JPH09270257A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH09270257A
JPH09270257A JP8079089A JP7908996A JPH09270257A JP H09270257 A JPH09270257 A JP H09270257A JP 8079089 A JP8079089 A JP 8079089A JP 7908996 A JP7908996 A JP 7908996A JP H09270257 A JPH09270257 A JP H09270257A
Authority
JP
Japan
Prior art keywords
lithium
composite oxide
secondary battery
electrolyte secondary
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8079089A
Other languages
Japanese (ja)
Other versions
JP3420425B2 (en
Inventor
Sadayuki Asaoka
定幸 浅岡
Shoichiro Watanabe
庄一郎 渡邊
Shigeo Kobayashi
茂雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP07908996A priority Critical patent/JP3420425B2/en
Publication of JPH09270257A publication Critical patent/JPH09270257A/en
Application granted granted Critical
Publication of JP3420425B2 publication Critical patent/JP3420425B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery with high discharging capacity by having a positive electrode using a lithium-containing composite oxide whose unit cell volume is specified as the active material and a negative electrode capable of absorbing/releasing lithium. SOLUTION: A nonaqueous electrolyte secondary battery has a positive electrode using a lithium-containing composite oxide represented by the general formula, Lix Ni1-y Coy O2 , (0<=x<=1.2, 0<y<=0.5), and having a unit cell volume of 100.5-102 cubic angstrom as the active material and a negative electrode capable of absorbing/releasing lithium. The lithium-containing composite oxide is preferable to have a crystallite size ε in the direction of (c) axis calculated from Scherrer equation by using 003 reflection obtained by powder X-ray diffraction of 300-1800Å.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液二次電
池に関するものであり、特にその正極活物質に関するも
のである。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a positive electrode active material thereof.

【0002】[0002]

【従来の技術】民生用電子機器の駆動用電源として、ニ
ッケル−カドミウム電池あるいは小型の密閉型鉛蓄電池
が広く用いられている。近年、これら電子機器のポータ
ブル化、コードレス化が急速に進んでおり、これに伴
い、駆動用電源となる二次電池の高エネルギー密度化、
小型軽量化への要望が強まっている。このような状況の
下、例えば特開昭63−59507号公報に報告されて
いるように、LiCoO2等、高い作動電圧を示すリチ
ウムと遷移金属の複合酸化物を正極活物質に用いて、リ
チウムの挿入・離脱を利用した非水電解液二次電池が提
案されている。しかし、上記のようなリチウムコバルト
複合酸化物は、作動電圧は高いものの、資源的に稀少
で、コストの面で割高となり、また放電容量も小さい。
この問題に対して、資源的には豊富なリチウムニッケル
複合酸化物を用いた非水電解液二次電池が提案されてい
る。
2. Description of the Related Art Nickel-cadmium batteries or small sealed lead-acid batteries are widely used as power sources for driving consumer electronic devices. In recent years, portable and cordless electronic devices have been rapidly developed, and along with this, high energy density of a secondary battery serving as a driving power source,
The demand for smaller size and lighter weight is increasing. Under such circumstances, as disclosed in, for example, Japanese Patent Application Laid-Open No. 63-59507, LiCoO 2 or the like is used as a positive electrode active material, and a composite oxide of lithium and a transition metal showing a high operating voltage is used. A non-aqueous electrolyte secondary battery utilizing insertion / removal of a battery has been proposed. However, although the lithium cobalt composite oxide as described above has a high operating voltage, it is scarce in terms of resources, is relatively expensive in terms of cost, and has a small discharge capacity.
To solve this problem, a non-aqueous electrolyte secondary battery using a lithium nickel composite oxide, which is rich in resources, has been proposed.

【0003】リチウムニッケル複合酸化物は、安価では
あるが、放電容量は十分ではない。また、充放電サイク
ルを繰り返し行うことにより容量が徐々に低下するサイ
クル劣化の問題がある。さらに、リチウムニッケル複合
酸化物は、リチウムコバルト複合酸化物に比べて充電容
量と放電容量の差である不可逆容量が大きい。従って、
十分な放電容量を得るためには、高容量化と共にこの不
可逆容量を低減する必要がある。この問題に対して、米
国特許第4,980,080号や、特開平5−3259
66号公報には、リチウムニッケル複合酸化物のニッケ
ルの一部をコバルトで置換したLixNi1-yCoy2
正極活物質に用いることにより、サイクル特性が改善さ
れることが報告されている。しかし、この場合も、放電
容量は未だ十分であるとはいえない。
Lithium-nickel composite oxide is inexpensive, but its discharge capacity is not sufficient. Further, there is a problem of cycle deterioration in which the capacity is gradually reduced by repeating the charge / discharge cycle. Further, the lithium nickel composite oxide has a larger irreversible capacity, which is the difference between the charge capacity and the discharge capacity, as compared with the lithium cobalt composite oxide. Therefore,
In order to obtain a sufficient discharge capacity, it is necessary to increase the capacity and reduce the irreversible capacity. To solve this problem, U.S. Pat. No. 4,980,080 and Japanese Patent Laid-Open No. 5-3259.
In Japanese Patent Publication No. 66, it is reported that cycle characteristics are improved by using Li x Ni 1-y Co y O 2 in which a part of nickel in the lithium nickel composite oxide is replaced with cobalt as a positive electrode active material. ing. However, also in this case, it cannot be said that the discharge capacity is still sufficient.

【0004】また、この問題を解決するために、粉末X
線回折法を用いて、リチウムニッケル複合酸化物の結晶
状態と放電容量との相関について、様々な検討がなされ
ている。例えば、特開平6−60887号公報、特開平
5−290845号、および特開平6−215773号
公報には、線源にCuKαを用いた粉末X線回折法にお
いて、2θ=18゜〜20゜付近に検出される結晶面0
03面の回折ピークと2θ=44゜〜46゜付近に検出
される104面の回折ピークの強度比が放電容量と一定
の相関関係にあることが報告されている。また、特開平
6−267539号公報には、その半価幅と放電容量と
の間に一定の相関があることが報告されている。また、
特開平6−275274号公報に示されているように、
リチウムニッケル複合酸化物の結晶子のc軸方向の大き
さ、平均粒径、あるいは結晶の単位胞体積と放電容量と
の間の相関についても検討がなされている。
In order to solve this problem, powder X
Various studies have been made on the correlation between the crystalline state of the lithium nickel composite oxide and the discharge capacity by using the line diffraction method. For example, in JP-A-6-60887, JP-A-5-290845, and JP-A-6-215773, in the powder X-ray diffraction method using CuKα as a radiation source, 2θ = about 18 ° to 20 ° or so. Crystal plane detected at 0
It has been reported that the intensity ratio between the diffraction peak on the 03 plane and the diffraction peak on the 104 plane detected near 2θ = 44 ° to 46 ° has a certain correlation with the discharge capacity. Further, JP-A-6-267539 reports that there is a certain correlation between the full width at half maximum and the discharge capacity. Also,
As disclosed in JP-A-6-275274,
The correlation between the size of the crystallite of the lithium nickel composite oxide in the c-axis direction, the average particle size, or the unit cell volume of the crystal and the discharge capacity has also been studied.

【0005】[0005]

【発明が解決しようとする課題】しかし、これらにより
得られる効果はわずかであり、さらなる放電容量の増大
が望まれている。本発明は、上記正極活物質に起因する
問題点を解決し、放電容量の大きい非水電解液二次電池
を提供することを目的とする。
However, the effects obtained by these are small, and further increase in discharge capacity is desired. An object of the present invention is to solve the problems caused by the positive electrode active material and to provide a non-aqueous electrolyte secondary battery having a large discharge capacity.

【0006】[0006]

【課題を解決するための手段】本発明は、一般式Lix
Ni1-yCoy2で表されるリチウムニッケル複合酸化
物を活物質とする正極と、リチウム、リチウム合金等の
リチウムを吸蔵・放出する化合物を主材とする負極とを
備えた非水電解液二次電池に関するものであって、リチ
ウムニッケル複合酸化物に、単位胞体積が100.5〜
102立方オングストロームであり、結晶子のc軸方向
の大きさが、300〜1800オングストロームである
ものを用いるものである。
The present invention is based on the general formula Li x
A non-aqueous material provided with a positive electrode using a lithium nickel composite oxide represented by Ni 1-y Co y O 2 as an active material, and a negative electrode containing a compound that absorbs and releases lithium such as lithium and a lithium alloy as a main material. The present invention relates to an electrolyte secondary battery, wherein a lithium nickel composite oxide has a unit cell volume of 100.5 to
It is 102 cubic angstroms, and the size of the crystallite in the c-axis direction is 300 to 1800 angstroms.

【0007】[0007]

【発明の実施の形態】本発明の非水電解液二次電池は、
一般式LixNi1-yCoy2(ただし、0≦x≦1.
2,0<y≦0.5とする)で表され、かつ単位胞体積
が100.5〜102立方オングストロームであるリチ
ウム含有複合酸化物を活物質とする正極と、リチウムを
吸蔵・放出する負極を備えたものである。
BEST MODE FOR CARRYING OUT THE INVENTION The non-aqueous electrolyte secondary battery of the present invention
The general formula Li x Ni 1-y Co y O 2 (where 0 ≦ x ≦ 1.
2, 0 <y ≦ 0.5) and a positive electrode using a lithium-containing composite oxide having a unit cell volume of 100.5 to 102 cubic angstroms as an active material, and a negative electrode that absorbs and releases lithium. It is equipped with.

【0008】また、リチウム含有複合酸化物が、粉末X
線回折法により得られた003反射を用いてシェラー
(Sherrer)の式: ε=λ/(βcosθ) 但し、ε:結晶子の大きさ(オングストローム) λ:測定X線波長(オングストローム) β:積分幅(=積分強度/ピーク強度) θ:回折線のブラッグ角(゜) から算出した結晶子のc軸方向の大きさεが、300〜
1800オングストロームであることが好ましい。Li
xNi1-yCoy2で表されるリチウムニッケル複合酸化
物のうち、単位胞体積が100.5〜102立方オング
ストロームであり、粉末X線回折法による003反射か
らシェラーの式を用いて算出した結晶子のc軸方向の大
きさが300〜1800オングストロームであるものを
正極活物質に用いることにより、150mAh/g以上
の放電容量を得ることができると同時に、不可逆容量を
30mAh/g以下に抑制することができる。
Further, the lithium-containing composite oxide is powder X
Using 003 reflection obtained by the line diffraction method, Scherrer's formula: ε = λ / (β cos θ) where ε: crystallite size (angstrom) λ: measured X-ray wavelength (angstrom) β: integration Width (= integrated intensity / peak intensity) θ: The size ε of the crystallite in the c-axis direction calculated from the Bragg angle (°) of the diffraction line is 300 to
It is preferably 1800 Å. Li
Among lithium nickel composite oxides represented by x Ni 1-y Co y O 2 , the unit cell volume is 100.5 to 102 cubic angstroms, and from the 003 reflection by the powder X-ray diffraction method, using the Scherrer's formula. A discharge capacity of 150 mAh / g or more can be obtained and a irreversible capacity of 30 mAh / g or less can be obtained by using a crystallite having a calculated c-axis direction size of 300 to 1800 Å for the positive electrode active material. Can be suppressed.

【0009】さらに、リチウム含有複合酸化物が、共沈
法により得たNi1-yCoy(OH)2およびリチウム化
合物の混合物を焼成して合成されたものであることが好
ましい。このコバルト含有リチウムニッケル複合酸化物
は、例えば、リチウムニッケル複合酸化物のニッケルの
一部をCoで置換することにより得られる。例えば、ニ
ッケル塩とコバルト塩を飽和溶解させた溶液にアルカリ
溶液を加えて析出させる共沈法により、Ni1-yCo
y(OH)2を合成し、このニッケルコバルト水酸化物
を、リチウム化合物と所定の比で混合し、焼成する。こ
のとき、焼成温度、焼成時間及び焼成後の冷却速度を変
化させることにより、所望の単位胞体積と結晶子の大き
さを持ったリチウム複合酸化物を得られる。共沈法によ
り合成したNi1- yCoy(OH)2は、組成が均一であ
り、これをリチウム化合物と混合することにより、結晶
性が高く、諸特性に優れたLixNi1-yCoy2を得る
ことができる。
Further, it is preferable that the lithium-containing composite oxide is one synthesized by firing a mixture of Ni 1-y Co y (OH) 2 obtained by the coprecipitation method and a lithium compound. This cobalt-containing lithium nickel composite oxide is obtained, for example, by substituting a part of nickel of the lithium nickel composite oxide with Co. For example, by a coprecipitation method in which an alkaline solution is added to a solution in which a nickel salt and a cobalt salt are saturated and dissolved to precipitate the Ni 1 -y Co
y (OH) 2 is synthesized, and this nickel cobalt hydroxide is mixed with a lithium compound at a predetermined ratio and then baked. At this time, a lithium composite oxide having a desired unit cell volume and crystallite size can be obtained by changing the firing temperature, firing time, and cooling rate after firing. Ni 1- y Co y (OH) 2 synthesized by the coprecipitation method has a uniform composition, and by mixing this with a lithium compound, Li x Ni 1-y having high crystallinity and excellent properties is obtained. Co y O 2 can be obtained.

【0010】[0010]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】正極活物質は、以下のようにして合成し
た。まず、共沈法により水酸化ニッケルを合成した。硫
酸ニッケル(NiSO4)水溶液と硫酸コバルト(Co
SO4)水溶液を所定の比で混合し、温度及びpHを制
御して、ニッケルの一部をCoで置換した水酸化ニッケ
ル[Ni0.85Co0. 15(OH)2]を析出させた。得ら
れたコバルト含有水酸化ニッケルと、水酸化リチウム一
水和物(LiOH・H2O)を、(Ni+Co)とLi
の原子数の比が1:1となるよう混合し、この混合物
を、空気雰囲気下、700℃で15時間熱処理した。つ
いで、これを冷却速度1℃/minで室温まで冷却し、
リチウムニッケル複合酸化物(LiNi0.85Co0.15
2)を合成した。このリチウムニッケル複合酸化物を、
ボールミルを用いて粉砕し、45μm以下のものを分取
し、正極活物質とした。
The positive electrode active material was synthesized as follows. First, nickel hydroxide was synthesized by the coprecipitation method. Nickel sulfate (NiSO 4 ) aqueous solution and cobalt sulfate (Co
The SO 4) aqueous solution were mixed at a predetermined ratio by controlling the temperature and pH, some of the nickel to precipitate a substituted nickel hydroxide [Ni 0.85 Co 0. 15 (OH ) 2] in Co. The obtained cobalt-containing nickel hydroxide and lithium hydroxide monohydrate (LiOH.H 2 O) were mixed with (Ni + Co) and Li.
Were mixed so that the ratio of the number of atoms was 1: 1, and this mixture was heat-treated at 700 ° C. for 15 hours in an air atmosphere. Then, cool it to room temperature at a cooling rate of 1 ° C./min,
Lithium nickel composite oxide (LiNi 0.85 Co 0.15 O
2 ) was synthesized. This lithium nickel composite oxide
It was crushed using a ball mill, and those having a particle size of 45 μm or less were separated to obtain a positive electrode active material.

【0012】粉末X線回折法により、得られた正極活物
質の単位胞体積および結晶子のc軸方向の大きさを求め
た。線源にはCuKα線を用いた。得られたX線回折パ
ターンより、JCPDSカード9−63(LiNi
2)に示されるミラー指数に基づいて格子定数を求
め、単位胞体積を算出した。また結晶子の大きさは、粉
末X線回折法により得られた回折パターンの2θ=18
゜〜20゜付近に検出された003反射のピークの積分
幅より、下記のシェラーの式をもとに算出した。
The unit cell volume of the obtained positive electrode active material and the size of the crystallite in the c-axis direction were determined by the powder X-ray diffraction method. CuKα ray was used as the radiation source. From the obtained X-ray diffraction pattern, JCPDS card 9-63 (LiNi
The lattice constant was determined based on the Miller index shown in O 2 ) and the unit cell volume was calculated. The crystallite size is 2θ = 18 in the diffraction pattern obtained by the powder X-ray diffraction method.
It was calculated based on the Scherrer's formula below from the integral width of the 003 reflection peak detected in the vicinity of 20 ° to 20 °.

【0013】ε=λ/(βcosθ) 但し、ε:結晶子の大きさの平均(オングストローム) λ:測定X線波長(オングストローム) β:積分幅(=積分強度/ピーク強度) θ:回折線のブラッグ角(゜)Ε = λ / (β cos θ) where ε: average of crystallite size (angstrom) λ: measured X-ray wavelength (angstrom) β: integral width (= integral intensity / peak intensity) θ: diffraction line Bragg angle (°)

【0014】上記のようにして得られたリチウムニッケ
ル複合酸化物粉末100重量部に、アセチレンブラック
5重量部、およびポリフッ化ビニリデン5重量部を加え
て混合し、この混合物をN−メチル−2−ピロリドンに
懸濁させて合剤ペーストを調製した。このペーストを、
厚さ0.025mmのアルミニウム箔の両面に塗布、乾
燥後、厚さ0.15mmに圧延し、さらに幅37mm、
長さ380mmに切り出して正極板とした。
To 100 parts by weight of the lithium nickel composite oxide powder obtained as above, 5 parts by weight of acetylene black and 5 parts by weight of polyvinylidene fluoride were added and mixed, and this mixture was mixed with N-methyl-2-. The mixture paste was prepared by suspending it in pyrrolidone. This paste
It is applied on both sides of 0.025 mm thick aluminum foil, dried and rolled to a thickness of 0.15 mm, and further 37 mm wide,
It was cut into a length of 380 mm to obtain a positive electrode plate.

【0015】負極合剤には、コークスを加熱処理した炭
素粉100重量部に、スチレンブタジエンゴム3.5重
量部を混合したものを、カルボキシメチルセルロース水
溶液に懸濁させたペーストを用いた。このペーストを厚
さ0.015mmの銅箔の両面に塗布、乾燥した後、ロ
ーラープレスで厚さ0.2mmに圧延し、さらに幅39
mm、長さ425mmに切り出して負極板とした。
As the negative electrode mixture, a paste prepared by suspending 100 parts by weight of carbon powder obtained by heat-treating coke and 3.5 parts by weight of styrene-butadiene rubber in an aqueous carboxymethyl cellulose solution was used. This paste is applied to both sides of a copper foil having a thickness of 0.015 mm, dried, and then rolled with a roller press to a thickness of 0.2 mm, and a width of 39 mm.
mm and a length of 425 mm were cut out to obtain a negative electrode plate.

【0016】図1に、本実施例で用いた円筒形電池の縦
断面図を示す。内壁面に耐有機電解液処理を施したステ
ンレス鋼製の電池ケース1の内部には、正極板5と負極
板6を、セパレータ7を介して重ね合わせて渦巻状に捲
回した極板群4が収納されている。正極板5からはアル
ミニウム製の正極リード5aが引き出されて封口板2に
接続され、負極板6からはニッケル製の負極リード6b
が引き出されて電池ケース1の底部に接続されている。
絶縁リング8は、極板群4の上下部にそれぞれ設けられ
ている。電池ケース1の開口部は、絶縁パッキング3を
挟んで安全弁を設けた封口板2が嵌合されており、電池
ケース1の内部は密封されている。炭酸エチレンと炭酸
ジエチルの等容積混合溶媒に、六フッ化リン酸リチウム
(LiPF6)を1.5mol/リットルの割合で溶解
させ電解液とした。直径16.3mm、高さ50.7m
mの電池ケース1に、渦巻状に巻回した電極群4を収納
し、電解液を注入した後、電池ケース1の開口部を封口
し、非水電解液二次電池を得た。これを電池Aとする。
FIG. 1 is a vertical sectional view of the cylindrical battery used in this embodiment. Inside the battery case 1 made of stainless steel whose inner wall surface has been treated with an organic electrolytic solution, a positive electrode plate 5 and a negative electrode plate 6 are superposed with a separator 7 in between, and a spirally wound electrode plate group 4 is provided. Is stored. A positive electrode lead 5a made of aluminum is drawn out from the positive electrode plate 5 and connected to the sealing plate 2, and a negative electrode lead 6b made of nickel is drawn from the negative electrode plate 6.
Are drawn out and connected to the bottom of the battery case 1.
The insulating rings 8 are provided on the upper and lower portions of the electrode plate group 4, respectively. The opening of the battery case 1 is fitted with a sealing plate 2 provided with a safety valve with an insulating packing 3 interposed therebetween, and the inside of the battery case 1 is sealed. Lithium hexafluorophosphate (LiPF 6 ) was dissolved in an equal volume mixed solvent of ethylene carbonate and diethyl carbonate at a ratio of 1.5 mol / liter to prepare an electrolytic solution. Diameter 16.3mm, height 50.7m
The spirally wound electrode group 4 was housed in the battery case 1 of m, the electrolyte was injected, and then the opening of the battery case 1 was sealed to obtain a non-aqueous electrolyte secondary battery. This is called battery A.

【0017】電池Aで用いたものと同様のコバルト含有
水酸化ニッケルと水酸化リチウム一水和物を用いて、焼
成温度、焼成時間、冷却速度を表1に示すように変化さ
せて、リチウムニッケル複合酸化物粉末LiNi0.85
0.152を合成し、これらをそれぞれ正極活物質に用
いて、電池Aと同様の非水電解液二次電池を作製した。
これらをそれぞれ電池B〜Hとする。
Using the same cobalt-containing nickel hydroxide and lithium hydroxide monohydrate used in Battery A, the firing temperature, firing time, and cooling rate were changed as shown in Table 1 to obtain lithium nickel. Complex oxide powder LiNi 0.85 C
o 0.15 O 2 was synthesized, and these were used as the positive electrode active materials to prepare a non-aqueous electrolyte secondary battery similar to the battery A.
These are referred to as batteries B to H, respectively.

【0018】[0018]

【表1】 [Table 1]

【0019】各電池に使用したリチウムニッケル複合酸
化物の粉末について、粉末X線回折法により、単位胞体
積を求めた。また、得られた003反射から前述のシェ
ラーの式から結晶面003面に垂直方向、すなわち結晶
子のc軸方向の大きさを求めた。その結果を表2に示
す。
The unit cell volume of the lithium nickel composite oxide powder used in each battery was determined by the powder X-ray diffraction method. Further, from the obtained 003 reflection, the size in the direction perpendicular to the crystal plane 003, that is, the size of the crystallite in the c-axis direction was determined from the above Scherrer's equation. Table 2 shows the results.

【0020】[0020]

【表2】 [Table 2]

【0021】A〜Hのすべての電池に対して、500m
Aの定電流で4.2Vまで充電を行った後、さらに4.
2Vの定電圧で、合計2時間の充電を行い、3.0Vま
で定電流750mAで放電を行った。
500 m for all batteries A to H
After charging to 4.2 V with the constant current of A, further 4.
The battery was charged at a constant voltage of 2 V for a total of 2 hours, and discharged up to 3.0 V at a constant current of 750 mA.

【0022】図2は、電池A〜Hに用いた正極活物質L
iNi0.85Co0.152の単位胞体積と放電容量の関係
を、横軸に単位胞体積(立方オングストローム)を、縦
軸に正極活物質の単位重量当たりの放電容量(mAh/
g)を取って示したものである。図によれば、単位胞体
積が100.5〜102立方オングストロームの範囲で
150mAh/gを超える放電容量を示すことがわか
る。
FIG. 2 shows the positive electrode active material L used in the batteries AH.
The relationship between the unit cell volume of iNi 0.85 Co 0.15 O 2 and the discharge capacity is shown, the horizontal axis shows the unit cell volume (cubic angstrom), and the vertical axis shows the discharge capacity per unit weight of the positive electrode active material (mAh /
g) is shown. According to the figure, it can be seen that the discharge capacity exceeds 150 mAh / g in the unit cell volume range of 100.5 to 102 cubic angstroms.

【0023】図3に、単位胞体積と正極活物質単位重量
当たりの不可逆容量(mAh/g)の関係を示す。図に
よれば、単位胞体積が100.5〜102立方オングス
トロームの範囲で不可逆容量が30mAh/g以下とな
ることがわかる。
FIG. 3 shows the relationship between the unit cell volume and the irreversible capacity (mAh / g) per unit weight of the positive electrode active material. The figure shows that the irreversible capacity is 30 mAh / g or less in the unit cell volume range of 100.5 to 102 cubic angstroms.

【0024】以上のように、単位胞体積が100.5〜
102立方オングストロームであるLiNi0.85Co
0.152を正極活物質に用いた場合、放電容量が大き
く、かつ不可逆容量の小さい非水電解液二次電池が得ら
れる。
As described above, the unit cell volume is 100.5 to
102 cubic Å LiNi 0.85 Co
When 0.15 O 2 is used as the positive electrode active material, a non-aqueous electrolyte secondary battery having a large discharge capacity and a small irreversible capacity can be obtained.

【0025】図4に、結晶子のc軸方向の大きさと正極
活物質単位重量当たりの放電容量(mAh/g)の関係
を示す。図によれば、結晶子のc軸方向の大きさが30
0オングストローム以上の場合、150mAh/gを超
える放電容量を示すことがわかる。
FIG. 4 shows the relationship between the size of the crystallite in the c-axis direction and the discharge capacity (mAh / g) per unit weight of the positive electrode active material. According to the figure, the size of the crystallite in the c-axis direction is 30
It can be seen that in the case of 0 Å or more, the discharge capacity exceeds 150 mAh / g.

【0026】図5に、結晶子のc軸方向の大きさと、放
電容量の関係を、横軸に結晶子の大きさを、縦軸に正極
活物質単位重量当たりの不可逆容量(mAh/g)を取
って示す。図によれば、結晶子のc軸方向の大きさが3
00オングストローム以上の場合、不可逆容量が30m
Ah/g以下となることがわかる。
FIG. 5 shows the relationship between the crystallite size in the c-axis direction and the discharge capacity, the abscissa axis represents the crystallite size, and the ordinate axis represents the irreversible capacity per unit weight of the positive electrode active material (mAh / g). Take and show. According to the figure, the size of the crystallite in the c-axis direction is 3
In case of 00 angstrom or more, irreversible capacity is 30m
It turns out that it becomes Ah / g or less.

【0027】また、合成条件を鋭意検討してきたが、結
晶子のc軸方向の大きさが1800オングストロームを
超えるリチウムニッケル複合酸化物は得られなかった。
従来報告されている粉末X線回折パターンによれば、0
03反射のピークの積分幅は何れも0.05゜以上であ
り、シェラーの式により算出した結晶子のc軸方向の大
きさは1800オングストローム以下となることが知ら
れており、1800オングストロームを超えるリチウム
ニッケル複合酸化物の合成は困難であるものと考えられ
る。
Although the synthesis conditions have been studied earnestly, a lithium nickel composite oxide having a crystallite size in the c-axis direction exceeding 1800 Å has not been obtained.
According to the previously reported powder X-ray diffraction pattern, it is 0
It is known that the integrated widths of the 03 reflection peaks are all 0.05 ° or more, and the size of the crystallite in the c-axis direction calculated by Scherrer's formula is 1800 angstroms or less, which exceeds 1800 angstroms. It is considered difficult to synthesize a lithium nickel composite oxide.

【0028】上記実施例においては、水酸化リチウムを
用いて正極活物質を合成したが、炭酸リチウムや硝酸リ
チウム等のリチウム塩を用いても同様の効果が得られ
た。さらに、コバルト含有水酸化ニッケル[Ni0.85
0.15(OH)2]を合成する際に、例えばCo(N
32等の他のコバルト塩を用いることも可能である。
また、上記実施例では、正極活物質に用いるLixNi
1-yCoy2の一例として、LiNi0.85Co0.152
ついて説明したが、0≦x≦1.2かつ0≦y≦0.5
であれば、いずれの複合酸化物を正極活物質に用いても
同様の効果が得られる。また、上記実施例においては、
円筒形の電池を用いて評価を行ったが、角形など電池形
状が異なっても同様の効果が得られる。さらに、上記実
施例では、負極に炭素材料を用いたが、本発明における
効果は正極板において作用するため、リチウムイオンを
吸蔵・放出可能な物質であれば特に制限なく用いること
ができる。例えば、金属リチウムやリチウム合金、Fe
23、WO2等の酸化物、TiS2等の硫化物など、他の
負極材料を用いても同様の効果が得られる。
In the above examples, the positive electrode active material was synthesized using lithium hydroxide, but the same effect was obtained by using a lithium salt such as lithium carbonate or lithium nitrate. Furthermore, cobalt-containing nickel hydroxide [Ni 0.85 C
o 0.15 (OH) 2 ], for example, Co (N
It is also possible to use other cobalt salts such as O 3 ) 2 .
In addition, in the above-mentioned embodiment, Li x Ni used for the positive electrode active material is used.
LiNi 0.85 Co 0.15 O 2 has been described as an example of 1-y Co y O 2 , but 0 ≦ x ≦ 1.2 and 0 ≦ y ≦ 0.5.
Therefore, the same effect can be obtained by using any of the composite oxides for the positive electrode active material. In the above embodiment,
The evaluation was performed using a cylindrical battery, but the same effect can be obtained even if the battery shape such as a prismatic shape is different. Furthermore, although a carbon material is used for the negative electrode in the above-described examples, the effect of the present invention works on the positive electrode plate, so any substance that can store and release lithium ions can be used without particular limitation. For example, metallic lithium, lithium alloys, Fe
Similar effects can be obtained by using other negative electrode materials such as oxides such as 2 O 3 and WO 2 and sulfides such as TiS 2 .

【0029】また、上記実施例において電解液として六
フッ化リン酸リチウム(LiPF6)を使用したが、他
のリチウム含有塩、例えば過塩素酸リチウム(LiCl
4)、トリフルオロメチルスルホン酸リチウム(Li
CF3SO3)、六フッ化砒酸リチウム(LiAsF6
等でも同様の効果が得られた。さらに、上記実施例では
炭酸エチレンと炭酸ジエチルの混合溶媒を用いたが、他
の非水溶媒、例えば炭酸プロピレン等の環状エステル、
テトラヒドロフラン等の環状エーテル、ジメトキシエタ
ン等の鎖状エーテル、プロピオン酸メチル等の鎖状エス
テル等の非水溶媒や、これらの多元系混合溶媒を用いて
も同様の効果が得られる。
Although lithium hexafluorophosphate (LiPF 6 ) is used as the electrolytic solution in the above embodiment, other lithium-containing salts such as lithium perchlorate (LiCl) are used.
O 4 ), lithium trifluoromethylsulfonate (Li
CF 3 SO 3), hexafluoride arsenate lithium (LiAsF 6)
Etc., the same effect was obtained. Furthermore, although a mixed solvent of ethylene carbonate and diethyl carbonate was used in the above examples, other non-aqueous solvents, for example, cyclic esters such as propylene carbonate,
The same effect can be obtained by using a cyclic ether such as tetrahydrofuran, a chain ether such as dimethoxyethane, a nonaqueous solvent such as a chain ester such as methyl propionate, or a multi-component mixed solvent thereof.

【0030】[0030]

【発明の効果】本発明によれば、放電容量が大きい非水
電解液二次電池を提供することができる。
According to the present invention, it is possible to provide a non-aqueous electrolyte secondary battery having a large discharge capacity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の円筒形電池の縦断面図であ
る。
FIG. 1 is a vertical cross-sectional view of a cylindrical battery according to an embodiment of the present invention.

【図2】正極活物質LiNi0.85Co0.152の単位胞
体積に対する放電容量の関係を示す特性図である。
FIG. 2 is a characteristic diagram showing a relationship between a discharge capacity and a unit cell volume of a positive electrode active material LiNi 0.85 Co 0.15 O 2 .

【図3】同単位胞体積に対する不可逆容量の関係を示す
特性図である。
FIG. 3 is a characteristic diagram showing a relationship of irreversible capacity with respect to the same unit cell volume.

【図4】同結晶子のc軸方向の大きさに対する放電容量
の関係を示す特性図である。
FIG. 4 is a characteristic diagram showing the relationship of the discharge capacity to the size of the crystallite in the c-axis direction.

【図5】同結晶子のc軸方向の大きさに対する不可逆容
量の関係を示す特性図である。
FIG. 5 is a characteristic diagram showing the relationship between the size of the crystallite in the c-axis direction and the irreversible capacity.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 絶縁パッキング 4 極板群 5 正極板 5a 正極リード 6 負極板 6b 負極リード 7 セパレータ 8 絶縁リング 1 Battery Case 2 Sealing Plate 3 Insulation Packing 4 Electrode Plate Group 5 Positive Electrode Plate 5a Positive Electrode Lead 6 Negative Electrode Plate 6b Negative Electrode Lead 7 Separator 8 Insulating Ring

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一般式LixNi1-yCoy2(ただし、
0≦x≦1.2,0<y≦0.5とする)で表され、か
つ単位胞体積が100.5〜102立方オングストロー
ムであるリチウム含有複合酸化物を活物質とする正極
と、リチウムを吸蔵・放出する負極を備えた非水電解液
二次電池。
1. The general formula Li x Ni 1-y Co y O 2 (where
0 ≦ x ≦ 1.2, 0 <y ≦ 0.5) and a lithium-containing composite oxide having a unit cell volume of 100.5 to 102 cubic angstroms as an active material, and lithium. A non-aqueous electrolyte secondary battery provided with a negative electrode that occludes and releases hydrogen.
【請求項2】 前記リチウム含有複合酸化物の結晶子の
c軸方向の大きさが、300〜1800オングストロー
ムである請求項1記載の非水電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the crystallite of the lithium-containing composite oxide has a size in the c-axis direction of 300 to 1800 angstroms.
【請求項3】 前記リチウム含有複合酸化物が、共沈法
により得たNi1-yCoy(OH)2およびリチウム化合
物の混合物を焼成して合成されたものである請求項1ま
たは2に記載の非水電解液二次電池。
3. The lithium-containing composite oxide is synthesized by calcining a mixture of Ni 1 -y Co y (OH) 2 and a lithium compound obtained by a coprecipitation method. The non-aqueous electrolyte secondary battery described.
JP07908996A 1996-04-01 1996-04-01 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3420425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07908996A JP3420425B2 (en) 1996-04-01 1996-04-01 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07908996A JP3420425B2 (en) 1996-04-01 1996-04-01 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH09270257A true JPH09270257A (en) 1997-10-14
JP3420425B2 JP3420425B2 (en) 2003-06-23

Family

ID=13680164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07908996A Expired - Fee Related JP3420425B2 (en) 1996-04-01 1996-04-01 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3420425B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014051148A1 (en) * 2012-09-28 2014-04-03 Jx日鉱日石金属株式会社 Positive-electrode active substance for lithium-ion cell, positive electrode for lithium-ion cell, and lithium-ion cell
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
WO2014051148A1 (en) * 2012-09-28 2014-04-03 Jx日鉱日石金属株式会社 Positive-electrode active substance for lithium-ion cell, positive electrode for lithium-ion cell, and lithium-ion cell
JP5916876B2 (en) * 2012-09-28 2016-05-11 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JPWO2014051148A1 (en) * 2012-09-28 2016-08-25 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
CN104335396A (en) * 2012-09-28 2015-02-04 Jx日矿日石金属株式会社 Positive-electrode active substance for lithium-ion cell, positive electrode for lithium-ion cell, and lithium-ion cell

Also Published As

Publication number Publication date
JP3420425B2 (en) 2003-06-23

Similar Documents

Publication Publication Date Title
EP2214234B1 (en) Li-ni-based composite oxide particle powder for rechargeable battery with nonaqueous elctrolyte, process for producing the powder, and rechargeable battery with nonaqueous electrolyte
JP3024636B2 (en) Non-aqueous electrolyte secondary battery
JP3045998B2 (en) Interlayer compound and method for producing the same
US7655358B2 (en) Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same
US7294435B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode mixture for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
EP2333878B1 (en) Lithium manganate powder for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
EP2128915A1 (en) Li-Ni COMPLEX OXIDE PARTICLE POWDER FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY, METHOD FOR PRODUCING THE SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
US6924064B2 (en) Positive active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery comprising same
JP2003142101A (en) Positive electrode for secondary battery and secondary battery using the same
JP3420425B2 (en) Non-aqueous electrolyte secondary battery
KR100276053B1 (en) Manufacturing method of positive electrode active material for nonaqueous electrolyte secondary battery
WO2012081518A2 (en) Nonaqueous electrolyte secondary battery
JP3120789B2 (en) Non-aqueous electrolyte secondary battery
JP3613869B2 (en) Non-aqueous electrolyte battery
JP4224995B2 (en) Secondary battery and current collector for secondary battery
JP6791112B2 (en) Manufacturing method of positive electrode material for non-aqueous secondary batteries
JPH1027609A (en) Secondary battery with nonaqueous electrolyte
JP3296204B2 (en) Lithium secondary battery
JP2001176546A (en) Film-sheathed non-aqueous electrolyte secondary batatery
WO2014073701A1 (en) Positive electrode active material, lithium battery, and manufacturing method for positive electrode active material
JP3296203B2 (en) Lithium secondary battery
JP2996234B1 (en) Non-aqueous electrolyte secondary battery
JP2003272705A (en) Film packaged nonaqueous electrolyte secondary battery
JP2002260660A (en) Positive electrode material for nonaqueous electrolyte secondary battery, and manufacturing method therefor
JP3856517B2 (en) Method for producing lithium manganese oxide

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees