒の保持性が良好である。
The surface of the base material is cleaned and activated by the blasting treatment, and the anchoring effect improves the adhesion of the organic sizing agent and the binder. The water-soluble organic sizing agent adheres and holds the abrasive grains, volatilizes by heating at about 500 ° C. or higher, and at the same time, causes the bonding material to be substituted and adhered to the abrasive grains. As the organic sizing agent, methyl cellulose, cellulose ether such as hydroxypropylmethyl cellulose or hydroxyethyl methyl cellulose exhibits high viscosity and high elasticity according to its dilution concentration, and the workability in the method of the present invention is good and the retention of abrasive grains is high. It is good.

【0012】自溶合金等結合材の融着加熱に際して酸素
は有害で、僅かな酸素の存在によっても砥粒表面の酸化
が行われ、ダイヤモンド粒子の場合、さらに黒鉛化が促
進され、融着が阻害される。これを防止するにはアルゴ
ンガスや水素ガスを導入して非酸化性雰囲気とすること
も有効であるが、この場合、特に、置換導入にあたり、
真空吸引工程を介在させ、酸素の残存を極力避けること
により、融着加熱後の効果はさらに良好なものとなる。
また、非酸化性雰囲気として真空雰囲気を採用する場合
は、1×10-4〜5×10-4torrの高真空度が好ま
しく、この範囲以下に真空度が低下すると、砥粒の酸化
防止が不十分であり、この範囲以上の高真空度にしても
効果は余り変わらない。
Oxygen is harmful when the fusion material such as a self-fluxing alloy is heated for fusion, and the presence of a slight amount of oxygen oxidizes the surface of the abrasive grains. In the case of diamond particles, graphitization is further promoted and fusion is caused. Be hindered. In order to prevent this, it is also effective to introduce an argon gas or hydrogen gas to create a non-oxidizing atmosphere, but in this case, in particular, when introducing substitution,
By interposing a vacuum suction step and avoiding oxygen from remaining as much as possible, the effect after fusion heating is further improved.
When a vacuum atmosphere is used as the non-oxidizing atmosphere, a high degree of vacuum of 1 × 10 −4 to 5 × 10 −4 torr is preferable, and when the degree of vacuum is lower than this range, the abrasive grains are prevented from being oxidized. It is insufficient, and the effect is not so different even if the degree of vacuum is higher than this range.

【0013】融着加熱温度は、900℃未満では、自溶
合金粉末等結合材と砥粒との融着が不十分で砥粒の保持
力が悪く、1150℃を越えると、液相化した結合材の
過剰流動により砥粒の保持状態が悪くなり、また、砥粒
の酸化による脆化が始まる。ダイヤモンド粒子の場合、
さらに、基材が鉄を含む場合、その鉄とダイヤモンド粒
子の炭素が反応し、脆いセメンタイトを生じ易くなるの
で、ダイヤモンド工具として使用できなくなる恐れがあ
る。
When the fusion heating temperature is less than 900 ° C., the fusion between the binder such as self-fluxing alloy powder and the abrasive grains is insufficient and the holding power of the abrasive grains is poor, and when it exceeds 1150 ° C., the liquid phase is formed. The excessive flow of the binder deteriorates the state of holding the abrasive grains, and the embrittlement of the abrasive grains begins due to oxidation. For diamond particles,
Furthermore, when the base material contains iron, the iron and the carbon of the diamond particles react with each other, and brittle cementite is likely to be generated, which may make it unusable as a diamond tool.

【0014】融着加熱を終了した砥石工具は、その冷却
過程で急冷すると基材に歪みを発生し、製品として使用
する際に振れることがあるので、徐冷、好ましくは、加
熱処理炉の真空等非酸化性雰囲気内で炉冷却を行う。
A grindstone tool that has completed the fusion heating will be distorted when used as a product when it is rapidly cooled in the cooling process, and may distort when used as a product. Cool the furnace in a non-oxidizing atmosphere.

【0015】自溶合金はニッケル−クロム−珪素−ほう
素又はコバルト−ニッケル−クロム−珪素−ほう素を主
体とした耐磨耗性溶射用合金の総称で、市販されている
多種類のものが利用できる。この自溶合金におけるクロ
ムは、ニッケル及び又はコバルトとの組合せによって硬
さ及び耐磨耗性を向上させるが、本発明においては、特
に、砥粒との化学反応性を高め濡れ性を改善するのに有
意義である。クロムは10%未満ではこれらの効果が余
り期待できず、20%を越えてもこれらの効果の向上は
望めない。珪素とほう素は、加熱により生成するその酸
化物がフラックス作用をし、溶融合金の融点を下げ、流
動性を増し、砥粒への濡れや融着性を向上させるもので
あるが、それぞれ2%以下では効果が少なく、5%以上
でもその効果の向上は望めない。
The self-fluxing alloy is a general term for wear-resistant thermal spraying alloys mainly composed of nickel-chromium-silicon-boron or cobalt-nickel-chromium-silicon-boron. Available. Chromium in this self-fluxing alloy improves hardness and wear resistance by combination with nickel and / or cobalt, but in the present invention, in particular, chemical reactivity with abrasive grains is improved to improve wettability. Is meaningful to. If chromium is less than 10%, these effects cannot be expected so much, and if it exceeds 20%, improvement of these effects cannot be expected. Silicon and boron, whose oxides generated by heating act as a flux, lower the melting point of the molten alloy, increase the fluidity, and improve the wettability and fusion property to the abrasive grains. % Or less, the effect is small, and even if it is 5% or more, improvement of the effect cannot be expected.

【0016】本発明では、好ましくは、銅,モリブデン
及びタングステンを含む自溶合金を使用する。この自溶
合金における銅は、溶融合金の融点を下げ、砥粒の濡れ
性を改善するのに効果があり、モリブデンは、融着加熱
に際し、骨材として分散し液相化した自溶合金の過剰流
動を防止し砥粒の移動を防止する。また、この自溶合金
におけるモリブデンは、この砥石工具製品を使用した
際、潤滑作用を示し、活性フィラーとしての効果を示
す。この銅とモリブデンはそれぞれ2%未満ではその効
果が期待できず、5%以上になっても添加した程には効
果の向上は望めない。
In the present invention, a self-fluxing alloy containing copper, molybdenum and tungsten is preferably used. Copper in this self-fluxing alloy has the effect of lowering the melting point of the molten alloy and improving the wettability of the abrasive grains, and molybdenum is dispersed as an aggregate during the fusion heating to form a liquid phase self-fluxing alloy. Prevents excessive flow and prevents movement of abrasive grains. Further, molybdenum in this self-fluxing alloy exhibits a lubricating action when this grindstone tool product is used, and exhibits an effect as an active filler. If the content of each of copper and molybdenum is less than 2%, the effect cannot be expected. Even if the content of each of copper and molybdenum is more than 5%, the effect cannot be expected to be improved as much as the addition thereof.

【0017】また、この自溶合金におけるタングステン
は、前記の成分範囲内において有効な耐磨耗性の向上を
示し、鉄と炭素は、不純物として入ることが多いが、こ
の炭素はクロムと化合物をつくり合金中に細かく分散し
て強度を改善する作用をも有する。コバルトはまた、前
記の成分範囲内において合金の耐磨耗性の外、特に耐熱
性を改善する効果を有し、比較的高い発熱を伴う難研削
材には有利である。
Tungsten in this self-fluxing alloy exhibits an effective improvement in wear resistance within the above-mentioned range of components, and iron and carbon often enter as impurities, but this carbon forms a compound with chromium. It also has the function of finely dispersing in the casting alloy to improve the strength. Cobalt also has an effect of improving not only the wear resistance of the alloy but also the heat resistance within the above-mentioned range of components, and is advantageous for a difficult-to-grind material having a relatively high heat generation.

【0018】そして、結合材として、前記自溶合金と重
量%で50%未満の遷移金属又は遷移金属の合金との混
合物の粉末とすることにより、その性能を殆ど阻害する
ことなく、さらに結合材の融点を下げ、また自溶合金に
よる内部応力を緩和させることができ、砥石製造工程に
おいて、ダイヤモンド粒子や立方晶窒化ほう素粒子によ
る砥粒を傷めることなく固定保持させることができる。
なお、前記遷移金属はチタン、マンガン、鉄、ジルコニ
ウム、モリブデン等原子番号21〜28及び39〜46
の高融点固体金属である。
Then, by using a powder of a mixture of the self-fluxing alloy and a transition metal or an alloy of transition metals of less than 50% by weight as the binder, the binder is hardly impaired, and the binder is further reduced. The melting point can be lowered and the internal stress due to the self-fluxing alloy can be relaxed, and in the grindstone manufacturing process, the abrasive grains due to the diamond particles or the cubic boron nitride particles can be fixed and held without being damaged.
The transition metals include titanium, manganese, iron, zirconium, molybdenum and the like, atomic numbers 21 to 28 and 39 to 46.
It is a high melting point solid metal.

【0019】[0019]

【実施例】以下、図1の工程図に従う実施例により、ダ
イヤモンド工具の場合について、本発明の砥石工具の製
造方法を説明する。基材として合金工具鋼からなる10
cm径のカッター用鋼基材を用い、この鋼基材に、24
メッシュのアルミナ砥粒を6kg/cm2 の圧力で5分
間吹きつけるブラスト処理を施し、表面を清浄化させ
た。この鋼基材に市販の水溶性メチルセルロースを約
3.3倍量の水で希釈した有機糊剤を塗布し、その上
に、自溶合金粉末として、重量%で、16%のクロム、
4.0%の珪素、4.0%のほう素、4.0%の鉄、
2.4%の銅、2.4%のモリブデン、2.4%のタン
グステン、及び0.5%の炭素を含み、残部がニッケル
からなるニッケル基自溶合金の予め合金化した市販のア
トマイズ粉を、フィルターを通して散布し、散布後、こ
れを80℃で10分間保持して有機糊剤の乾燥を行っ
た。この乾燥により融着加熱時の真空度が良好に保持さ
れる。
EXAMPLES A method for manufacturing a grindstone tool according to the present invention will be described below in the case of a diamond tool with reference to an example according to the process chart of FIG. 10 made of alloy tool steel as the base material
Using a steel base material for cutters with a cm diameter,
Alumina abrasive grains of the mesh were blown at a pressure of 6 kg / cm 2 for 5 minutes for blasting to clean the surface. An organic sizing agent prepared by diluting commercially available water-soluble methylcellulose with about 3.3 times the amount of water was applied to this steel base material, and 16% by weight of chromium was added as a self-fluxing alloy powder on it.
4.0% silicon, 4.0% boron, 4.0% iron,
A pre-alloyed commercial atomized powder of a nickel-based self-fluxing alloy containing 2.4% copper, 2.4% molybdenum, 2.4% tungsten, and 0.5% carbon with the balance being nickel. Was sprayed through a filter, and after spraying, this was kept at 80 ° C. for 10 minutes to dry the organic sizing agent. By this drying, the vacuum degree at the time of fusion heating is kept good.

【0020】次いで、再び前記有機糊材を塗布した後、
40〜50メッシュのダイヤモンド粒子1カラット
(0.2g)を散布し、加圧により突出状態の調整を行
い、80℃で10分と150℃で20分の有機糊剤の乾
燥を行った。なお、乾燥を2段階で行うのは、有機糊剤
の水分が急激に沸騰するのを避ける意味がある。この時
のダイヤモンド粒子の保持状況を図2(a)に示す。即
ち、ブラスト処理を施された鋼基材1上に自溶合金粉末
2Aが敷裝され、その上に有機糊剤3を介してダイヤモ
ンド粒子4が保持されている状態にある。なお、自溶合
金粉末2には、有機糊剤が浸透している。
Then, after applying the organic paste again,
1 carat (0.2 g) of 40-50 mesh diamond particles was sprayed, the protruding state was adjusted by pressing, and the organic sizing agent was dried at 80 ° C. for 10 minutes and 150 ° C. for 20 minutes. It should be noted that performing the drying in two steps has the meaning of avoiding rapid boiling of water in the organic sizing agent. The state of holding the diamond particles at this time is shown in FIG. That is, the self-fluxing alloy powder 2A is spread on the blasted steel base material 1, and the diamond particles 4 are held on the self-fluxing alloy powder 2A via the organic sizing agent 3. The self-fluxing alloy powder 2 is infiltrated with an organic sizing agent.

【0021】加熱処理炉内の真空度を3×10-4tor
rとし、約7時間で870℃まで加熱し、前記有機糊剤
を十分に揮発除去させた。次いで、この870℃で1時
間保持し、自溶合金の組成の安定を図り、さらに、約1
5分間で1100℃まで上昇させ、10〜15分間保持
した。その後、加熱処理炉内の真空雰囲気中で常温迄炉
冷する徐冷を行い、図2(b)に示したように、ダイヤ
モンド粒子を単一層に保持したダイヤモンド工具即ちカ
ッター試料を得た。即ち、自溶合金2Bは、鋼基材1に
融着し、また、盛り上がる形にダイヤモンド粒子4を濡
らし、ダイヤモンド粒子4と化学的に接合即ち融着して
いる。
The degree of vacuum in the heat treatment furnace is set to 3 × 10 -4 torr.
r, and heated to 870 ° C. in about 7 hours to sufficiently volatilize and remove the organic sizing agent. Then, the composition is maintained at 870 ° C. for 1 hour to stabilize the composition of the self-fluxing alloy, and further, about 1
The temperature was raised to 1100 ° C. in 5 minutes and kept for 10 to 15 minutes. After that, gradual cooling was performed in a vacuum atmosphere in a heat treatment furnace to cool to room temperature to obtain a diamond tool, that is, a cutter sample in which diamond particles were held in a single layer, as shown in FIG. 2 (b). That is, the self-fluxing alloy 2B is fused to the steel base material 1, wets the diamond particles 4 in a rising shape, and is chemically bonded or fused to the diamond particles 4.

【0022】このようにして得られたカッター試料を、
研削工具(サンダー)に取り付けて研削試験に供した。
即ち、この研削工具を試験装置に取り付け、5kgの錘
を付した研削工具が斜降するガイドに沿ってスライド
し、そのカッター部分が自然落下状態で被研削材に負荷
されるようにすると共に、被研削材をコンクリートと赤
御影石による石材としてそれぞれ30カットを用意し、
冷却水を使用しない乾式状態で研削し、その研削速度を
調査した。また、同じ方法により、30カットの結晶化
ガラスについて、その切断性を調査した。石材と結晶化
ガラスはそれぞれ20mm厚さ×300mm長さの寸法
のものである。
The cutter sample thus obtained was
It was attached to a grinding tool (sander) and subjected to a grinding test.
That is, this grinding tool is attached to a test device, and a grinding tool with a 5 kg weight slides along a guide that descends obliquely so that the cutter portion is loaded on the material to be ground in a natural falling state. Prepare 30 cuts for each of the stones made of concrete and red granite,
Grinding was performed in a dry state without using cooling water, and the grinding speed was investigated. In addition, the cuttability of 30-cut crystallized glass was investigated by the same method. The stone material and the crystallized glass are each 20 mm thick and 300 mm long.

【0023】なお、同じ寸法のカッター試料を前記した
従来の電着結合法及び金属焼結結合法で製作し、従来例
1及び従来例2とし、前記の本発明方法で製作した実施
例のカッター試料と同様にして研削試験を行った。その
結果を表1に示した。
Cutter samples of the same size were manufactured by the above-mentioned conventional electrodeposition bonding method and metal sinter bonding method to form Conventional Example 1 and Conventional Example 2, and the cutters of the examples manufactured by the above-mentioned method of the present invention. A grinding test was performed in the same manner as the sample. The results are shown in Table 1.

【0024】[0024]

【表1】 [Table 1]

【0025】本発明によるカッター試料は、コンクリー
トや石材に対して、従来の電着結合法によるものに比べ
て約2倍、金属焼結結合法によるものに比べて約1.5
倍の研削速度で研削できる切れ味を示し、結晶化ガラス
に対しても、前記従来法によるものに比べて4〜6倍の
切断能力のあることを示した。
The cutter sample according to the present invention is about twice as large as that of the conventional electrodeposition bonding method and about 1.5 times as much as that of the metal sinter bonding method for concrete and stone.
It showed sharpness that can be ground at double the grinding speed, and showed that the crystallized glass also had a cutting ability 4 to 6 times that of the conventional method.

【0026】次に、内径20mmのダイヤモンドビット
試料を製作した。40〜50メッシュのダイヤモンド粒
子を全部で1.5カラットの量を塗布した外は前記カッ
ター試料の場合と同様にした。
Next, a diamond bit sample having an inner diameter of 20 mm was manufactured. The procedure was the same as for the cutter sample, except that diamond particles of 40 to 50 mesh were applied in a total amount of 1.5 carats.

【0027】製作したダイヤモンドビット試料を25k
gの錘を付した電気ドリル工具に取り付け、自由落下状
態で、冷却水を用いない乾式仕様で研削による穿孔試験
を行った。被穿孔材として鉄筋コンクリート材には10
mm径の鉄筋入りで80mm厚さの排水ますの蓋を用
い、石材には30mm厚さの赤御影石を用い、前記鉄筋
コンクリート材については12穴、前記石材については
20穴の穿孔を行った。
25k of the manufactured diamond bit sample
It was attached to an electric drill tool equipped with a weight of g, and in a free fall state, a drilling test by grinding was performed in a dry specification without using cooling water. 10 for reinforced concrete material as perforated material
A 80 mm thick drainage mast lid with mm diameter rebar was used, and 30 mm thick red granite was used as the stone material, and 12 holes were drilled for the reinforced concrete material and 20 holes were drilled for the stone material.

【0028】また、上記の実施例によるダイヤモンドビ
ット試料と同様基材寸法のものについて、前記した電着
結合法と焼結金属結合法とによってダイヤモンドビット
試料を製作し、それぞれ従来例1及び従来例2として同
様に試験を行った。その結果を表2に示した。
Diamond bit samples having the same substrate size as those of the diamond bit samples according to the above-mentioned embodiments were manufactured by the above-mentioned electrodeposition bonding method and sintered metal bonding method, respectively. The same test was performed as No. 2. The results are shown in Table 2.

【0029】[0029]

【表2】 [Table 2]

【0030】本発明によるダイヤモンドビット試料は、
鉄筋コンクリート材に対し、12穴の穿孔を行っても異
常なく、従来の電着結合法及び金属焼結結合法による者
に比べて少なくても数倍の穿孔能力のあることを示し、
石材に対しても、20穴の穿孔を行っても異常がなく、
略同様の穿孔能力が期待できた。
The diamond bit sample according to the present invention comprises:
It shows that there is no abnormality even if 12 holes are drilled in reinforced concrete material, and that it has at least several times the drilling capacity compared to those using the conventional electrodeposition bonding method and metal sinter bonding method.
Even if stones were drilled with 20 holes, there was no abnormality,
A similar drilling ability could be expected.

【0031】本発明の砥石工具における基材としては、
機械構造用炭素鋼(S45C等)、強靱鋼(SCM
等)、炭素工具鋼(SK等)、合金工具鋼(SKS等)
あるいは不銹鋼(SUS)等による鋼基材及びタングス
テン炭化物やチタン炭化物等による超硬合金基材が用途
に応じて選択使用できる。
As the base material in the grindstone tool of the present invention,
Carbon steel for machine structure (S45C etc.), tough steel (SCM
Etc.), carbon tool steel (SK etc.), alloy tool steel (SKS etc.)
Alternatively, a steel base material made of stainless steel (SUS) or the like and a cemented carbide base material made of tungsten carbide or titanium carbide can be selected and used according to the application.

【0032】本発明の製造方法によって得られる砥石工
具の利用範囲は広く、上記実施例のカッターやビットに
限ることなく、9インチ以上の径を有するブレード、カ
ップホィール、コアービット、ダイヤモンドワイヤソー
等にも適用でき、被研削対象物としても、コンクリー
ト、鉄筋コンクリート、煉瓦、石材、結晶化ガラス、建
材ブロック、磁器タイル、瓦、硬質カーボン、FRP、
金属等対象物を選ばず、冷却水を使用せず乾式法で研削
加工ができるものである。
The application range of the grindstone tool obtained by the manufacturing method of the present invention is wide, and it is not limited to the cutters and bits of the above-mentioned embodiments, but also to blades having a diameter of 9 inches or more, cup wheels, core bits, diamond wire saws, etc. It can be applied and can be used as an object to be ground, such as concrete, reinforced concrete, brick, stone, crystallized glass, building block, porcelain tile, roof tile, hard carbon, FRP,
It can be ground by a dry method without using any object such as metal and without using cooling water.

【0033】[0033]

【発明の効果】以上の説明から明らかなように、本発明
によれば、次の効果が得られる。 (1) 有機糊剤を介して自溶合金等結合材は基材と砥粒と
の濡れ性がよく、且つ、融着結合するので、基材の砥粒
保持力が強固で工具の耐久性が向上する。 (2) 砥粒の保持力が強く、比較的少ない結合材で、砥粒
の突出量を大きくできるので、切れ味のよいものがつく
れる。 (3) 砥粒の切れ味がよいので、発生熱が少なく、結合材
等構成材料の耐熱性がよいのと相まって、被研削材の如
何に係わらず、冷却水を使用しない乾式研削加工ができ
る。 (4) 有機糊剤の粘度調整、結合材の粒度や供給量の調整
及び砥粒塗布時の加圧調整等により、砥粒の突出量の調
整が容易に可能である。
As is apparent from the above description, according to the present invention, the following effects can be obtained. (1) A binder such as a self-fluxing alloy has a good wettability between the base material and the abrasive grains through the organic sizing agent, and because they bond by fusion, the retention force of the base material is strong and the durability of the tool is high. Is improved. (2) The retention of the abrasive grains is strong, and the amount of protrusion of the abrasive grains can be increased with a relatively small amount of the binder, so that a sharp cutting product can be produced. (3) Since the abrasive grains are sharp, less heat is generated and the heat resistance of the constituent materials such as the binder is good, and dry grinding can be performed without using cooling water regardless of the material to be ground. (4) The protrusion amount of the abrasive grains can be easily adjusted by adjusting the viscosity of the organic paste, adjusting the particle size and supply amount of the binder, and adjusting the pressure when applying the abrasive grains.

【0034】(5) 製造時における砥粒の散布は任意に行
えるので、砥粒の分布密度を任意に調整できる。 (6) 製作時、砥粒や結合材は有機糊剤で仮固定できるの
で、従来の電着結合法のようにマスキングの必要がな
い。また、基材を対象に直接砥粒を配置できるので、金
属焼結結合法のように、焼結チップの溶接のような煩雑
な工程を必要としない。 (7) 従って、工程が簡単であるから、生産性がよい。 (8) 生産性が良好なので、多量生産が可能で、安価に製
品を提供できる。
(5) Since the distribution of the abrasive grains at the time of manufacture can be arbitrarily performed, the distribution density of the abrasive grains can be arbitrarily adjusted. (6) During manufacturing, the abrasive grains and the binder can be temporarily fixed with an organic sizing agent, so masking is not required unlike the conventional electrodeposition bonding method. Further, since the abrasive grains can be directly placed on the base material, there is no need for a complicated process such as welding of a sintered tip unlike the metal sinter bonding method. (7) Therefore, the process is simple and the productivity is good. (8) Since the productivity is good, mass production is possible and products can be provided at low cost.

【0035】(9) 有機糊剤を介する砥粒と結合材との組
合せは複層化が可能なので、砥粒の配置は単一層でも複
層でも任意に形成できる。 (10) 砥粒の保持力がよく、切れ味がよいので、被研削
物の種類を選ばず乾式研削が可能となり、用途が広範囲
に亘る。
(9) Since the combination of the abrasive grains and the bonding material via the organic paste can be made into multiple layers, the abrasive grains can be arbitrarily arranged in a single layer or multiple layers. (10) Since the abrasive grains have good holding power and good sharpness, dry grinding is possible regardless of the type of object to be ground, and has a wide range of applications.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の工程図である。FIG. 1 is a process drawing of the method of the present invention.

【図2】本発明の製造方法によるダイヤモンド粒子を用
いた砥石工具における、ダイヤモンド粒子の保持状況を
示す部分模式図で、(a)は加熱工程前の状況、(b)
は加熱工程後の状況を示す模式図である。
FIG. 2 is a partial schematic view showing a diamond particle holding state in a grindstone tool using diamond particles according to the manufacturing method of the present invention, where (a) is a state before a heating step, and (b) is a diagram.
[Fig. 3] is a schematic view showing a situation after a heating step.

【図3】従来の電着結合法によるダイヤモンド粒子を用
いた砥石工具における、ダイヤモンド粒子の保持状況を
示す部分模式図である。
FIG. 3 is a partial schematic view showing a state of holding diamond particles in a grindstone tool using diamond particles by a conventional electrodeposition bonding method.

【符号の説明】[Explanation of symbols]

1 鋼基材 2A 自溶合金粉末 2B 自溶合金 3 有機糊剤 4 ダイヤモンド粒子 1 Steel substrate 2A Self-fluxing alloy powder 2B Self-fluxing alloy 3 Organic sizing agent 4 Diamond particles

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B24D 3/00 320 B 340 C22C 19/05 B Z 19/07 Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B24D 3/00 320 B 340 C22C 19/05 BZ 19/07 Z

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】ブラスト処理を施した基材に有機糊剤を塗
布し、該有機糊剤上に結合材として自溶合金の粉末を散
布した後、前記有機糊剤を乾燥し、再び前記有機糊剤を
塗布し、砥粒としてダイヤモンド粒子を散布した後、前
記有機糊剤を乾燥し、次いで、非酸化性雰囲気中におい
て900〜1150°Cの温度に加熱し、前記結合材の
融着により前記基材に前記砥粒を固定し、徐冷すること
を特徴とする砥石工具の製造方法。
1. An organic sizing agent is applied to a blasted base material, a powder of a self-fluxing alloy is spread as a binding material on the organic sizing agent, the organic sizing agent is dried, and the organic sizing agent is again used. After applying a sizing agent and spraying diamond particles as abrasive grains, the organic sizing agent is dried, and then heated to a temperature of 900 to 1150 ° C. in a non-oxidizing atmosphere to fuse the binder. A method for manufacturing a grindstone tool, characterized in that the abrasive grains are fixed to the base material and gradually cooled.
【請求項2】前記砥粒として立方晶窒化ほう素粒子を用
いることを特徴とする請求項1記載の砥石工具の製造方
法。
2. A method of manufacturing a grindstone tool according to claim 1, wherein cubic boron nitride particles are used as the abrasive grains.
【請求項3】前記自溶合金は、重量%で、クロムを10
〜20%、珪素を2〜5%、ほう素を2〜5%、銅を2
〜4%、モリブデンを2〜4%、タングステンを2〜4
%、炭素を0.3〜1.0%及び鉄を5%以下含み、残
がニッケルのニッケル基自溶合金であることを特徴とす
る請求項1〜請求項2記載の砥石工具の製造方法。
3. The self-fluxing alloy contains 10% chromium by weight.
~ 20%, 2-5% silicon, 2-5% boron, 2 copper
-4%, molybdenum 2-4%, tungsten 2-4
%, Carbon 0.3 to 1.0% and iron 5% or less, and the balance is a nickel-based self-fluxing alloy of nickel, the method for manufacturing a grindstone tool according to claim 1 or 2. .
【請求項4】前記自溶合金は、重量%で、クロムを10
〜20%、珪素を2〜5%、ほう素を2〜5%、銅を2
〜4%、モリブデンを2〜4%、タングステンを2〜4
%、炭素を0.3〜1.0%、鉄を5%以下及びニッケ
ルを10〜20%含み、残がコバルトのコバルト基自溶
合金であることを特徴とする請求項1〜請求項2記載の
砥石工具の製造方法。
4. The self-fluxing alloy contains 10% chromium by weight.
~ 20%, 2-5% silicon, 2-5% boron, 2 copper
-4%, molybdenum 2-4%, tungsten 2-4
%, Carbon 0.3 to 1.0%, iron 5% or less and nickel 10 to 20%, the balance being a cobalt-based self-fluxing alloy of cobalt. A method for manufacturing the described grindstone tool.
【請求項5】前記結合材として、重量%で50%未満の
遷移金属を含み、残分を自溶合金とする混合物の粉末を
用いることを特徴とする請求項1〜請求項4記載の砥石
工具の製造方法。
5. The grindstone according to claim 1, wherein a powder of a mixture containing a transition metal in an amount of less than 50% by weight and the balance being a self-fluxing alloy is used as the binder. Tool manufacturing method.
【請求項6】前記結合材として、重量%で50%未満の
遷移金属の合金を含み、残分を自溶合金とする混合物の
粉末を用いることを特徴とする請求項1〜請求項4記載
の砥石工具の製造方法。
6. A powder of a mixture containing an alloy of a transition metal in an amount of less than 50% by weight, the balance being a self-fluxing alloy, is used as the binder. Method for manufacturing whetstone tools.
【請求項7】前記非酸化性雰囲気が1×10-4〜5×1
-4torrの真空であることを特徴とする請求項1〜
請求項6に記載の砥石工具の製造方法。
7. The non-oxidizing atmosphere is 1 × 10 −4 to 5 × 1.
A vacuum of 0 -4 torr.
The method for manufacturing a grindstone tool according to claim 6.
【請求項8】前記非酸化性雰囲気がアルゴンガス雰囲気
であることを特徴とする請求項1〜請求項6に記載の砥
石工具の製造方法。
8. The method for manufacturing a grindstone tool according to claim 1, wherein the non-oxidizing atmosphere is an argon gas atmosphere.
【請求項9】前記非酸化性雰囲気が水素ガス雰囲気であ
ることを特徴とする請求項1〜請求項6に記載の砥石工
具の製造方法。
9. The method of manufacturing a grindstone tool according to claim 1, wherein the non-oxidizing atmosphere is a hydrogen gas atmosphere.
【請求項10】請求項1〜請求項9に記載の砥石工具の
製造方法によって得られたことを特徴とする砥石工具。
10. A grindstone tool obtained by the method for manufacturing a grindstone tool according to any one of claims 1 to 9.
JP7107472A 1994-08-19 1995-05-01 Grinding wheel tool and its manufacture Pending JPH08108369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7107472A JPH08108369A (en) 1994-08-19 1995-05-01 Grinding wheel tool and its manufacture

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP19500294 1994-08-19
JP6-195002 1994-08-19
JP7107472A JPH08108369A (en) 1994-08-19 1995-05-01 Grinding wheel tool and its manufacture

Publications (1)

Publication Number Publication Date
JPH08108369A true JPH08108369A (en) 1996-04-30

Family

ID=26447502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7107472A Pending JPH08108369A (en) 1994-08-19 1995-05-01 Grinding wheel tool and its manufacture

Country Status (1)

Country Link
JP (1) JPH08108369A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001315060A (en) * 2000-05-01 2001-11-13 Goei Seisakusho:Kk Dressing grinding wheel and its manufacturing method
KR100582116B1 (en) * 2005-01-18 2006-05-22 권순철 A manufacturing method of grinding wheel
CN102974910A (en) * 2012-11-14 2013-03-20 南京航空航天大学 Diamond grinding wheel sensing brazing device and brazing method
CN104646852A (en) * 2014-12-31 2015-05-27 苏州铜宝锐新材料有限公司 Braze coating paste and application thereof
CN106956223A (en) * 2016-01-12 2017-07-18 蓝思科技(长沙)有限公司 A kind of metallic bond and its diamond abrasive tool and diamond abrasive tool preparation method
CN108788458A (en) * 2018-05-25 2018-11-13 佛山市富兰激光科技有限公司 A kind of crystal welding equipment
CN109226920A (en) * 2018-11-15 2019-01-18 蚌埠学院 A kind of preparation method of brazed diamond tool
CN111251199A (en) * 2020-03-09 2020-06-09 西南交通大学 Copper-based binder carborundum grinding wheel special for railway steel rail grinding and preparation method thereof
WO2021169416A1 (en) * 2020-02-28 2021-09-02 南京固华机电科技有限公司 Semi-automatic distributing device for brazing ultra-hard abrasive saw blade and working method therefor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001315060A (en) * 2000-05-01 2001-11-13 Goei Seisakusho:Kk Dressing grinding wheel and its manufacturing method
KR100582116B1 (en) * 2005-01-18 2006-05-22 권순철 A manufacturing method of grinding wheel
CN102974910A (en) * 2012-11-14 2013-03-20 南京航空航天大学 Diamond grinding wheel sensing brazing device and brazing method
CN104646852A (en) * 2014-12-31 2015-05-27 苏州铜宝锐新材料有限公司 Braze coating paste and application thereof
CN106956223A (en) * 2016-01-12 2017-07-18 蓝思科技(长沙)有限公司 A kind of metallic bond and its diamond abrasive tool and diamond abrasive tool preparation method
CN106956223B (en) * 2016-01-12 2019-03-26 蓝思科技(长沙)有限公司 A kind of metallic bond and its diamond abrasive tool and diamond abrasive tool preparation method
CN108788458A (en) * 2018-05-25 2018-11-13 佛山市富兰激光科技有限公司 A kind of crystal welding equipment
CN108788458B (en) * 2018-05-25 2020-06-05 佛山市富兰激光科技有限公司 Crystal welding equipment
CN109226920A (en) * 2018-11-15 2019-01-18 蚌埠学院 A kind of preparation method of brazed diamond tool
WO2021169416A1 (en) * 2020-02-28 2021-09-02 南京固华机电科技有限公司 Semi-automatic distributing device for brazing ultra-hard abrasive saw blade and working method therefor
CN111251199A (en) * 2020-03-09 2020-06-09 西南交通大学 Copper-based binder carborundum grinding wheel special for railway steel rail grinding and preparation method thereof

Similar Documents

Publication Publication Date Title
CA2322421C (en) Superabrasive wire saw and method for making the saw
US5997597A (en) Abrasive tool with knurled surface
US6102024A (en) Brazed superabrasive wire saw and method therefor
JP3193690B2 (en) Peelable binder composition for polishing tool, method for bonding abrasive grains using the same, and polishing tool
US5492771A (en) Method of making monolayer abrasive tools
CA1327276C (en) Silicon infiltrated porous polycrystalline diamond compacts and their fabrication
JP2000516156A (en) Polishing tool
EP0174546A2 (en) Diamond sintered body for tools and method of manufacturing the same
CN1014306B (en) Low pressure bonding of pcd bodies and method
JPH02160429A (en) Super-abrasive cutting element
US20080187769A1 (en) Metal-coated superabrasive material and methods of making the same
JPH08108369A (en) Grinding wheel tool and its manufacture
KR100375649B1 (en) Removable bond for abrasive tool
JP4653922B2 (en) Method of attaching a coating to a substrate composed of diamond or a diamond-containing material
JPH09272060A (en) Grinding wheel tool and its manufacture
JP2002046072A (en) Grinding wheel tool and method of manufacturing it
JP2011051890A (en) Adhesive composite coating film for diamond and for diamond-containing material, and method for producing the same
JPH08150567A (en) Vitrified bond diamond grinding stone and its manufacture
JP2001322067A (en) Extra-abrasive grain coated with metal carbide, its manufacturing method and extra-abrasive grain tool
CA2395751C (en) Removable bond for abrasive tool
KR0153252B1 (en) Chemically bonded superabrasive grit, method of making the same and tool thereof
JPH09272022A (en) Wear resistant tool and manufacture thereof
RU2398038C2 (en) Procedure for fabrication of diamond containing composite
AU7235800A (en) Removable bond for abrasive tool