JPH09270829A - Viterbi detection method for differential phase modulated wave - Google Patents
Viterbi detection method for differential phase modulated waveInfo
- Publication number
- JPH09270829A JPH09270829A JP7556596A JP7556596A JPH09270829A JP H09270829 A JPH09270829 A JP H09270829A JP 7556596 A JP7556596 A JP 7556596A JP 7556596 A JP7556596 A JP 7556596A JP H09270829 A JPH09270829 A JP H09270829A
- Authority
- JP
- Japan
- Prior art keywords
- state
- phase
- path
- phase difference
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 29
- 230000005540 biological transmission Effects 0.000 claims description 8
- 230000027311 M phase Effects 0.000 claims description 5
- 238000004364 calculation method Methods 0.000 claims description 5
- 230000007704 transition Effects 0.000 claims description 2
- 238000000034 method Methods 0.000 description 4
- 230000001360 synchronised effect Effects 0.000 description 4
- 238000004422 calculation algorithm Methods 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 238000005094 computer simulation Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000819 phase cycle Methods 0.000 description 2
- 101000616862 Dendroaspis angusticeps Mambaquaretin-1 Proteins 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Landscapes
- Error Detection And Correction (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は位相変調波を遅延
検波し、送信位相系列をビタビアルゴリズムにより推定
する検波方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a detection method for differentially detecting a phase-modulated wave and estimating a transmission phase sequence by a Viterbi algorithm.
【0002】[0002]
【従来の技術】M相(Mは4以上の整数、通常はM=2
n 、nは2以上の整数を満すものである)差動位相変調
信号(DPSK)の従来の遅延検波では、時点nの受信
信号z n を1シンボル時間だけ遅延したものzn-1 を検
波の際の参照信号とし、Re[zn z* n-1 exp−j
Δφn ]を最大とするΔφn を送信されたシンボルと判
定する。ここで、zn は受信信号の複素数表現であり、
Re[.]は実数部、*は複素共役である。遅延検波は
搬送波再生回路が不要なことから、検波回路の構成が簡
単になるが、誤り率特性が同期検波より劣化する。2. Description of the Related Art M phase (M is an integer of 4 or more, usually M = 2)
n, N is an integer of 2 or more) Differential phase modulation
In the conventional differential detection of the signal (DPSK), the reception at the time point n
Signal z nZ delayed by one symbol timen-1Detect
As a reference signal for waves, Re [znz* n-1exp-j
Δφn] Is the maximum ΔφnThe transmitted symbol and format
Set. Where znIs a complex number representation of the received signal,
Re [. ] Is a real part, and * is a complex conjugate. Differential detection
Since the carrier wave recovery circuit is not required, the configuration of the detection circuit is simple.
However, the error rate characteristic is worse than that of the coherent detection.
【0003】そこで、文献「1」「D.Makraki
s and K.Feher,“Optimal no
n coherent detection of P
SKsignals,”IEE Electronic
s Letters,vol.26,pp.398−4
00,March 1990」では連続するQ−1個の
位相差の組み合わせMQ-1 状態のビタビ復号により誤り
率特性を改善する方法を発表している。Therefore, the documents “1” and “D.
s and K.S. Feher, "Optimal no
n coherent detection of P
SKsignals, "IEEE Electronic
s Letters, vol. 26, pp. 398-4
00, March 1990 ”discloses a method for improving the error rate characteristic by Viterbi decoding of a combination MQ-1 state of consecutive Q-1 phase differences.
【0004】[0004]
【発明が解決しようとする課題】従来の送信位相系列を
ビタビアルゴリズムにより推定する方法では、MやQが
大きくなるとビタビ復号器の演算規模が大きくなり実用
的でないという欠点があった。そこで、この発明の目的
はわずかな特性劣化で、ビタビ復号器の状態数を削減し
て演算規模を縮小した差動位相変調波のビタビ検波方法
を提供することにある。The conventional method of estimating the transmission phase sequence by the Viterbi algorithm has a drawback that the calculation scale of the Viterbi decoder increases as M and Q increase, which is not practical. Therefore, an object of the present invention is to provide a Viterbi detection method for a differential phase modulation wave in which the number of states of the Viterbi decoder is reduced and the operation scale is reduced with a slight deterioration in characteristics.
【0005】[0005]
【課題を解決するための手段】この発明によれば、受信
されたM相差動位相変調信号を、その送信シンボル周期
で標本化し、連続する2個の受信信号標本zn-1 とzn
とを用いて遅延検波し、その検波された位相差を1シン
ボル時間前の差動符号化出力信号に加算して差動符号化
出力位相を更新し、その差動符号化出力位相を用いて受
信標本を逆変調して逆変調信号標本μn を得、時点nの
状態mQ-1 個(mはMより小さい整数)の状態Sn を、
Q−1個の位相差誤差系列{ΔΨn-q :q=0,…,Q
−2}(ΔΨは逆変調信号の位相差と、送信位相差との
差のとり得る値)で構成し、時点(n−1)の状態S
n-1 に記憶されている参照信号ηn-1 (Sn-1 )をΔΨ
n だけ位相回転させたものと逆変調信号標本zn ′との
内積を求め、この内積を状態Sn-1 ´から状態Sn への
遷移の確からしさを表わすブランチメトリックλ(S
n-1 →Sn )とし、このブランチメトリックを状態S
n-1 におけるパスメトリックΛ(Sn-1 )に加算して状
態Sn-1 を経由する候補系列のパスメトリックΛ(Sn
|Sn-1 )を求め、このブランチメトリック及びパスメ
トリックを求める演算を、状態Sn に入るパスが存在す
る全ての状態Sn-1 について繰り返し、得られたパスメ
トリックの大小を比較して最大値を与える状態S^n-1
のみを選択して他を捨て、この状態S^n-1 を状態Sn
に至る最も確からしいパスの時点(n−1)の状態とし
てパスメモリに記憶すると共に、そのパスメトリックΛ
(Sn|S^n-1 )を状態Sn におけるパスメトリ ッ
クΛ(Sn )としてパスメトリックメモリに記憶し、ま
た参照信号ηn (Sn )をQ個の連続する逆変調信号標
本を用いて、 ηn (Sn )=μn +Σq=1 Q-1 μn-q exp(jΔ
Ψn +ΔΨn-1 +…+ΔΨn+1-q ) により求めて参照信号メモリに記憶し、以上の演算を状
態Sn の全てに対して行い、得られたmQ-1 個のパスメ
トリックの大小を比較し、最大値を与える状態Sn ^
を求め、その状態Sn ^を出発点としてパスメモリを一
定時点Dだけトレースバックして到達した状態Sn-D ^
の位相差誤差ΔΨn-D ^を求め、検出位相差をDシンボ
ル時間だけ遅延させたものに位相差誤差ΔΨn-D ^を加
算して検波出力とする。According to the present invention, reception
Of the transmitted M-phase differential phase-modulated signal to the transmission symbol period
And two consecutive received signal samples zn-1And zn
And are used for delay detection, and the detected phase difference is
Differential encoding by adding to the differentially encoded output signal before the time
Update the output phase and receive it using the differentially encoded output phase.
Inversely modulate the signal sample and inversely modulate the signal sample μnAt time n
State mQ-1Number of states S (m is an integer smaller than M)nTo
Q-1 phase difference error series {ΔΨnq: Q = 0, ..., Q
-2} (ΔΨ is the difference between the phase difference of the inverse modulation signal and the transmission phase difference
Difference S) and state S at time (n-1)
n-1Reference signal η stored inn-1(Sn-1) Is ΔΨ
nAnd the inverse modulation signal sample zn′ With
Find the inner product, and use this inner product as state Sn-1'From state SnTo
A branch metric λ (S
n-1→ Sn) And set this branch metric to state S
n-1Path metric Λ (Sn-1)
State Sn-1Path metric Λ (Sn
| Sn-1), The branch metric and path
The operation for finding the trick is the state SnThere is a path to enter
All states Sn-1Repeated about
State S ^ that compares the size of the trick and gives the maximum valuen-1
Select only this and discard the others, this state S ^n-1State Sn
The most probable path point (n-1)
Stored in the path memory and the path metric Λ
(Sn| S ^n-1) To state SnPath metrics in
Ku Λ (Sn) Is stored in the path metric memory as
Reference signal ηn(Sn) Is Q consecutive inverse modulation signal markers
Using the book, ηn(Sn) = Μn+ Σq = 1 Q-1μnqexp (jΔ
Ψn+ ΔΨn-1+… + ΔΨn + 1-q), Store it in the reference signal memory, and perform the above operations.
State SnM for allQ-1Pieces
State S that compares the size of tricks and gives the maximum valuen^
And state SnThe path memory is
State S reached by tracing back only at fixed time point DnD^
Phase difference error ΔΨ ofnD^ Is found, and the detected phase difference is D symbol
Phase difference error ΔΨnDAdd ^
Calculate and output as detection output.
【0006】このような構成によれば、逆変調された信
号は従来の遅延検波を用いたときの判定誤り系列で変調
されたM相DPSK信号となる。誤り率が十分小さいと
きにはほとんどの誤りは、プラス・マイナス2π/Mラ
ジアンである。したがって誤り率が小さければ逆変調信
号はM相DPSK信号であっても、ほとんど3値しか値
をとらないものとなる。すなわち、3Q-1 状態(m=
3)ビタビ復号器で誤り系列を推定できることになる。
m=3に限らずm<Mを満せば同様に復号することがで
き、かつm=Mの場合よりも演算量が少なくて済むこと
は容易に理解されよう。According to such a configuration, the inversely modulated signal becomes an M-phase DPSK signal modulated with a decision error sequence when the conventional differential detection is used. Most errors are plus or minus 2π / M radians when the error rate is small enough. Therefore, if the error rate is small, the inverse modulation signal takes almost three values even if it is the M-phase DPSK signal. That is, 3 Q-1 states (m =
3) The Viterbi decoder can estimate the error sequence.
It will be easily understood that not only m = 3 but also m <M can be similarly decoded, and the amount of calculation is smaller than that in the case of m = M.
【0007】[0007]
【発明の実施の形態】時点nの受信信号標本をベースバ
ンド帯域で複素表示すると以下のようになる。 zn =√(2Es /T) expj(φn +θ)+wn (1) ここで、φn ={2mπ/M;m=0,1,…,M−
1}は変調位相で、Es =(log2 M)Eb は1シン
ボルあたりの受信エネルギー(Eb は1ビットあたりの
受信エネルギー)、Tはシンボル長、θは未知の位相、
wn は熱雑音であり、その分散は2N0 /T(N0 は雑
音電力スペクトル密度)。位相差Δφn =φ n −φn-1
は送信シンボル(log2 Mビット)であり、{2mπ
/M;m=0,1,…,M−1}の中の値をとる。BEST MODE FOR CARRYING OUT THE INVENTION
The complex display in the band is as follows. zn= √ (2Es/ T) expj (φn+ Θ) + wn (1) where φn= {2mπ / M; m = 0, 1, ..., M-
1} is the modulation phase, Es= (LogTwoM) EbIs 1 thin
Received energy per bolt (EbIs per bit
Received energy), T is the symbol length, θ is the unknown phase,
wnIs thermal noise and its variance is 2N0/ T (N0Is sloppy
Sound power spectral density). Phase difference Δφn= Φ n−φn-1
Is the transmitted symbol (logTwoM bits) and {2mπ
/ M; m = 0, 1, ..., M-1}.
【0008】図1にこの発明の実施例(復調器の構成)
を示す。入力端子11からの差動位相変調信号はベース
バンドに変換されており、不要な雑音が受信フィルタ1
2で除去され、標本化回路13でシンボル周期ごとに標
本化されて遅延検波器14へ供給される。遅延検波器1
4での判定は以下のようにして行われる。FIG. 1 shows an embodiment of the present invention (configuration of demodulator).
Is shown. The differential phase modulation signal from the input terminal 11 is converted to baseband, and unnecessary noise is generated by the reception filter 1.
It is removed in step 2, and is sampled in the sampling circuit 13 for each symbol period and supplied to the differential detector 14. Delay detector 1
The determination in 4 is performed as follows.
【0009】[0009]
【数1】ここで、*は複素共役、Re[z]はzの実数
部である。すなわち、連続する2つの受信標本の位相差
より送信シンボルを推定している。zn-1 が判定のため
の参照信号になっているが、熱雑音で擾乱されているた
めに理想的同期検波・差動復号より特性が劣化する。さ
て、このような遅延検波の判定出力を次のように差動符
号化回路15で差動符号化する。## EQU1 ## where * is the complex conjugate and Re [z] is the real part of z. That is, the transmission symbol is estimated from the phase difference between two consecutive reception samples. Although z n-1 is a reference signal for determination, it is disturbed by thermal noise, and therefore its characteristics are deteriorated as compared with the ideal synchronous detection / differential decoding. Now, such differential detection determination output is differentially encoded by the differential encoding circuit 15 as follows.
【0010】 φn ′=φn-1 ′+Δφn ′=Σk=1 n Δφk ′ (3) この差動符号化出力を用いて、逆変調器16で受信信号
を逆変調する。すなわち μn =zn exp−jφn ′ (4) 式(1)を用いて式(4)を書き直すと μn =√(2Es /T)expj(Ψn +θ)+wn ′ (5) のようになる。ここで、w′は新しい雑音になるが分散
は不変である。さて、Ψ n は次のΔΨn を差動符号化し
たものとなっている。Φn′ = φn-1′ + Δφn′ = Σk = 1 nΔφk′ (3) The received signal is received by the inverse modulator 16 using this differentially encoded output.
Inversely modulate. Ie μn= Znexp-jφn′ (4) If equation (4) is rewritten using equation (1), μn= √ (2Es/ T) expj (Ψn+ Θ) + wnIt becomes like ′ (5). Where w ′ is new noise but variance
Is immutable. Now, Ψ nIs the next ΔΨnDifferentially encode
It has become a thing.
【0011】 ΔΨn =Ψn −Ψn-1 =Δφn −Δφn ′ (6) ΔΨn は上式からわかるように送信位相差Δφn と従来
の遅延検波の判定値Δφ n ′との差、すなわち判定誤差
になっている。もし、Eb /N0 の値が小さくないとき
には、ほとんどの誤りが最も小さい誤り、すなわちプラ
ス・マイナス2π/Mラジアンである。したがって、ほ
とんどの場合で、ΔΨn =0になり、ときどきΔΨn =
±2π/Mとなる。このことは、誤り系列の推定では文
献「1」のビタビ復号器の状態数を3Q-1 状態にできる
ことを示している。従って逆変調器16よりの誤り系列
ΔΨn を3Q-1 個の状態、ビタビ復号器17で最も確ら
しい誤り系列を検出し、つまり、時刻nでの3Q-1 個の
生き残りパスのうち最大メトリックのパスを求め、その
パスをDステップだけ遡り、たどり着いた状態を構成す
る位相判定誤差ΔΨn-D ′を出力する。この判定誤差Δ
Ψn-D ′を、遅延検波器14の検波出力Δφn ′を遅延
回路18でD・Tだけ遅延したものΔφn-D ′に加算器
19で加算して最終的な判定出力Δφn-D  ̄として出力
端子21へ出力する。ΔΨn= Ψn−Ψn-1= Δφn-Δφn′ (6) ΔΨnAs can be seen from the above equation, the transmission phase difference ΔφnAnd conventional
Judgment value of differential detection Δφ n′, That is, the judgment error
It has become. If Eb/ N0When the value of is not small
Most of the errors are
S-minus 2π / M radian. Therefore,
In most cases, ΔΨn= 0, and sometimes ΔΨn=
It becomes ± 2π / M. This means that the error sequence estimation
Set the number of states of the Viterbi decoder of "1" to 3Q-1Can be in a state
It is shown that. Therefore, the error sequence from the inverse modulator 16
ΔΨn3Q-1Number of states, most accurate in the Viterbi decoder 17
A new error sequence is detected, that is, 3 at time nQ-1Of
Find the path with the maximum metric among the surviving paths, and
Go up the path by D steps and configure the state where you have reached
Phase determination error ΔΨnD′ Is output. This judgment error Δ
ΨnD′ Is the detection output Δφ of the delay detector 14.n’Delay
Delayed by DT in circuit 18 ΔφnD′ To adder
Final judgment output Δφ by adding in 19nDOutput as  ̄
Output to the terminal 21.
【0012】 Δφn-D  ̄=(ΔΨn-D ′+Δφn-D ′)mod2π (7) で与えられる。ここで、mod2πはモジュロ2π演算
である。ビタビ復号器17における処理は、時点nの状
態Sn をQ−1個の位相差誤差系列{ΔΨn-q :q=
0,…,Q−2}で構成し、参照信号メモリ21内の時
点(n−1)の状態Sn-1 に記憶されている参照信号η
n-1 (Sn-1 )をΔΨn だけ位相回転させたものと、逆
変調信号標本μn との内積を求め、この内積を状態S
n-1 から状態Sn への遷移の確からしさを表わすブラン
チメトリックλ(Sn- 1 →Sn )とし、このブランチメ
トリックを状態Sn-1 におけるパスメトリックΛ(S
n-1 )に加算して状態Sn-1 を経由する候補系列のパス
メトリックΛ(S n |Sn-1 )を求める。このブランチ
メトリック及びパスメトリックを求める演算を状態Sn
に入るパスが存在する全ての状態Sn-1 について繰り返
し、得られたパスメトリックの大小を比較して最大値を
与える状態S^n-1 のみを選択して他を捨て、この状態
S^n-1 を状態Sn に至る最も確からしいパスの時点
(n−1)の状態としてパスメモリ23に記憶すると共
に、そのパスメトリックΛ(Sn |S^n-1 )を状態S
n におけるパスメトリックΛ(Sn )としてパスメトリ
ックメモリ24に記憶し、更に参照信号ηn (Sn )を
Q個の連続する逆変調信号標本を用いて次式で求める。ΔφnD ̄ = (ΔΨnD′ + ΔφnD′) Mod2π (7) Where mod2π is modulo 2π operation
It is. The processing in the Viterbi decoder 17 is the same as at time n.
State SnBe Q−1 phase difference error series {ΔΨnq: Q =
0, ..., Q-2}, and when in the reference signal memory 21
State S of point (n-1)n-1Reference signal η stored in
n-1(Sn-1) Is ΔΨnOpposite to the one that only phase is rotated
Modulation signal sample μnAnd the inner product of
n-1To state SnBlanc showing the certainty of the transition to
Chimetric λ (Sn- 1→ Sn) And this branch
Trick the state Sn-1Path metric Λ (S
n-1) And state Sn-1Of candidate series passing through
Metric Λ (S n| Sn-1). This branch
State S is used to calculate the metric and path metricn
All states S where there is a path to entern-1Repeat about
And compare the magnitude of the obtained path metrics to obtain the maximum value.
State to give S ^n-1Select only and discard the others, this state
S ^n-1State SnThe most probable time to reach
When the path memory 23 stores the state of (n-1),
And its path metric Λ (Sn| S ^n-1) To state S
nPath metric Λ (Sn) As path metric
The reference signal η.n(Sn)
It is calculated by the following equation using Q consecutive inverse modulation signal samples.
【0013】 ηn (Sn )=μn +Σq=1 Q-1 μn-q exp(jΔΨn +ΔΨn-1 +… +ΔΨn+1-q ) (8) この参照信号ηn (Sn )を参照信号メモリ22に記憶
する。以上の演算を3Q-1 個の状態Sn の全てに対して
行い、得られた3Q-1 のパスメトリックの大小を比較
し、最大値を与える状態Sn ^を求め、その状態Sn ^
を出発点としてパスメモリ23を時点Dだけトレースバ
ックして到達した状態S n-D ^の位相差誤差ΔΨn-D ^
をビタビ復号結果として出力する。Ηn(Sn) = Μn+ Σq = 1 Q-1μnqexp (jΔΨn+ ΔΨn-1+… + ΔΨn + 1-q) (8) This reference signal ηn(Sn) Is stored in the reference signal memory 22.
I do. The above calculation 3Q-1Individual state SnFor all of
Done and obtained 3Q-1Compare the size of the path metric of
The state S that gives the maximum valuenFind ^ and state Sn^
Using the path memory 23 as a starting point for the trace point at time D
State reached by clicking S nD^ Phase difference error ΔΨnD^
Is output as a Viterbi decoding result.
【0014】文献「1」のビタビ復号ではMQ-1 状態の
ビタビ復号器が必要になるのに対し、この実施例では3
Q-1 状態のビタビ復号器でよいので、処理量の大幅な削
減が可能になる。m=3に限らず、mを大とすれば±2
π/Mラジアン以外の判定誤りも正しく検出できる可能
性があり、mがMより小さければm=Mの場合よりも処
理量が小さい利益が得られる。In the Viterbi decoding of the document “1”, the Viterbi decoder in the M Q-1 state is required, whereas in this embodiment, 3 is used.
Since the Viterbi decoder in the Q-1 state is sufficient, the processing amount can be significantly reduced. Not limited to m = 3, if m is large, ± 2
There is a possibility that a decision error other than π / M radian can be correctly detected, and if m is smaller than M, a smaller processing amount can be obtained than when m = M.
【0015】[0015]
【発明の効果】8相DPSKにこの発明の実施例を適用
したときの誤り率特性の計算機シミュレーション結果
(Q=2,3,4)を図2に示す。横軸は1ビット当た
りの信号エネルギー対雑音電力密度比Eb /N0 であ
る。比較のため、従来の遅延検波(1DD)、理想同期
検波・差動復号(CD)による誤り率のシミュレーショ
ン結果も示してある。ビタビ復号におけるトレースバッ
クの深さD=8を用いた。Qを大きくすることによって
誤り率特性を同期検波・差動復号(CD)のそれに近づ
けることができる。BER=0.1%を確保するのに必
要な所要Eb /N0 は従来の遅延検波(1DD)では1
2.9dBであるが、この発明でQ=2を用いれば所要
Eb /N0 を1.3dBだけ低減できる。Q=4を用い
ると、同期検波・差動復号のそれより0.5dBまで所
要Eb /N0 を低減できる。The computer simulation results (Q = 2, 3, 4) of the error rate characteristics when the embodiment of the present invention is applied to the 8-phase DPSK are shown in FIG. The horizontal axis is the signal energy-to-noise power density ratio E b / N 0 per bit. For comparison, the error rate simulation results by the conventional differential detection (1DD) and ideal synchronous detection / differential decoding (CD) are also shown. A traceback depth D = 8 in Viterbi decoding was used. By increasing Q, the error rate characteristic can be made closer to that of synchronous detection / differential decoding (CD). The required E b / N 0 required to secure BER = 0.1% is 1 in the conventional differential detection (1DD).
Although it is 2.9 dB, the required E b / N 0 can be reduced by 1.3 dB by using Q = 2 in the present invention. When Q = 4 is used, the required E b / N 0 can be reduced to 0.5 dB compared with that of the synchronous detection / differential decoding.
【0016】図には文献「1」の64状態ビタビ復号の
特性(Q=3)を示したが、この発明では同じQを用い
ればほとんど同一の特性を実現できることがよくわか
る。したがって、Q=3のとき、同一の特性を文献
「1」のそれの約1/7の演算量で実現できる。The figure shows the characteristic (Q = 3) of the 64-state Viterbi decoding of the document "1", but it is well understood that almost the same characteristic can be realized by using the same Q in the present invention. Therefore, when Q = 3, the same characteristic can be realized with an amount of calculation which is about 1/7 that of the document “1”.
【図1】この発明を適用した遅延検波装置の一例を示す
ブロック図。FIG. 1 is a block diagram showing an example of a differential detection device to which the present invention is applied.
【図2】この発明の効果を示すための計算機シミュレー
ション結果を示す図。FIG. 2 is a diagram showing a computer simulation result for showing the effect of the present invention.
【手続補正書】[Procedure amendment]
【提出日】平成8年3月29日[Submission date] March 29, 1996
【手続補正1】[Procedure amendment 1]
【補正対象書類名】図面[Document name to be amended] Drawing
【補正対象項目名】図1[Correction target item name] Fig. 1
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【図1】 FIG.
Claims (1)
動位相変調信号を、その送信シンボル周期で標本化して
時点nの受信信号標本zn を得、 連続する2個の受信信号標本zn-1 とzn とを用いて遅
延検波により位相差を検出し、 その検出された位相差を1シンボル時間前の差動符号化
出力位相に加算して、差動符号化出力位相を更新し、 その差動符号化出力位相を用いて受信信号標本zn を逆
変調して、逆変調信号標本μn を得て、 Q−1個の位相差誤差系列{ΔΨn-q :q=0,…,Q
−2}(ΔΨは逆変調信号の位相差と、送信位相差との
差のとり得る値)で時点nのmQ-1 個(mはMより小さ
い整数)の状態Sn を構成し、 時点(n−1)の状態Sn-1 に記憶されている参照信号
ηn-1 (Sn-1 )をΔΨn だけ位相回転させたものと逆
変調信号標本zn ′との内積を求め、 この内積を状態Sn-1 から状態Sn への遷移の確からし
さを表すブランチメトリックλ(Sn-1 →Sn )とし、 このブランチメトリックを状態Sn-1 におけるパスメト
リックΛ(Sn-1 )に加算して状態Sn-1 を経由する候
補系列のパスメトリックΛ(Sn |Sn-1 )を求め、 このブランチメトリック及びパスメトリックを求める演
算を、状態Sn に入るパスが存在する全ての状態Sn-1
に対して繰り返し、 得られたパスメトリックの大小を比較して最大値を与え
る状態S^n-1 のみを選択して他を捨て、この状態S^
n-1 を状態Sn に至る最も確からしいパスの時点(n−
1)の状態としてパスメモリに記憶すると共に、そのパ
スメトリックΛ(Sn |S^n-1 )を状態Sn における
パスメトリックΛ(Sn )としてパスメトリックメモリ
に記憶し、 また参照信号ηn (Sn )をQ個の連続する逆変調信号
標本を用いて、 ηn (Sn )=μn +Σq=1 Q-1 μn-q exp(jΔ
Ψn +ΔΨn-1 +…+ΔΨn+1-q ) により求めて参照信号メモリに記憶し、 以上の演算を状態Sn の全てに対して行い、得られたm
Q-1 個のパスメトリックの大小を比較し、最大値を与え
る状態Sn ^を求め、 その状態Sn ^を出発点としてパスメモリを一定時点D
だけトレースバックして到達した状態Sn-D ^の位相差
誤差ΔΨn-D ^を求め、 上記検出位相差をDシンボル時間だけ遅延させたものに
上記位相差誤差ΔΨn-D ^を加算して検波出力とする差
動位相変調波のビタビ検波方法。1. The received M-phase (M is an integer of 4 or more) differential phase modulation signal is sampled at the transmission symbol period to obtain a reception signal sample z n at a time point n, and two consecutive reception signals are received. The phase difference is detected by differential detection using the signal samples z n-1 and z n, and the detected phase difference is added to the differential encoded output phase one symbol time before to obtain the differential encoded output. The phase is updated, and the received signal sample z n is inversely modulated using the differentially encoded output phase to obtain the inverse modulated signal sample μ n , and Q−1 phase difference error sequences {ΔΨ nq : q = 0, ..., Q
-2} (ΔΨ is a value that can be the difference between the phase difference of the inverse modulation signal and the transmission phase difference), and forms m Q-1 (m is an integer smaller than M) states S n at time n, The inner product of the reference signal η n-1 (S n-1 ) stored in the state S n-1 at the time point (n-1) phase-shifted by ΔΨ n and the inverse modulation signal sample z n ′ is Then, this inner product is taken as a branch metric λ (S n-1 → S n ) which represents the probability of the transition from the state S n-1 to the state S n , and this branch metric is the path metric Λ (S n-1) in the state S n-1 . S n-1 ) to obtain a path metric Λ (S n | S n-1 ) of the candidate sequence passing through the state S n-1, and an operation for obtaining the branch metric and the path metric is given to the state S n . All states where there is an incoming path S n-1
Repeating with respect to, the state of the obtained path metric is compared, and only the state S ^ n-1 that gives the maximum value is selected and the others are discarded.
The time of the most probable path from n-1 to the state S n (n-
The state 1) is stored in the path memory, and the path metric Λ (S n | S ^ n-1 ) is stored in the path metric memory as the path metric Λ (S n ) in the state S n . n (S n ) using Q consecutive inverse modulation signal samples, η n (S n ) = μ n + Σ q = 1 Q-1 μ nq exp (jΔ
Ψ n + ΔΨ n-1 + ... + ΔΨ n + 1-q ) and stores it in the reference signal memory, and the above calculation is performed for all the states S n to obtain m.
The size of Q-1 path metrics is compared to find the state S n ^ that gives the maximum value, and the state S n ^ is used as a starting point to set the path memory at a certain time point D.
Then, the phase difference error ΔΨ nD ^ of the state S nD ^ reached by tracing back only is obtained, and the phase difference error ΔΨ nD ^ is added to what is obtained by delaying the detected phase difference by the D symbol time to obtain a detection output. Viterbi detection method for differential phase modulation waves.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7556596A JPH09270829A (en) | 1996-03-29 | 1996-03-29 | Viterbi detection method for differential phase modulated wave |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7556596A JPH09270829A (en) | 1996-03-29 | 1996-03-29 | Viterbi detection method for differential phase modulated wave |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09270829A true JPH09270829A (en) | 1997-10-14 |
Family
ID=13579841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7556596A Pending JPH09270829A (en) | 1996-03-29 | 1996-03-29 | Viterbi detection method for differential phase modulated wave |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09270829A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009296318A (en) * | 2008-06-05 | 2009-12-17 | Mitsubishi Electric Corp | Precoder circuit, and receiving apparatus |
-
1996
- 1996-03-29 JP JP7556596A patent/JPH09270829A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009296318A (en) * | 2008-06-05 | 2009-12-17 | Mitsubishi Electric Corp | Precoder circuit, and receiving apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5955481B2 (en) | Soft decision value generation apparatus and soft decision value generation method | |
US8090060B2 (en) | Demodulation technique for GFSK and DPSK | |
US5428631A (en) | Method and apparatus for resolving phase ambiguities in trellis coded modulated data | |
EP0671837B1 (en) | Differential detection method and detector using maximum likelihood estimation | |
Paterson et al. | Efficient decoding algorithms for generalized Reed-Muller codes | |
EP1275214A1 (en) | Decoding system and method for digital communications | |
JP5241965B2 (en) | Soft decision value generation circuit | |
IE921372A1 (en) | Method and apparatus for resolving phase ambiguities in trellis coded modulated data | |
FR2726420A1 (en) | DIGITAL SOFTWARE DECISION TELECOMMUNICATIONS METHOD AND APPARATUS | |
JP3164309B2 (en) | Maximum likelihood decoding synchronous detection method | |
US7298798B1 (en) | Method and system for decoding block codes | |
US20150171895A1 (en) | Use of parity-check coding for carrier-phase estimation in an optical transport system | |
Jerbi et al. | Delay Optimization of Conventional Non-Coherent Differential CPM Detection | |
JPH09270829A (en) | Viterbi detection method for differential phase modulated wave | |
US6381288B1 (en) | Method and apparatus for recovering data from a differential phase shift keyed signal | |
JPH08223239A (en) | Pilot signal transmission system | |
JP3417534B2 (en) | Digital demodulator | |
BRPI0205875B1 (en) | demodulation apparatus and method in a communication system employing psk 8-aria modulation | |
US11277289B1 (en) | Demodulation unit and method for demodulating a DPSK signal | |
JP3278669B2 (en) | Receiver demodulator | |
JP2691949B2 (en) | Maximum likelihood judgment differential detection method and differential detector using the same | |
JP2739318B2 (en) | Maximum likelihood receiver | |
Bialer et al. | Analysis of optimum detector of trellis coded MPSK in phase noise channels | |
Wei et al. | Noncoherent detection for trellis-coded MPSK | |
US6246730B1 (en) | Method and arrangement for differentially detecting an MPSK signal using a plurality of past symbol data |