JPH09271601A - Refluxing method of rectifying column - Google Patents

Refluxing method of rectifying column

Info

Publication number
JPH09271601A
JPH09271601A JP11194996A JP11194996A JPH09271601A JP H09271601 A JPH09271601 A JP H09271601A JP 11194996 A JP11194996 A JP 11194996A JP 11194996 A JP11194996 A JP 11194996A JP H09271601 A JPH09271601 A JP H09271601A
Authority
JP
Japan
Prior art keywords
reflux
liquid
column
primary
reflux ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11194996A
Other languages
Japanese (ja)
Inventor
英正 ▲鶴▼田
Hidemasa Tsuruta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP11194996A priority Critical patent/JPH09271601A/en
Publication of JPH09271601A publication Critical patent/JPH09271601A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PROBLEM TO BE SOLVED: To simply, certainly and rapidly regulate the reflux ratio essential to a rectifying apparatus by an external signal. SOLUTION: A reflux ratio regulating mechanism is constituted by connecting a primary reflux device 11 and a secondary reflux device 18 up and down in series. The primary reflux device 11 is operated in a predetermined reflux ratio and a primary reflux soln. 8 is sent to a column and the remainder is sent to the secondary reflux device 18 to set the reflux ratio designated for the secondary reflux device 18 by the signal from the outside. The obtained secondary reflux soln. 24 is refluxed to the column in combination with the primary reflux device 8 and the remainder is obtained as a distillate 9. By this method, an average reflux ratio with a one cycle time is set to a predetermined value. The reflux ratio regulating mechanism can be operated by natural flow-down based on a slight head under a small amt. of a residence soln. and the cost of the whole apparatus becomes inexpensive with respect to capacity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は主として化学工業の分
野で多用される精留装置における還流比操作に関するも
のである。精留装置が連続式,回分式を問わず適用でき
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the operation of a reflux ratio in a rectification apparatus which is frequently used in the field of chemical industry. The rectification device can be applied to both continuous type and batch type.

【0002】[0002]

【従来の技術】精留装置は、2成分以上の成分を含む混
合物を沸点差を利用して蒸留を行い、所定の組成の留分
に分離する目的の化学工学における単位操作の1つであ
る。この分離性能に決定的な影響を与える要因の1つ
は、精留塔本体が具備する理論段数Nであり、他は還流
比調節機構により与えられる還流比Rである。N,Rは
いづれも無次元数である。N値は、精留塔の計画,設計
段階で決定されるもので、装置の完成以降は不変である
のに対し、R値は、運転時に供給する原液の組成と、そ
の分離要求の仕様に合わせて調整,変更する必要があ
る。この目的のために、精留装置には、還流比をその都
度必要に応じて迅速かつ確実に調整するための手段が必
要である。
2. Description of the Related Art A rectification apparatus is one of the unit operations in chemical engineering for the purpose of separating a mixture containing two or more components by distillation using a difference in boiling points to separate into fractions having a predetermined composition. . One of the factors that has a decisive influence on the separation performance is the theoretical plate number N provided in the rectification column main body, and the other is the reflux ratio R provided by the reflux ratio adjusting mechanism. N and R are both dimensionless numbers. The N value is determined at the planning and designing stage of the rectification column and remains unchanged after the completion of the equipment, while the R value depends on the composition of the stock solution supplied during operation and the specifications for its separation requirements. It is necessary to make adjustments and changes accordingly. For this purpose, the rectification device needs means for adjusting the reflux ratio in each case quickly and reliably as required.

【0003】図2は、精留装置における還流比調節器の
役割を説明するためのフローシートの一例である。図に
は、精留塔・塔体1の上部には凝縮器5,還流比調節機
構7があり、これ等を結ぶ配管ライン4,6,8,9が
示されている。1の内部には、気液接触のために充填物
層10が設けられ、これに向かって塔項部2に設けられた
還流液分配器3により、還流液ライン8を通して送られ
た還流液が均一に散布され、10の表面を濡らしながら降
下する。一方、1の下方よりは蒸気が10の間を上昇し、
各点で10の表面を介して気液の接触が起こる。このよう
な降下液と上昇蒸気との向流的な接触により、軽沸点成
分は1の上部の塔頂部2へ追い上げられて塔項蒸気ライ
ン4より排出するが、一方では降下液は1の底部に達し
て系外へ排出する。以上は、1に充填塔を使用したとき
の例であるが、このときは充填物の表面における降下液
の均一な濡れと、上昇する蒸気が万遍なくこれに接触す
ることが混合成分の分留効果を高めるための必須の条件
である。
FIG. 2 is an example of a flow sheet for explaining the role of the reflux ratio controller in the rectification device. In the figure, a condenser 5 and a reflux ratio adjusting mechanism 7 are provided on the upper part of the rectification tower / tower body 1, and piping lines 4, 6, 8 and 9 connecting these are shown. A packing layer 10 is provided in the interior of 1 for gas-liquid contact, and a reflux liquid distributor 3 provided in the column section 2 faces the packing layer 10 to direct the reflux liquid sent through a reflux liquid line 8. Evenly spread and descend while wetting 10 surfaces. On the other hand, steam rises between 10 and below,
Gas-liquid contact occurs through 10 surfaces at each point. Due to the countercurrent contact between the falling liquid and the ascending vapor, the light boiling components are driven up to the top 2 of the column 1 and discharged from the column steam line 4, while the falling liquid is the bottom of the 1. And reach the end of the system. The above is an example when a packed tower is used for 1. At this time, it is a matter of mixing components that the falling liquid is uniformly wetted on the surface of the packing material and the rising vapor is evenly contacted with the falling liquid. This is an essential condition for enhancing the retention effect.

【0004】1の内部構造としては、充填塔のほか、ト
レイ塔と総称される型式がある。これは塔内に複数のト
レイを積み重ね、各段には一定の液深の液が滞留し、そ
の液中を上昇蒸気が気泡状で上昇するさいに気液接触効
果を生ずるもので、多数の型式のものが一般に広く使用
される。
As the internal structure of 1, there is a type called a tray tower in addition to a packed tower. This is because a plurality of trays are stacked in a tower, a liquid having a certain liquid depth is retained in each stage, and a vapor-liquid contact effect is generated when vapor rising in the liquid rises in the form of bubbles. The type is generally widely used.

【0005】図2には、精留塔を構成する必須の要素と
して、1のほか、2より4を経た留出蒸気を凝縮液化さ
せる凝縮器5、凝縮液ライン6よりの液を2分し一方を
還流液8ラインを経て1の内部の還流液分配器3へ還流
し他方は留出液ライン9を経て回収するための還流比調
節機構7が表示される。図2においては、5,7の位置
は、3に比して十分に高所にあり、その落差により、6
よりの液は、7および3で生ずる圧損失をまかなって8
の内部を自然流下する仕組みが画かれている。もし都合
により7と3との相互配置や、7および3の構造によっ
ては、落差不足を生ずることも多く、その際には、送液
ポンプを適宜設けて流量の確保を行う必要がある。
In FIG. 2, as an indispensable element constituting the rectification column, in addition to 1, the condenser 5 for condensing and liquefying the distillate vapor passed through 2 and 4 and the liquid from the condensate line 6 are divided into two. A reflux ratio adjusting mechanism 7 is displayed for refluxing one through the reflux liquid 8 line to the reflux liquid distributor 3 inside 1 and recovering the other through the distillate liquid line 9. In FIG. 2, the positions of 5 and 7 are sufficiently higher than those of 3, and due to the drop,
The liquor of 8 is less than 8
A mechanism for naturally flowing down inside the is depicted. Depending on the mutual arrangement of 7 and 3, or due to the structure of 7 and 3, there is often a shortage of the head, and in this case, it is necessary to appropriately provide a liquid feed pump to secure the flow rate.

【0006】本発明は7に関するものであり、精留塔全
般に適用可能であるが、とくに図2のように、1に充填
塔を用い、比較的低落差の下で自然流下的に還流を行う
こと及び還流比を広範囲でかつ正確,迅速に外部からの
指示で遠隔制御することを主な目的としている。
The present invention relates to 7 and can be applied to all rectification towers. Particularly, as shown in FIG. 2, a packed tower is used for 1 and reflux is carried out by gravity flow under a relatively low head. Its main purpose is to perform the remote control of the reflux ratio over a wide range, accurately and promptly by an external instruction.

【0007】充填塔がトレイ塔に勝る長所として、塔の
理論一段当りの蒸気相の圧力損失が少ない点がある。こ
のことは高沸点混合物を減圧下で分留するさいに、塔底
温度を一段と低く抑えることができ、トレイ塔では達成
できない利点を有する。充填塔は、このほか塔内理論一
段当りに保留される液量がトレイ塔にくらべて格段に少
ないことも特長である。本発明によれば、それに合わせ
て5,7,3及びそれを結ぶ配管内に存在する滞留液量
を少なくすることができる。この性質はとくに回分式の
精留塔に利用して各成分間の高度な分離を行うときに有
利である。これは実験室の高性能精留塔をはじめいわゆ
るファインケミカルズの分野、たとえば医薬品,農薬,
香料,電子材料等の製造工程では広く利用され重要な単
位操作となっている。
The advantage of the packed column over the tray column is that the pressure loss of the vapor phase per theoretical stage of the column is small. This has the advantage that the column bottom temperature can be kept even lower when the high boiling point mixture is fractionally distilled under reduced pressure, which cannot be achieved in a tray column. Another feature of the packed column is that the amount of liquid retained per theoretical stage in the column is significantly smaller than in the tray column. According to the present invention, the amount of stagnant liquid existing in the pipes connecting them 5, 7 and 3 can be reduced accordingly. This property is particularly advantageous when used in a batch type rectification column to perform a high degree of separation between components. This is used in the field of so-called fine chemicals, including high-performance rectification towers in laboratories, such as pharmaceuticals, agrochemicals,
It is widely used and an important unit operation in the manufacturing process of fragrances and electronic materials.

【0008】充填塔は、以上のごとく、トレイ塔にくら
べて1理論段当りの圧力損失,液滞留量が低い点で優れ
ているが、これは反面、充填物の表面の濡れが不均一に
なり易いことを意味する。これを防ぐためには、還流液
分配器3より充填層の上端部に灌ぐ還流液は、その全表
面に均等に散布されなければならない。この均一性は、
塔内各点の灌液量が時間的にも一定であることが必要で
あり、大きな変動があってはならない。もし、空間的,
時間的に各点の充填物表面にこのような液濡れのムラが
生ずるときは、気液接触効果が減退し、分留性能は大き
く低下する。
As described above, the packed tower is superior to the tray tower in that the pressure loss per theoretical plate and the amount of retained liquid are low, but on the other hand, the surface of the packing is not uniformly wet. It means that it is easy to become. In order to prevent this, the reflux liquid irrigated from the reflux liquid distributor 3 to the upper end of the packed bed must be evenly distributed over the entire surface thereof. This uniformity is
It is necessary that the irrigation volume at each point in the tower be constant over time, and there should be no large fluctuations. If spatial,
When such unevenness of liquid wetting occurs on the surface of the packing material at each point in time, the gas-liquid contact effect is diminished, and the fractional distillation performance is greatly reduced.

【0009】[0009]

【発明が解決しようとする課題】精留塔の運転に必須な
還流比調節機構に対しては従来より各種の方法が行われ
ている。これ等の多くは複雑な計装方式による流量の比
率制御システムを採用しているが、そのため液の流れの
ためには相当量の圧損を必要とし、さらに還流液を塔へ
戻すための差圧まで含めると送液ポンプや配管を要す
る。これ等を含めると還流装置は複雑かつ高価なものに
なり勝ちで、運転員にも高度の知識と注意が要求され
る。これに対して、図2に示すような低落差の自然流下
型の配置と配管を可能とし、とくに充填塔に適する還流
比調節機構7は従来発表されていない。本発明が、7に
対して、解決しようとする課題,条件を列挙すれば以下
の通りである。
Various methods have been conventionally used for the reflux ratio adjusting mechanism essential for the operation of the rectification column. Many of these use a ratio control system of the flow rate by a complicated instrumentation method, so that a considerable amount of pressure loss is required for the flow of liquid, and the differential pressure for returning the reflux liquid to the column is further increased. If it is included, a liquid feed pump and piping are required. If these are included, the reflux device tends to be complicated and expensive, and the operator also needs a high degree of knowledge and attention. On the other hand, a reflux ratio adjusting mechanism 7 which enables the arrangement and piping of a low free fall type as shown in FIG. 2 and which is particularly suitable for a packed column has not been previously disclosed. The present invention is as follows when the problems and conditions to be solved by the present invention are listed.

【0010】図2の6より排出する液の状態(液量,温
度,物性等)が変動しても、常に外部から指定された還
流比,Rの値の通りに8と9の流量比が維持できるこ
と。因みに還流比Rは常法の通り(8の流量)/(9の
流量)と定義する。
Even if the state of the liquid to be discharged (liquid amount, temperature, physical properties, etc.) changes from 6 in FIG. 2, the flow rate ratios of 8 and 9 are always as specified by the reflux ratio and R specified from the outside. Be able to maintain. Incidentally, the reflux ratio R is defined as (flow rate of 8) / (flow rate of 9) as in the usual method.

【0011】7の内部及びライン6と8に存在する滞留
液量が少ない。またその間の圧損失は少なく、還流は通
常の落差による自然流下で行われ、ポンプ等は不要であ
ること。
The amount of retained liquid existing inside 7 and in lines 6 and 8 is small. In addition, the pressure loss during that period is small, and the reflux is carried out in the normal flow due to the normal head, and no pump or the like is required.

【0012】7による還流比は、広範囲(たとえばR=
0.5〜200)でかつ任意の数値に外部より電気信号を伝達
することにより、正確かつ瞬時に設定,変更出来るこ
と。
The reflux ratio of 7 is in a wide range (for example, R =
0.5 to 200) and it can be set and changed accurately and instantly by transmitting an electric signal from the outside to an arbitrary value.

【0013】その方式は、大気圧/減圧/加圧下を問わ
ず、また汎用的な温度の下で運転可能なこと。ときには
凝縮液の凝固等を防ぐために、7および6,8,9の加
熱による保湿が容易な構造であること。また処理液に見
合った材質の選定が容易に調達可能なこと。
The system must be able to operate under atmospheric pressure / reduced pressure / pressurization and under general temperature. In some cases, the structure should be such that moisturization by heating 7 and 6, 8 and 9 is easy to prevent the condensate from coagulating. Also, it is possible to easily procure the material that matches the processing liquid.

【0014】与えられる各R値に対し、8と9とに分配
される1サイクル時間内の平均液量の比率は正確に対応
できること。ただし、1サイクル中の9の流量変動に制
限はないが、8については、流量の時間的変動の下限値
は充填物の濡れによって定まる値以上に設定出来るこ
と。
For each given R value, the ratio of the average liquid volume distributed in 8 and 9 within one cycle time must be able to correspond exactly. However, there is no limit to the flow rate fluctuation of 9 during one cycle, but for 8 the lower limit of the temporal fluctuation of the flow rate must be set to a value that is determined by the wetting of the filler.

【0015】当然ながら、7及びその周辺の付属機器,
配管,計装費等の設置費用が安価なこと。
As a matter of course, 7 and its peripheral accessories,
Installation costs such as piping and instrumentation costs are low.

【0016】[0016]

【課題を解決するための手段】次に図1,3,4によ
り、本発明の原理とその手段について説明する。
Next, the principle of the present invention and its means will be described with reference to FIGS.

【0017】図1は、7の内部の配置を示すもので、第
1次還流器(胴体11)と第2次還流器(胴体18)とが上
下直列に連結設置されている。まず凝縮液ライン6は、
11の上蓋の中央を貫いて垂直に内部に入り、先端は密閉
された液溜12に接続する。12の下部周囲には複数の液噴
出孔13が適宜間隔をおいて設けられる。6に流入した凝
縮液は、12の側壁に開孔された各13より、図示のように
周辺に噴出するが、その全液量L[kmol/h]は、13の孔
径,孔数および6の液面と 13との落差H[m]によって
定まる。液流量LとHとの関係は、公知の計算式で示さ
れるので、まず塔内の蒸気流量V[kmol/h]の標準値と
上下予想変動幅△Vを設定し、Vに合わせてLを求め、
次に6,7,3の配置を考慮しつつ 採用するH[m]を
定め、これに従って13の口径と個数を算出,決定する手
順となる。仕切り板15は、11の底部を2分するように設
置し、上端は12の底部に密着(熔着ではない)する。液
は各13の噴射方向により、底部のいづれかの区分に集ま
り、一方は第1次還流液出口16より8へ、他方は第1次
留出液出口17経て第2次還流器へ流下する。以上のよう
に、6を通過する凝縮液は、その時点の液量L[kmol/
h]に対応して6の内部には一定の高さの液面Hが形成
されて動的平衡となり、その液圧により13から総量Lの
液量が分散噴出する。この液量Lを第1次還流比R1に従
って双方の区域へ分配することは、13の各孔の孔径,孔
数及びその配置で定まるが、決定以降は、V,Lすなわ
ちHが変動してもR1自体は初期決定値の通りに一定に保
たれる。通常12と6とはネジ止め等で接合しているの
で、R1に変更の必要があればそれに相当する別の12に容
易に変換できる。
FIG. 1 shows the internal arrangement of 7, in which a primary reflux device (body 11) and a secondary reflux device (body 18) are connected in series in the vertical direction. First, the condensate line 6
It penetrates through the center of the upper lid of 11 and enters the inside vertically, and its tip is connected to a closed liquid reservoir 12. A plurality of liquid ejection holes 13 are provided around the lower portion of 12 at appropriate intervals. The condensate that has flowed into 6 is ejected to the periphery from each 13 that is opened in the side wall of 12 as shown in the figure, but the total liquid amount L [kmol / h] is 13 holes diameter, 6 holes and 6 holes. It is determined by the drop H [m] between the liquid surface of 13 and 13. Since the relationship between the liquid flow rates L and H is shown by a known calculation formula, first, the standard value of the vapor flow rate V [kmol / h] in the column and the expected fluctuation range ΔV are set, and L is adjusted to V. Seeking
Next, the procedure is to determine H [m] to be adopted while taking the arrangements of 6, 7 and 3 into consideration, and calculate and determine the diameter and number of 13 according to this. The partition plate 15 is installed so as to divide the bottom part of 11 into two parts, and the top end thereof is in close contact (not welded) with the bottom part of 12. The liquid collects in any of the sections at the bottom depending on the injection direction of each 13, and one flows from the primary reflux liquid outlet 16 to 8 and the other flows down to the secondary reflux device via the primary distillate outlet 17. As described above, the condensate passing through 6 has a liquid amount L [kmol /
Corresponding to [h], a liquid surface H having a constant height is formed inside 6 to be in dynamic equilibrium, and due to the liquid pressure, a total amount L of liquid amount is jetted dispersedly. The distribution of this liquid amount L to both areas according to the primary reflux ratio R1 is determined by the hole diameter of each of the 13 holes, the number of holes, and their arrangement, but after the determination, V, L, or H, fluctuates. Also R1 itself is kept constant according to the initial decision value. Usually, 12 and 6 are joined by screwing etc., so if R1 needs to be changed, it can be easily converted to another 12 corresponding to it.

【0018】次に第2次還流器18の内部の動作原理と手
段について、図1のほか図3,図4を用いて説明する。
18の内部中央には、液分配漏斗19が設置され、これに固
定した回転軸20が左右に水平に伸びて18の胴体の軸受け
シールを貫いて外部に突出している。19は、20を中心に
左右に振子状に首振り運動ができるが、中心位置は仕切
り板21の中心線と一致する。17よりの排出液は、第1次
留出液ライン14を通り、18の上蓋を貫いて19の内部にに
上方より流入し、そのまま漏斗液出口25より流出する。
そのさい19の傾斜位置と底部に設けられた仕切り板21に
より、18の底部を分ける2つの区画の一方に向かって次
のような流れの選択が行われる。図1,図3,図4に示
すように、19の停止位置は、一定時間毎に20の軸を外部
機構(図示せず)より左右に±10°〜±15°首振り回転
することで、あるいは図3の実線のごとき19の傾きによ
り液が全量右室へ進み、第2次留出液出口22より留出液
ライン9へ流れる場合と、または破線のごとき19の傾き
で全量が左室へ進み、第2次還流液出口23より同ライン
24へ流下し、16,8を経て流下する第1次還流液と合体
し、塔へ還流する場合との何れかに分かれる。以上で7
を構成する2段階の各還流器の構造と動作を、図1,図
3,図4により説明した。このとき内部に滞留する液量
は、12およびそれに注ぐ6の内部液柱の分を含めても、
管径から見て僅かである。その他は器壁その他部品類の
表面を濡らす付着液に過ぎない。また8の配管の長さも
全体の配置により短縮できるので、6,7,8全体に存
在する滞留液量を大幅に減らすことができる。
Next, the operation principle and means inside the secondary recirculation device 18 will be described with reference to FIG. 1 and FIGS. 3 and 4.
A liquid distribution funnel 19 is installed at the center of the inside of 18, and a rotary shaft 20 fixed to the funnel 19 extends horizontally to the left and right and penetrates through the bearing seal of the body of 18 and projects to the outside. Although 19 can perform a pendulum-like swinging motion to the left and right around 20, the center position coincides with the center line of the partition plate 21. The liquid discharged from 17 passes through the first distillate line 14, penetrates the upper lid of 18 and flows into the inside of 19 from above, and flows out from the funnel liquid outlet 25 as it is.
At that time, the following flow selection is made toward one of the two sections dividing the bottom of 18 by the inclined position of 19 and the partition plate 21 provided at the bottom. As shown in FIG. 1, FIG. 3, and FIG. 4, the stop position of 19 is that the axis of 20 is rotated ± 10 ° to ± 15 ° to the left and right by an external mechanism (not shown) at regular intervals. , Or when the whole amount of liquid advances to the right chamber due to the inclination of 19 as shown by the solid line in FIG. 3 and flows to the distillate line 9 from the secondary distillate outlet 22, or at the inclination of 19 as shown by the broken line Proceed to the room and from the second reflux liquid outlet 23, the same line
It flows down to 24, is combined with the primary reflux liquid flowing down through 16 and 8, and is refluxed to the tower. More than 7
The structure and operation of each of the two-stage reflux condensers constituting the above are described with reference to FIGS. 1, 3, and 4. At this time, the amount of liquid retained inside includes 12 and the internal liquid column of 6 pouring into it,
It is slightly seen from the pipe diameter. Others are only adherent liquids that wet the surfaces of vessel walls and other parts. Further, since the length of the pipe of 8 can be shortened by the entire arrangement, the amount of the retained liquid existing in the whole 6, 7, 8 can be greatly reduced.

【0019】以上のように第2次還流器においては、17
より流入する第1次留出液は、19の位置を外部から20に
2様の回転角度を与えることで、全量留出液または還流
液に振り向けることができる。このような20の首振り回
転動作は、電磁的な駆動力を用いたり、空気圧シリンダ
ーを用いる等市販のサーボ機構を用いて容易に実施する
ことができる。またこのような首振り動作を任意に設定
した周期に行うことは、市販の各種電気式タイマーを使
って容易に対応実施できる。
As described above, in the secondary reflux device, 17
The inflowing primary distillate can be directed to the total distillate or the reflux liquid by giving the position of 19 to 20 from the outside at a rotation angle of 2 degrees. Such a swinging and rotating operation of the head 20 can be easily carried out by using an electromagnetic driving force or a commercially available servo mechanism such as a pneumatic cylinder. In addition, it is possible to easily carry out such a swinging operation at an arbitrarily set cycle by using various commercially available electric timers.

【0020】第2次還流器における1サイクル内を時限
分割する液の分配方式には、上記19の操作例のほか数多
くの方式が考えられるが、要は、外部信号により設定し
た第2次還流比のR2値に従って迅速に対応でき、ライン
17より流入する液が、一定サイクルの下でオン・オフ的
にライン24とライン9に時限分割的に往復配分され、1
サイクル時間内の平均値として予め設定されたR2の値が
正確に実現できる型式のものであればよい。
As the liquid distribution system for time-dividing one cycle in the secondary recirculation device, many systems other than the above-mentioned operation example 19 can be considered, but the point is that the secondary recirculation set by an external signal. R2 value of the ratio can be quickly responded and the line
Liquid flowing in from 17 is distributed on and off in a fixed cycle to line 24 and line 9 in a time-divided manner and reciprocally distributed.
Any type may be used as long as the value of R2 preset as the average value within the cycle time can be accurately realized.

【0021】[0021]

【作用】すでに説明したように、本発明を構成する第1
次,第2次還流器自身は公知の構造のものである。ただ
し、これ等を前記のように構成された直列2段式還流比
調節機構として組み合わせることで、いかに作用し優れ
た効用を発揮するかについて以下に説明する。まず、塔
内を上昇する蒸気量V[kmol/h]は、ほぼ一定値を保っ
て4より5へ流入し、凝縮,液化して液量L[kmol/h]
として6に流入するものとし、5は全凝縮すなわちV=
Lの関係にあるものとする。ただしこれは発明の必要条
件ではなく、6が部分凝縮タイプであってもよい。第1
次還流比をR1に固定して設定した場合、常時6より8へ
流入する第1次還流液量と、17への第1次留出液量は次
の通りである。 第1次還流液量=L(R1/(R1+1)) ・・・・ (1) 第1次留出液量=L/(R1+1) ・・・・ (2) 次に14よりの第1次留出液は、第2次還流比をR2とする
と、1サイクル内の時間平均量として以下のように分割
される。 第2次還流液量=(L/(R1+1))(R2/(R2+1)) ・・・・ (3) 第2次留出液量=(L/(R1+1))/(R2+1) ・・・・ (4) したがって、第1次,第2次を合体して 還流液合計量=L(R1×R2+R1+R2)/((R1+1)(R2+1)) ・・・・ (5) これにより第1次,第2次を合体した1サイクル内の時
間平均還流比をRRとすると (5),(4)より RR=(還流液合計量)/(第2次留出液量 )=(R1+1)×R2+R1 ・・・・ (6)
As described above, the first aspect of the present invention
The secondary and secondary reflux devices themselves have a known structure. However, it will be described below how they function and exhibit excellent effects by combining these as a series two-stage reflux ratio adjusting mechanism configured as described above. First, the vapor amount V [kmol / h] rising in the tower keeps an almost constant value and flows from 4 to 5 where it is condensed and liquefied to form a liquid amount L [kmol / h].
As shown in FIG.
It is assumed that there is a relationship of L. However, this is not a requirement of the invention, and 6 may be a partial condensation type. First
When the secondary reflux ratio is fixed to R1 and set, the primary reflux liquid amount constantly flowing from 6 to 8 and the primary distillate liquid amount to 17 are as follows. Amount of primary reflux liquid = L (R1 / (R1 + 1)) ··· (1) Amount of primary distillate liquid = L / (R1 + 1) ··· (2) Primary from 14 When the secondary reflux ratio is R2, the distillate is divided as follows as a time average amount in one cycle. Secondary reflux liquid volume = (L / (R1 + 1)) (R2 / (R2 + 1)) ... (3) Secondary distillate volume = (L / (R1 + 1)) / (R2 + 1) ...・ (4) Therefore, the primary and secondary are combined, and the total amount of reflux liquid = L (R1 × R2 + R1 + R2) / ((R1 + 1) (R2 + 1)) ・ ・ ・ ・ (5) If the time-averaged reflux ratio in one cycle combining the secondary is RR, from (5) and (4), RR = (total reflux liquid amount) / (secondary distillate amount) = (R1 + 1) x R2 + R1 ... (6)

【0022】すなわち時間内の総合平均還流比RRは、第
1次還流比R1をパラメーターとして初期設定した場合、
式(6)で示すように、第2次還流比R2を変数とした1次
式として表示できる。これは本発明を実施するさいに簡
単な演算式を内蔵するシーケンスコントローラーによる
計装システムが利用できることを意味する。R1,R2が定
まれば、式(6)でRRが計算されるのに対して、そのサイ
クル内の瞬間的な還流比の上限値RMAXと下限値RMINは、
式(1)及び式(2)より次のように算出される。 最大瞬間還流液量=L, RMAX=L/0=無限大 すなわち全還流 ・・・・ (7) 最少瞬間還流液量=L(R1/(R1+1)), RMIN=(R1/(R1+1))/(1/(R1+1)) = R1 ・・・・ (8) したがって1サイクル中の還流液量及び還流比の変動幅
は 還流液量の変動幅=L/(R1+1), 対応する還流比の変動幅=1/(R1+1) ・・・・・・ (9) このように式(6)〜式(8)を使えば、所定の成分分離に必
要なRRと共に、充填物の濡れを確保するために必要な最
低還流液量が分かれば式(8)よりRMINが判明し、相当す
るR1を設定することができる。
That is, the total average reflux ratio RR within the time is, when the primary reflux ratio R1 is initially set as a parameter,
As shown in equation (6), it can be displayed as a primary equation with the secondary reflux ratio R2 as a variable. This means that when implementing the present invention, an instrumentation system with a sequence controller having a simple arithmetic expression can be used. When R1 and R2 are determined, RR is calculated by the equation (6), while the upper limit value RMAX and the lower limit value RMIN of the instantaneous reflux ratio in the cycle are
It is calculated as follows from the equations (1) and (2). Maximum instantaneous reflux liquid amount = L, RMAX = L / 0 = infinity, that is, total reflux ... (7) Minimum instantaneous reflux liquid amount = L (R1 / (R1 + 1)), RMIN = (R1 / (R1 + 1)) / (1 / (R1 + 1)) = R1 ··· (8) Therefore, the fluctuation range of the reflux liquid amount and the reflux ratio in one cycle is the fluctuation range of the reflux liquid amount = L / (R1 + 1), of the corresponding reflux ratio. Variation range = 1 / (R1 + 1) (9) By using equations (6) to (8) in this way, wetting of the filling material is ensured along with the RR necessary for the prescribed component separation. Therefore, if the minimum amount of reflux liquid required is known, RMIN can be found from equation (8), and the corresponding R1 can be set.

【0023】以上、本発明の2段直列式の還流機構の作
用を説明し、合わせて各段の還流比R1,R2の決定方法を
述べた。本方式を、通常の1段方式に対比させると、そ
の効果が歴然とする。まず、第1段還流器のみでは予め
指定されたR1に相当した固定還流比を選ぶことになり、
これを外れて操業することはできず、問題外である。次
に、第2段還流器のみを使うことは、従来から実験用ま
たは小規模設備では広く用いられている方法をとること
に外ならない。しかしこれは時間がきめられた1サイク
ルの間をタイマーよりのオン・オフ信号により、全還流
と全留出の繰り返し操作を行うことになり、還流液量は
これに従うため、充填物表面での灌液量は大きく変動
し、均一な気液接触は期待できず、分離性能は低下す
る。とくに還流比の低い領域たとえばR=0.5 またはそ
れ以下となると、還流の中断時間が増加し、分離性能の
低下は著しくなる。通常のオン・オフ1段式の還流比制
御系では、還流液量の変動を平滑して一定平均値に近ず
けるために、8の中間に液溜めを設ける等の工夫もなさ
れているが、それ等は還流液の滞留量の増加をともな
い、分離性能の低下(回分式の場合)をきたすために、
本発明のような効果は得られない。
The operation of the two-stage in-line reflux mechanism of the present invention has been described above, and the method for determining the reflux ratios R1 and R2 of each stage has also been described. When this method is compared with the normal one-step method, the effect is clear. First of all, the fixed reflux ratio corresponding to R1 specified in advance will be selected only for the first stage reflux device,
It cannot be operated outside this, which is out of the question. Next, the use of only the second-stage reflux condenser is nothing but the method widely used in the past for experimental or small-scale equipment. However, this means that the total reflux and total distillation are repeatedly performed by the on / off signal from the timer during one cycle where the time is set, and the reflux liquid amount follows this, so The irrigation volume fluctuates greatly, uniform gas-liquid contact cannot be expected, and the separation performance deteriorates. In particular, in the region where the reflux ratio is low, for example, R = 0.5 or less, the reflux interruption time increases and the separation performance deteriorates significantly. In a normal on / off one-stage reflux ratio control system, in order to smooth the fluctuation of the reflux liquid amount and bring it close to a constant average value, a device such as providing a liquid reservoir in the middle of 8 has been devised. , And the like, since the retention amount of the reflux liquid increases and the separation performance decreases (in the case of a batch system),
The effect of the present invention cannot be obtained.

【0024】[0024]

【実施例】塔体1を充填塔で構成し、その充填物の表面
の濡れを確保して気液接触効率の低下を防ぐために、還
流液量の瞬間的な下限値を使用充填物の物性表から判断
してL/2とする。この条件を式(8)に入れれば、R1=1
となる。式(6)にR1=1を代入すれば、RR=2×R2+1とな
る。このとき分離に必要なRRの値を与えれば、R2はこれ
に対応して一義的に対応決定される。たとえば必要なRR
値を、1,2,3,5,10 とするには、R2は、0,0.
5,1.0,2.0,4.5とすればよい。このときは、RRを1以
下の低い値に抑えることは不可能であるが、通常の精留
塔では、仮にこのような低いRR値が最適であると計算さ
れても、これを1として運転すればよい。処理能力の若
干の低下はあっても分離性能は逆に向上するので実質的
には支障をきたさない。本発明の還流機構を、実際の精
留塔の設計に適用するさいには、一般化学工学の常識に
従って、塔内の上昇蒸気量Vと降下液量Lは、NとRの
バランスを考え、RR≧2,V≒Lといった範囲を選び、
N,RRとも極端に増大することを抑えることが経済性か
ら見て賢明である。このときは、式(4)の適用は R1=1
前後に R2≧0.5 となることが予想され、塔内の充填物
の上端における液ガス比(L/V)は式(7),式(8)より
最大1.0 ,最低1/2となり、Lの最低値においても通常
の充填物の濡れ不足による分離性能の低下は起こらな
い。また、このようなL/Vの変化幅は、通常1サイク
ル時間10秒〜60秒程度の間に生ずるものであり、液が充
填層内を降下するにつれてさらに流量の平滑化が起こる
ため、塔の全域を考えれば実際にはR2のオン・オフ変動
に由来する塔内の降下液Lの変動の影響は無視できる。
[Example] The tower body 1 is composed of a packed tower, and the instantaneous lower limit of the reflux liquid amount is used to secure the wetting of the surface of the packed material and prevent the deterioration of gas-liquid contact efficiency. Judge from the table and set to L / 2. If this condition is entered in equation (8), R1 = 1
Becomes Substituting R1 = 1 into equation (6) gives RR = 2 × R2 + 1. At this time, if the value of RR required for separation is given, R2 is uniquely determined correspondingly. Required RR
To make the values 1, 2, 3, 5, 10 R2 is 0,0.
It should be 5, 1.0, 2.0, 4.5. At this time, it is impossible to suppress the RR to a low value of 1 or less, but in a normal rectification column, even if such a low RR value is calculated to be optimal, it is set to 1 and operated. do it. Even if there is a slight decrease in the processing capacity, the separation performance is improved on the contrary, so there is practically no problem. When the reflux mechanism of the present invention is applied to the actual design of a rectification column, according to the common sense of general chemical engineering, the ascending vapor amount V and the descending liquid amount L in the column consider the balance between N and R, Select a range such as RR ≧ 2, V ≒ L,
From an economic perspective, it is wise to prevent both N and RR from increasing extremely. In this case, the application of equation (4) is R1 = 1
It is expected that R2 ≧ 0.5 before and after, and the liquid-gas ratio (L / V) at the upper end of the packing in the column will be 1.0 and 1/2 at the maximum from equations (7) and (8). Even at the lowest value, the separation performance does not deteriorate due to insufficient wetting of ordinary packing materials. In addition, such a variation width of L / V usually occurs during one cycle time of 10 seconds to 60 seconds, and as the liquid descends in the packed bed, the flow rate is further smoothed, so that the column Considering the whole area of, the effect of the fluctuation of the falling liquid L in the column due to the on / off fluctuation of R2 can be neglected.

【0025】[0025]

【発明の効果】本発明は以上説明した内容をもって構成
されており、以下に記載するような効果が期待できる。
The present invention is constructed with the contents described above, and the effects described below can be expected.

【0026】先に段落番号「0009」において、解決
しようとする課題を「0010」より「0015」にか
けて6項目列挙したが、前記「0016」より「002
3」の説明通り、本発明は概ねこれ等を満たすことがで
きる。
In the paragraph number "0009", six items of problems to be solved are listed from "0010" to "0015", but from "0016" to "002".
As described in "3", the present invention can generally satisfy these requirements.

【0027】この発明は、精留塔の形式が連続式,回分
式を問わず適用できる。また塔本体の構造形式が、充填
塔であるか、トレイ塔であるかに関係なく適用できる。
とくに有利なのは、図2のように、凝縮器5を塔頂部2
の上部に設置し、その間に本発明の還流比調節機構7を
設け、ポンプ等を使わずに還流液を落差により自然流下
させて塔へ戻す場合である。
The present invention can be applied regardless of whether the rectification column is a continuous type or a batch type. Further, it can be applied regardless of whether the structure of the tower body is a packed tower or a tray tower.
As shown in FIG. 2, it is particularly advantageous to connect the condenser 5 to the top 2
In this case, the reflux ratio adjusting mechanism 7 of the present invention is installed in the upper part of the column, and the reflux liquid is allowed to flow down to the column by a drop without using a pump or the like.

【0028】7の操作は、R1を所定値に固定し、R2を遠
方より電気タイマー等により発する信号により、完全に
無人遠隔操作制御することが可能である。その実施の態
様として、図で示したように、7の内部には小型軽量の
振子型の漏斗19が、数秒または数十秒毎に1回の割合で
周期的な首振り動作をするのみで、その他の可動部分は
一切ない構造が可能である。このことは装置の耐久性と
メンテナンスの容易さを示すものである。
The operation of 7 can be controlled completely unattended by a fixed signal of R1 and a remote signal of R2 from an electric timer or the like. As a mode for carrying out the invention, as shown in the figure, a small and light pendulum type funnel 19 is provided in the inside of 7 only to perform a periodic swinging motion once every few seconds or tens of seconds. , A structure without any other moving parts is possible. This shows the durability and ease of maintenance of the device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施態様を示す還流比調節機構の1例
を示す配置断面図である。
FIG. 1 is an arrangement sectional view showing an example of a reflux ratio adjusting mechanism showing an embodiment of the present invention.

【図2】一般の精留塔における還流比調節機構の使用の
一態様を示すフローシートである。
FIG. 2 is a flow sheet showing one embodiment of use of a reflux ratio adjusting mechanism in a general rectification column.

【図3】図1における第2次還流比の動作を示す縦断図
面である。
FIG. 3 is a vertical cross-sectional view showing the operation of the secondary reflux ratio in FIG.

【図4】図3のA−A断面を上部より見た平面図であ
る。
FIG. 4 is a plan view of the AA cross section of FIG. 3 seen from above.

【符号の説明】[Explanation of symbols]

1 精留塔・塔体 14 第1次留出液ライン 2 塔頂部 15 仕切り板 3 還流液分配器 16 第1次還流液出口 4 塔頂蒸気ライン 17 第1次留出液出口 5 凝縮器 18 第2次還流器胴体 6 凝縮液ライン 19 液分配漏斗 7 還流比調節機構 20 同 回転軸中心 8 還流液ライン 21 仕切り板 9 留出液ライン 22 第2次留出液出口 10 充填物層 23 第2次還流液出口 11 第1次還流器胴体 24 第2次還流液ライン 12 液溜 25 漏斗液出口 13 液噴出孔 1 Fractionation tower / column 14 Primary distillate line 2 Tower top 15 Partition plate 3 Reflux liquid distributor 16 Primary reflux liquid outlet 4 Top vapor line 17 Primary distillate outlet 5 Condenser 18 Secondary reflux body 6 Condensate line 19 Liquid distribution funnel 7 Reflux ratio adjusting mechanism 20 Center of rotation axis 8 Reflux liquid line 21 Partition plate 9 Distillate line 22 Secondary distillate outlet 10 Packing layer 23 No. Secondary reflux liquid outlet 11 Primary reflux tank body 24 Secondary reflux liquid line 12 Liquid reservoir 25 Funnel liquid outlet 13 Liquid ejection hole

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 精留塔体より出る蒸気を、凝縮器により
液化したのち、所定の流量比率に従って還流液と留出液
とに分配し、前者を蒸留塔へ還流することにより、所定
の成分組成の留出液を得るさいに、還流比調節機構を第
1次還流器と第2次還流器との直列接続により構成し、
第1次還流器では、凝縮器よりの全液量を固定して定め
られた比率に2分し、一方を塔に第1次還流液として送
り、残りは第2次還流器へ送り、さらに外部より指示さ
れる信号により所定の比率の下で時限分割式の分配方式
により液を2分割し、一方は第2次還流液として塔に送
り、残りを留出液として系外に回収することを特長とす
る精留装置の還流方法。
1. A liquefied vapor from a rectification column is liquefied by a condenser, and is then distributed into a reflux liquid and a distillate according to a predetermined flow rate ratio, and the former is refluxed to a distillation column to give a predetermined component. In obtaining a distillate having a composition, a reflux ratio adjusting mechanism is configured by connecting a primary reflux device and a secondary reflux device in series,
In the primary reflux device, the total amount of liquid from the condenser is fixed and divided into two parts in a predetermined ratio, one is sent to the column as the primary reflux liquid, and the rest is sent to the secondary reflux device. A liquid is divided into two by a time division type distribution system under a predetermined ratio by a signal given from the outside, one is sent to the column as a secondary reflux liquid, and the rest is recovered as a distillate outside the system. A method for refluxing a rectification device.
JP11194996A 1996-04-09 1996-04-09 Refluxing method of rectifying column Pending JPH09271601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11194996A JPH09271601A (en) 1996-04-09 1996-04-09 Refluxing method of rectifying column

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11194996A JPH09271601A (en) 1996-04-09 1996-04-09 Refluxing method of rectifying column

Publications (1)

Publication Number Publication Date
JPH09271601A true JPH09271601A (en) 1997-10-21

Family

ID=14574195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11194996A Pending JPH09271601A (en) 1996-04-09 1996-04-09 Refluxing method of rectifying column

Country Status (1)

Country Link
JP (1) JPH09271601A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003103102A (en) * 2001-09-28 2003-04-08 Sumitomo Chem Co Ltd Distillation method for easily polymerizable substance and distillation apparatus used for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003103102A (en) * 2001-09-28 2003-04-08 Sumitomo Chem Co Ltd Distillation method for easily polymerizable substance and distillation apparatus used for the same

Similar Documents

Publication Publication Date Title
US4808350A (en) Liquid distributor apparatus for high turndown ratios and minimum fouling
Pavlenko et al. Investigation of flow parameters and efficiency of mixture separation on a structured packing
US4476069A (en) Liquid distributing apparatus for a liquid-vapor contact column
EP0119643A2 (en) Liquid distributing apparatus and method for a liquid-vapor contact column
US5942164A (en) Combined heat and mass transfer device for improving separation process
US3477915A (en) Fractionation column system operating with multiple level internal reboilers
CN107847809B (en) Distillation apparatus comprising a column having three or more compartments through which a liquid flows in sequence and process for carrying out a distillation or extractive distillation using such a distillation apparatus
US20130334027A1 (en) System to Improve Distillate Quality and Recovery in a Distillation Column
US9956500B2 (en) Liquid mixing collector and a method for its use
US3707277A (en) Combination cross flow and counter flow cooling tower
CN102448594A (en) Improved fluid distribution to parallel flow vapor-liquid contacting trays
Maćkowiak et al. Random packings
JPH09271601A (en) Refluxing method of rectifying column
KR102560300B1 (en) Separation tray with downcomers oriented at 45 degrees
US2965548A (en) Fractionation method and apparatus for conducting same
Pilling et al. Choosing trays and packings for distillation
CN112007371B (en) Carbon dioxide purification device and feeding method thereof
Polyanski et al. Estimation of the efficiency of packed mass-transfer devices
US2077645A (en) Tray structure for bubble towers
Manyele Analysis of the effect of feed composition and thermal conditions on distillation plant performance using a computer model
Szonyi et al. Periodic cycling of distillation columns using a new tray design
Drumm et al. Optimization of the Liquid Distributor in a Falling Film Evaporator by Means of Air‐Water Experiments
JPH05223444A (en) Fractionating tower for air liquefying separator
CN113117362B (en) Liquid phase distribution control device and partition plate rectifying tower comprising same
US2779577A (en) Spray grid tray gas-liquid contacting