JPH09268361A - Powder for boride cermet thermal spraying - Google Patents

Powder for boride cermet thermal spraying

Info

Publication number
JPH09268361A
JPH09268361A JP8106201A JP10620196A JPH09268361A JP H09268361 A JPH09268361 A JP H09268361A JP 8106201 A JP8106201 A JP 8106201A JP 10620196 A JP10620196 A JP 10620196A JP H09268361 A JPH09268361 A JP H09268361A
Authority
JP
Japan
Prior art keywords
resistance
powder
thermal
thermal spraying
boride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8106201A
Other languages
Japanese (ja)
Other versions
JP3134767B2 (en
Inventor
Tatsuo Shimatani
竜男 島谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP08106201A priority Critical patent/JP3134767B2/en
Publication of JPH09268361A publication Critical patent/JPH09268361A/en
Application granted granted Critical
Publication of JP3134767B2 publication Critical patent/JP3134767B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To form sprayed coating having high hardness and excellent in wear resistance, corrosion resistance, heat resistance, thermal impact resistance and toughness by specifying the elemental compsn. SOLUTION: This powder contains, by weight, 5.0 to 8.0% B, 15.0 to 30.0% Co, 5.0 to 15.0% Cr, 3.0 to 9.0% W, and the balance Mo with inevitable impurities. Each element works as the following manner by their incorporation in the above range. B is needed for the formation of combined boride phases and imparts sufficient hardness, strength and wear resistance to the obtd. sprayed coating layer. Mo is needed also for the formation of combined boride phases and contributes to the improvement of sufficient hardness, strength, wear resistance, corrosion resistance and the yield at the time of thermal spraying similarly to B. Co is needed also for the formation of combined boride phases and imparts high temp. strength and oxidation resistance to the sprayed coating layer. Cr contributes to the improvement of its corrosion resistance, heat resistance, oxidation resistance and toughness. W forms metallic bonding phases with Co and Cr to further increase its corrosion resistance and strength.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、代表的な溶射用サ
ーメット材料であるタングステンカーバイド・コバルト
(WC−Co)系溶射被覆層に匹敵する硬さおよび耐摩
耗性と、クロムカーバイド・ニッケルクロム(Cr
−NiCr)系溶射被覆層を凌駕する耐熱性および耐
酸化性を有し、かつ前記WC−Co系およびCr
−NiCr系溶射被覆層には見られない高い耐熱衝撃性
および靭性を有するサーメット溶射被膜を生成するため
の溶射用粉末に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cermet material for thermal spraying, which has hardness and wear resistance comparable to those of a tungsten carbide-cobalt (WC-Co) -based thermal spray coating layer, and chromium carbide nickel chrome ( Cr 3 C
2- NiCr) -based thermal spray coating layer having heat resistance and oxidation resistance superior to those of the above-mentioned WC-Co-based and Cr 3 C 2
The present invention relates to a thermal spraying powder for producing a cermet thermal sprayed coating having high thermal shock resistance and toughness not found in a NiCr thermal spray coating.

【0002】[0002]

【従来の技術】近年、工業の発展に伴なう産業用機械等
の高性能化、高精度化、多様化およびエネルギーコスト
の低廉化が進むにつれ、溶射材料に金属とセラミックス
を成分とする材料を用いて溶射によりサーメット複合皮
膜を形成するサーメット溶射被覆層に対する要求性能は
ますます厳しくなり、以前に増して優れた性能を必要と
するようになっている。従来、サーメット溶射被覆層
(以下、単に被覆層または被膜層ともいう。)として施
されている代表的なものは温度によって異なる使用特性
を有しており、常温から500℃程度までの温度範囲に
おいてはWC−Co系やWC−Ni系のものが、またこ
れより高い900℃までの高温域においてはCr
−NiCr系やCr−Ni系のものが使用され、
これらの被膜層はそれぞれ目的に応じた硬度と、耐熱
性、耐摩耗性、耐酸化性などを有している。
2. Description of the Related Art In recent years, as industrial machinery and the like have become higher in performance, higher in precision, more diversified and energy costs have been reduced in recent years, a material containing metal and ceramics as a thermal spray material. The required performance for the cermet thermal spray coating layer, which forms a cermet composite coating by thermal spraying with, is becoming more and more severe, and it is now required to have even better performance than before. Typical cermet thermal spray coating layers (hereinafter, also simply referred to as coating layers or coating layers) conventionally have different usage characteristics depending on the temperature, and in the temperature range from room temperature to about 500 ° C. Is a WC-Co type or a WC-Ni type, and Cr 3 C 2 in a higher temperature range up to 900 ° C.
Those -NiCr system or Cr 3 C 2 -Ni system is used,
Each of these coating layers has hardness, heat resistance, wear resistance, oxidation resistance, etc. according to the purpose.

【0003】しかしながら、上記したように最近の産業
の発展に伴って、サーメットの使用環境が多様化するに
つれて、より一層これらの特性の優れたものが望まれて
おり、上記した特性にさらに耐熱衝撃性、靭性を兼ね備
えた被膜材料の開発が望まれている。その一例を挙げる
と、自動車用等の表面処理鋼板を製造するための高温の
溶融亜鉛メッキ浴(450〜500℃)または溶融アル
ミニウムメッキ浴(700〜800℃)中に浸漬され
て、連続的に通過する鋼板を支持し、案内して該鋼板の
表面に均一な亜鉛メッキを被着させるために用いられる
シンクロール、サポートロール等を被覆する被膜層に
は、単に高い硬度や単耐熱性、耐摩耗性を有するのみな
らず、溶融金属に対する耐食性、耐熱衝撃性や優れた靭
性が求められる。
However, as described above, as the use environment of cermet has diversified with the recent industrial development, it is desired that the cermet has these excellent properties. Development of a coating material having both toughness and toughness is desired. To give an example, it is immersed in a hot-dip galvanizing bath (450 to 500 ° C) or a hot-dip aluminum plating bath (700 to 800 ° C) for producing a surface-treated steel sheet for automobiles, etc., and continuously. The coating layer that coats the sink rolls, support rolls, etc. used to support and guide the passing steel sheet and apply uniform zinc plating to the surface of the steel sheet simply has high hardness, simple heat resistance, and resistance to heat. Not only wear resistance but also corrosion resistance to molten metal, thermal shock resistance and excellent toughness are required.

【0004】前記した従来型のサーメット被膜のうち、
WC−Co系のものは、500℃までの乾燥雰囲気中で
は、硬度や耐摩耗性は優れているものの耐食性や耐熱性
が低く、特に500℃以上の酸化性雰囲気における耐熱
性や耐食性に問題がある。また、Cr−NiCr
系のものは、900℃の高温域まで、耐食性や耐熱、耐
酸化性は維持されるものの硬度や耐摩耗性が劣る。さら
にこれらの被膜は一般に耐熱衝撃性が低く、靭性が劣っ
ているので被膜層が剥離し易く用途範囲が限られてい
る。
Among the conventional cermet coatings mentioned above,
The WC-Co type is excellent in hardness and wear resistance in a dry atmosphere up to 500 ° C, but has low corrosion resistance and heat resistance, and has a problem in heat resistance and corrosion resistance particularly in an oxidizing atmosphere of 500 ° C or higher. is there. In addition, Cr 3 C 2 -NiCr
The materials of the system maintain corrosion resistance, heat resistance, and oxidation resistance up to a high temperature region of 900 ° C., but have poor hardness and wear resistance. Further, these coatings generally have low thermal shock resistance and poor toughness, so that the coating layer is easily peeled off and the application range is limited.

【0005】以上のように従来用いられている被膜は、
高硬度で耐摩耗性が優れていても耐食性や耐熱性が劣っ
ていたり、耐熱性や耐食性が優れていても耐摩耗性や硬
度が不十分であったりする上に、いずれも耐熱衝撃性が
低くまた靭性が劣り、これらすべての要求特性を同時に
満足することができるサーメット溶射被膜が得られてい
ないのが現状である。
As described above, the conventional coatings are
Even if it has high hardness and excellent wear resistance, it has poor corrosion resistance and heat resistance. Even if it has excellent heat resistance and corrosion resistance, it has insufficient wear resistance and hardness. The current situation is that a cermet sprayed coating that is low and has poor toughness and that can simultaneously satisfy all of these required properties has not been obtained.

【0006】[0006]

【発明が解決しようとする課題】本発明は、従来のサー
メット溶射被膜における上記の問題点に鑑みてなされた
ものであって、高硬度で耐摩耗性、耐食性、耐熱性に優
れ、しかも耐熱衝撃性および靭性をも有するサーメット
溶射被膜を形成するための溶射用粉末を提供することを
目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems in the conventional cermet sprayed coating, and has high hardness, excellent wear resistance, corrosion resistance, and heat resistance, and further has a thermal shock resistance. An object of the present invention is to provide a powder for thermal spraying for forming a cermet thermal spray coating having properties and toughness.

【0007】[0007]

【課題を解決するための手段】本発明は、上記の課題を
解決すべく鋭意研究を重ねた結果、MoCoBで表
わされるMo−Co系の複硼化物は、高い硬度や耐摩耗
性を示すだけでなく、優れた耐熱衝撃性と靭性を有する
こと、さらに前記複硼化物に金属結合相として優れた耐
熱性を有するCo−Cr−W系合金相を組み合わせ、こ
れらをサーメット化することによって、高い硬度と耐摩
耗性を有し、耐熱、耐酸化性および耐熱衝撃性を併せ有
するサーメット溶射被膜を得ることができることを見出
だした。また、前記サーメット被膜中に適量の複硼化物
相を緻密にしかも均一に分散形成させるためには含有さ
せるべきBに最適添加範囲が存在すること、また金属結
合相となるCoとCrとWは合金の状態ではなく、それ
ぞれを単体金属として添加するのが適当であることを見
出だした。
As a result of intensive studies to solve the above-mentioned problems, the present invention has revealed that Mo-Co type compound borides represented by Mo 2 CoB 2 have high hardness and wear resistance. Not only exhibiting excellent thermal shock resistance and toughness, but also combining the double boride with a Co--Cr--W alloy phase having excellent heat resistance as a metal bonding phase to form a cermet. It has been found that a cermet sprayed coating having high hardness and wear resistance, and having both heat resistance, oxidation resistance and thermal shock resistance can be obtained. Further, in order to form an appropriate amount of the double boride phase in the cermet coating in a dense and uniform manner, B has an optimum addition range, and Co, Cr, and W, which are the metal binding phases, are present. It was found that it is appropriate to add each as a single metal, not in the state of alloy.

【0008】すなわち、本発明は、重量比にて重量比に
てB5.0〜8.0%、Co15.0〜30.0%、C
r5.0〜15.0%、W3.0〜9.0%を含み、残
部Moと不可避的不純物から構成される複合粉末組成物
からなる硼化物系サーメット溶射用粉末である。
That is, in the present invention, B5.0 to 8.0%, Co15.0 to 30.0%, and C in terms of weight ratio.
It is a boride-based cermet thermal spraying powder comprising a composite powder composition containing r5.0 to 15.0% and W3.0 to 9.0% and the balance Mo and inevitable impurities.

【0009】そして、前記溶射用粉末を構成する粉末の
好ましい粒度は溶射方法によって異なるが、大気または
減圧プラズマ溶射法を採用する場合には15〜53μm
の範囲が適当であり、また高速ガス炎溶射法による場合
には5〜45μmもしくは15〜53μmの範囲である
ことが好ましい。また、前記複合粉末組成物は、Moと
Bとの合計が50.0〜70.0%、CoとCrとの合
計が25.0〜45.0%の範囲であることが好まし
い。
The preferred particle size of the powder constituting the thermal spraying powder depends on the thermal spraying method, but is 15 to 53 μm when the atmospheric or reduced pressure plasma thermal spraying method is adopted.
Is suitable, and in the case of the high-speed gas flame spraying method, the range is preferably 5 to 45 μm or 15 to 53 μm. Further, in the composite powder composition, the total of Mo and B is preferably 50.0 to 70.0%, and the total of Co and Cr is preferably 25.0 to 45.0%.

【0010】[0010]

【発明の実施の形態】本発明による硼化物系サーメット
溶射被覆層を得るためのサーメット溶射用粉末の構成成
分は上記した如くであるが、以下にそれぞれの成分限定
理由について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The constituent components of the cermet thermal spraying powder for obtaining the boride-based cermet thermal spray coating layer according to the present invention are as described above. The reasons for limiting the respective components will be explained below.

【0011】Bは、MoおよびCoと結合して複硼化物
相を形成するために必要な元素であって、サーメット溶
射用粉末中のBの含有量が5.0重量%未満では、溶射
被覆時の熱影響と酸化により溶射被覆層中のB量が3.
0重量%未満にまで低下するため、得られた溶射被覆層
に十分な硬度と耐摩耗性が得られない。一方、8.0重
量%を超えると、硬度は高くなるが溶射被覆層の強度
(靭性や耐熱衝撃性)が著しく低下する。従って、溶射
用粉末中のB含有量は、5.0〜8.0%の範囲が適当
である。
B is an element necessary to combine with Mo and Co to form a double boride phase, and if the content of B in the cermet thermal spraying powder is less than 5.0% by weight, the thermal spray coating is performed. The amount of B in the thermal spray coating layer is 3.
Since the amount is reduced to less than 0% by weight, the obtained sprayed coating layer cannot have sufficient hardness and abrasion resistance. On the other hand, if it exceeds 8.0% by weight, the hardness becomes high, but the strength (toughness and thermal shock resistance) of the thermal spray coating layer remarkably decreases. Therefore, the B content in the thermal spraying powder is appropriately in the range of 5.0 to 8.0%.

【0012】Moは、Bと同様に複硼化物相を形成する
ために必要な元素であり、該複硼化物相は、MoCo
で表されるが、サーメット溶射粉末中のMoの含有
量が45.0重量%未満では、前記複硼化物相の形成は
不十分となり、溶射被覆層は所望の硬度と耐摩耗性が得
られない。一方、65.0重量%を超えると硬度、耐摩
耗性および溶融亜鉛や溶融アルミニウムに対する耐食性
は向上する靭性や耐熱衝撃性、さらには粉末の溶射付着
効率(溶射時の歩留り)が著しく低下する。従って、溶
射用粉末中のMo含有量は、45.0〜65.0%の範
囲が適当である。
Mo is an element necessary for forming a double boride phase, similar to B, and the double boride phase is Mo 2 Co.
As represented by B 2 , if the Mo content in the cermet sprayed powder is less than 45.0% by weight, the formation of the complex boride phase will be insufficient, and the sprayed coating layer will have a desired hardness and wear resistance. I can't get it. On the other hand, if it exceeds 65.0% by weight, hardness, wear resistance and corrosion resistance to molten zinc and molten aluminum are improved, and toughness and thermal shock resistance, and further, the efficiency of thermal spray adhesion of powder (yield during thermal spraying) is significantly reduced. Therefore, the Mo content in the thermal spraying powder is preferably in the range of 45.0 to 65.0%.

【0013】Coは、金属結合相形成の主体となる元素
であるが、一方において複硼化物相の形成にも欠かせな
い元素であり、得られた溶射被覆層に高温強度、耐酸化
性を付与する効果を有する。Coの含有量が15.0重
量%未満では形成される金属結合相と複硼化物相との相
互固溶量が少なくなるためにその結合力が低下し、かつ
気孔等の欠陥が発生し易くなる。一方、30.0重量%
を超えると、金属結合相における耐食性を低下させると
ともに、複硼化物中において脆弱なCoB等の硼化物が
多量に形成するようになるので溶射被覆層の靭性が低下
してしまう。従って、溶射用粉末中のCo含有量は、1
5.0〜30.0重量%の範囲が適当である。
[0013] Co is an element that is the main constituent of the metal bonded phase formation, but on the other hand, it is also an essential element for the formation of the double boride phase, and the obtained thermal spray coating layer has high temperature strength and oxidation resistance. Has the effect of imparting. When the Co content is less than 15.0% by weight, the mutual solid solution amount of the metal binding phase and the double boride phase formed is small, so that the binding force is lowered and defects such as pores are easily generated. Become. On the other hand, 30.0% by weight
If it exceeds, the corrosion resistance in the metallic binder phase is lowered, and a large amount of brittle boride such as CoB is formed in the double boride, so that the toughness of the thermal spray coating layer is lowered. Therefore, the Co content in the powder for thermal spraying is 1
A range of 5.0 to 30.0% by weight is suitable.

【0014】Crは、耐食性、耐熱性および耐酸化性に
寄与する元素であり、Coと結合して金属結合相を形成
し靭性を向上させる効果を有する。Crの含有量が5.
0重量%未満では、上記した効果が十分に得られず、ま
た、15.0重量%を超えると、得られた溶射被覆層に
おける耐食性、耐熱性および耐酸化性をさらに向上させ
るものの靭性を低下させるので好ましくない。従って、
溶射用粉末中のCr含有量は、5.0〜15.0重量%
の範囲が適当である。
Cr is an element that contributes to corrosion resistance, heat resistance and oxidation resistance, and has an effect of combining with Co to form a metal bonding phase and improving toughness. The Cr content is 5.
If it is less than 0% by weight, the above-mentioned effects are not sufficiently obtained, and if it exceeds 15.0% by weight, the toughness is reduced although the corrosion resistance, heat resistance and oxidation resistance of the obtained thermal spray coating layer are further improved. It is not preferable because it causes. Therefore,
Cr content in the powder for thermal spraying is 5.0 to 15.0% by weight.
Is appropriate.

【0015】Wは、金属結合相を形成するCoとCrと
結合して、該金属結合相の耐食性と強度とを一層高める
とともに、さらにはWCoBで表される複硼化物を
形成するために必要な元素である。Wの含有量が3.0
重量%未満では前記した効果は得られず、また9.0重
量%を超えると金属結合相の強度がかえって低下してし
まう。従って、溶射用粉末中のW含有量は、3.0〜
9.0重量%の範囲が適当である。
W combines with Co and Cr forming a metal binder phase to further enhance the corrosion resistance and strength of the metal binder phase, and further to form a complex boride represented by W 2 CoB 2. It is an element necessary for this. W content is 3.0
If it is less than 10% by weight, the above effect cannot be obtained, and if it exceeds 9.0% by weight, the strength of the metallic binder phase is rather lowered. Therefore, the W content in the powder for thermal spraying is 3.0 to
A range of 9.0% by weight is suitable.

【0016】そして、本発明の溶射用粉末組成物におい
ては、さらにMoとBとの合計量を50.0〜70.0
重量%に、またCoとCrとWの合計量を25.0〜4
5.0重量%に規制することにより、得られた溶射被覆
層の脆化や剥離現象を抑制することができる。また、上
記した本発明の溶射用粉末を製造する場合にはCo、C
rおよびWをそれぞれ単体金属粉末として用いることが
肝要である。これは、これらの元素を合金粉末の形態、
例えばステライト合金粉末等の形態で用いた場合には、
合金粉末中のCoはMoB等の硼化物と結合し難くMo
CoB複硼化物が形成されにくいからである。
Further, in the thermal spraying powder composition of the present invention, the total amount of Mo and B is further 50.0 to 70.0.
%, And the total amount of Co, Cr, and W is 25.0 to 4
By restricting the content to 5.0% by weight, embrittlement and peeling phenomenon of the obtained thermal spray coating layer can be suppressed. Further, when producing the above-mentioned thermal spray powder of the present invention, Co, C
It is important to use r and W as a single metal powder. This is the form of alloy powder of these elements,
For example, when used in the form of stellite alloy powder,
Co in the alloy powder is difficult to combine with boride such as MoB, and Mo
This is because it is difficult to form 2 CoB 2 complex boride.

【0017】本発明の溶射用粉末を用いて基板上にサー
メット溶射被覆する方法としては、常法、つまり溶射ガ
ンを使用した大気または減圧プラズマ溶射法もしくは高
速ガス炎溶射法が適用される。通常、プラズマ溶射法に
は15〜53μmの粒径の溶射用粉末が、また高速ガス
炎溶射法には5〜45μmもしくは15〜53μmの粒
径の溶射粉末が使用される。これらの粉末が、上記した
粒度範囲よりも粗い場合には、緻密な溶射被覆層を形成
させることが困難であり、従って硬度の低い溶射被覆層
しか得られない。また、上記範囲よりも粒度が微細であ
る場合には、粉末の流動性が低下するとともに、受熱効
率の高い微細粉末が溶融して、溶射ガンのノズル内面に
堆積するために溶射作業性が著しく損なわれる。
As a method for cermet thermal spray coating on a substrate using the thermal spray powder of the present invention, a conventional method, that is, an atmosphere using a thermal spray gun, a low pressure plasma thermal spraying method or a high speed gas flame thermal spraying method is applied. Usually, a thermal spraying powder having a particle diameter of 15 to 53 μm is used in the plasma spraying method, and a thermal spraying powder having a particle diameter of 5 to 45 μm or 15 to 53 μm is used in the high speed gas flame spraying method. When these powders are coarser than the above-mentioned particle size range, it is difficult to form a dense thermal spray coating layer, and therefore only a thermal spray coating layer having low hardness can be obtained. Further, when the particle size is smaller than the above range, the fluidity of the powder is lowered, and the fine powder having high heat receiving efficiency is melted and deposited on the inner surface of the nozzle of the spray gun, resulting in remarkable workability of spraying. Be damaged.

【0018】[0018]

【実施例】以下に本発明の実施例を従来例と比較して説
明する。尚本発明は下記の実施例に限定されるものでは
ない。
EXAMPLES Examples of the present invention will be described below in comparison with conventional examples. The present invention is not limited to the following examples.

【0019】実施例1:Bを10.1重量%含有するM
oB粉末、Co粉末、Cr粉末およびW粉末をそれぞれ
70重量%、18重量%、8重量%および4重量%採取
し、ステンレス鋼製容器に入れて振動ボールミル内で2
4時間湿式で粉砕混合した。該容器から取り出したスラ
リーを非酸化性雰囲気中において噴霧乾燥して造粒した
後、真空中で焼結し得られた粉末を回収し、これを空気
分級機によって5〜45μmの粉末に整粒して溶射用粉
末を調製した。
Example 1: M containing 10.1% by weight of B
70% by weight, 18% by weight, 8% by weight and 4% by weight of oB powder, Co powder, Cr powder and W powder, respectively, were sampled and placed in a stainless steel container for 2 in a vibrating ball mill.
It was pulverized and mixed for 4 hours in a wet manner. The slurry taken out from the container was spray-dried in a non-oxidizing atmosphere for granulation, and then the powder obtained by sintering in a vacuum was recovered, and the powder was sized to a powder of 5 to 45 μm by an air classifier. Then, a powder for thermal spraying was prepared.

【0020】得られた溶射用粉末の化学組成を表1に示
す。次にこの粉末を使用して高速ガス炎溶射法(燃料は
水素−酸素)により、SS400製基板上に0.4mm
厚さの溶射被覆層を形成した。その後、機械加工および
表面研磨により、該被覆層表面の凹凸を取り除き平滑度
▽▽▽の試験片を得た。
The chemical composition of the resulting thermal spray powder is shown in Table 1. Next, by using this powder, a high-speed gas flame spraying method (fuel is hydrogen-oxygen) was applied to the SS400 substrate to form
A sprayed coating layer of thickness was formed. After that, the unevenness on the surface of the coating layer was removed by machining and surface polishing to obtain a test piece having a smoothness of ∇∇.

【0021】前記の基板表面に形成された溶射被覆層を
Cu−καX線回折法により同定した結果、主としてM
CoBの三元系複硼化物相が認められた。またE
PMA定量分析による被覆層の組成分析を行った結果を
表2に示す。また試験片表面のビッカース硬度(荷重:
0.3kgf)は1,250であり、往復運動摩耗試験
機を用い、JIS H 8503 第9項に規定された
試験方法に従って、相手材にSiC研磨紙320番を使
用し、試験荷重を3.0kgf、往復荷重回数を1,6
00回として試験片の耐摩耗性試験を行った結果、摩耗
減量は、0.50mg/cmであった。
As a result of identifying the thermal spray coating layer formed on the substrate surface by the Cu-κα X-ray diffraction method, mainly M
A ternary compound boride phase of o 2 CoB 2 was observed. Also E
Table 2 shows the results of composition analysis of the coating layer by PMA quantitative analysis. The Vickers hardness (load:
0.3 kgf) is 1,250. Using a reciprocating motion abrasion tester, according to the test method specified in JIS H 8503 Item 9, SiC abrasive paper No. 320 is used, and the test load is 3. 0kgf, the number of reciprocating loads is 1,6
As a result of performing the wear resistance test of the test piece as 00 times, the loss on wear was 0.50 mg / cm 2 .

【0022】一方、試験片を600℃の電気炉中に30
分間保持した後、水中で急冷する熱サイクルを繰り返し
20回行い、1回毎に被覆層に生ずる亀裂や剥離の有無
を目視およびカラーチェックにより観察して耐熱衝撃性
の評価を行った結果、該熱サイクル中には異常は認めら
れず、高い耐熱衝撃性を有することが分かった。次に、
試験片を900℃の電気炉中に2時間保持して被覆層の
酸化増量の測定を行ったところ、その値は1.7mg/
cmであり、高い耐酸化性を有することが確認され
た。以上の諸特性試験結果を総括して表3に示す。以上
の結果から本発明によるサーメット溶射被膜は、硬度、
耐摩耗性、耐高温酸化性、耐熱衝撃性および高温硬度
(耐熱性)の諸特性に優れており、本発明の有効性は十
分に立証されたものと言える。
On the other hand, the test piece was placed in an electric furnace at 600 ° C. for 30 minutes.
After holding for a minute, a thermal cycle of rapid cooling in water was repeated 20 times, and each time, the presence or absence of cracks or peeling in the coating layer was observed visually and by color check to evaluate the thermal shock resistance. No abnormality was observed during the heat cycle, and it was found to have high thermal shock resistance. next,
The test piece was kept in an electric furnace at 900 ° C. for 2 hours to measure the increase in oxidation of the coating layer. The value was 1.7 mg /
It was cm 2 and was confirmed to have high oxidation resistance. The results of the above various characteristic tests are summarized in Table 3. From the above results, the cermet sprayed coating according to the present invention has a hardness,
It is excellent in various properties such as abrasion resistance, high temperature oxidation resistance, thermal shock resistance, and high temperature hardness (heat resistance), and it can be said that the effectiveness of the present invention has been sufficiently proved.

【0023】実施例2〜4および従来例1〜3:混合す
る粉末の添加量と分級粒度範囲を変えた以外は実施例1
と同様の原料粉末を用い、その所定量を粉砕混合し、造
粒後焼結して実施例2〜4の溶射用粉末を得た。また、
W粉末、Co粉末およびC粉末ならびにCr粉末、Ni
粉末およびC粉末の所定量を用いて、それぞれ従来法に
よるWC−Co系サーメット溶射被膜形成用粉末(従来
例1〜2)およびCr−NiCr系サーメット溶
射被膜形成用粉末(従来例3)を作成した。これらの粉
末組成物の化学組成を表1に併せ示す。
Examples 2-4 and Conventional Examples 1-3: Example 1 except that the amount of powder to be mixed and the classification particle size range were changed.
The same raw material powder was used, and a predetermined amount thereof was pulverized and mixed, granulated and then sintered to obtain the thermal spraying powders of Examples 2 to 4. Also,
W powder, Co powder and C powder and Cr powder, Ni
Using a predetermined amount of powder and C powder, WC-Co cermet thermal sprayed coating formed powder by the respective conventional method (conventional example 1-2) and Cr 3 C 2 -NiCr cermet sprayed coating forming powder (Conventional Example 3 )created. Table 1 also shows the chemical compositions of these powder compositions.

【0024】次に、これらの溶射用粉末を用いて実施例
1と同様にしてSS基板上に高速ガス炎溶射法による溶
射被覆層を形成した試験片を得、各試験片について実施
例1と同様にして、溶射被覆層の組成分析および特性試
験を行い、それぞれ表2および表3に示した。
Next, using these thermal spraying powders, in the same manner as in Example 1, test pieces having a thermal spray coating layer formed on the SS substrate by the high-speed gas flame spraying method were obtained. Similarly, the composition analysis and the characteristic test of the thermal spray coating layer were performed, and shown in Table 2 and Table 3, respectively.

【0025】[0025]

【表1】 実 施 化 学 組 成 粒 度 番 号 Mo B Co Cr W C Ni 範 囲 ────────────────────────────────── 実施例1 61.4 7.5 17.7 7.5 4.3 − − 5〜45 実施例2 49.3 5.8 27.2 12.3 5.1 − − 15〜53 実施例3 53.4 6.4 22.6 10.1 6.4 − − 15〜53 実施例4 57.9 7.0 19.8 5.5 8.5 − − 5〜45 従来例1 − − 12.0 − bal 5.3 − 5〜45 従来例2 − − 18.9 − bal 5.0 − 15〜53 従来例3 − − − 68.2 − 10.4 20.8 5〜45 ───────────────────────────────────[Table 1] Actual chemical composition Grain number No. MoBCoCrCrWCNi Range ──────────────────────────── ─────── Example 1 61.4 7.5 17.7 7.5 4.3 − − 5 to 45 Example 2 49.3 5.8 27.2 12.3 5.1 − − 15 to 53 Example 3 53.4 6.4 22.6 10.1 6.4 − − 15 to 53 Example 4 57.9 7.0 19.8 5.5 8.5 − − 5 to 45 Conventional example 1 − − 12.0 − bal 5.3 − 5 to 45 Conventional example 2 − − 18.9 − bal 5.0 − 15 to 53 Conventional example 3 − − − 68.2 − 10.4 20.8 5 to 45 ── ──────────────────────────────────

【0026】[0026]

【表2】 実 施 化 学 組 成 番 号 Mo B Co Cr W C Ni ───────────────────────────── 実施例1 62.1 4.5 17.1 7.4 4.0 − − 実施例2 48.9 3.3 27.3 12.5 5.0 − − 実施例3 53.5 3.7 21.9 9.9 6.1 − − 実施例4 56.5 4.0 19.6 5.4 8.7 − − 従来例1 − − 9.2 − 81.9 4.9 − 従来例2 − − 14.8 − 77.7 4.5 − 従来例3 − − − 62.5 − 9.8 18.4 ──────────────────────────────[Table 2] Actual chemical composition No. Mo B Co Cr W C Ni ────────────────────────────── Example 1 62.1 4.5 17.1 7.4 4.0 − − Example 2 48.9 3.3 27.3 12.5 5.0 − − Example 3 53.5 3.7 21.9 9.9 6.1 − − Example 4 56.5 4.0 19.6 5.4 8.7 − − Conventional example 1 − − 9.2 − 81.9 4.9 − Conventional example 2 − − 14.8 − 77.7 4.5 − Conventional example 3 − − − 62.5 − 9.8 18.4 ───────────────────────────────

【0027】[0027]

【表3】 実 施 複化合 硬度Hv 耐摩耗性 耐熱衝撃性 高温酸化性 高温硬度 番 号 物相 (0.3kg) mg/cm2 回数 mg/cm2 Hv(900℃) ────────────────────────────────── 実施例1 Mo2CoB2 1250 0.50 >20 1.7 645 実施例2 Mo2CoB2 1150 0.61 >20 1.3 575 実施例3 Mo2CoB2 1175 0.54 >20 1.5 570 実施例4 Mo2CoB2 1220 0.55 >20 1.7 615 従来例1 WC 1150 0.75 6 90 290 従来例2 WC 1100 0.89 10 72 245 従来例3 Cr3C2 850 1.28 11 3.1 380 ───────────────────────────────────[Table 3] Actual compounding hardness Hv Abrasion resistance Thermal shock resistance High temperature oxidation High temperature hardness No. phase (0.3kg) mg / cm 2 Number of times mg / cm 2 Hv (900 ℃) ─────── ─────────────────────────── Example 1 Mo2CoB2 1250 0.50> 20 1.7 645 Example 2 Mo2CoB2 1150 0.61> 20 1.3 575 Example 3 Mo2CoB2 1175 0.54> 20 1.5 570 Example 4 Mo2CoB2 1220 0.55> 20 1.7 615 Conventional Example 1 WC 1150 0.75 6 90 290 Conventional Example 2 WC 1100 0.89 10 72 245 Conventional Example 3 Cr3C2 850 1.28 11 3.1 380 ────── ─────────────────────────────

【0028】以上の結果によれば、本発明による溶射用
粉末を使用して得られた硼化物系サーメット溶射被膜
は、従来使用されてきたWC−Co系サーメット溶射被
膜に匹敵する硬度と耐摩耗性を有し、またCr
NiCr系サーメット溶射被膜を凌駕する耐酸化性と耐
熱性を備えるとともに、これら従来のサーメット溶射被
膜に比べて著しく高い耐熱衝撃性を有することが分か
る。また470℃で溶融しているZn−0.15%Al
中へ120時間(5日間)の浸漬試験を行ったところ実
施例1の腐食減量は、121mg/cmであり、被膜
残存率は78.6%であった。同様に従来例1の腐食減
量は282mg/cmであり、被膜残存率は33.9
%であり、この溶融亜鉛および溶融アルミニウムへの浸
漬試験結果によれば、本発明のサーメット溶射被膜のこ
れら溶融金属に対する耐腐食性は従来のサーメット溶射
被膜に比べて一段と優れていることが確認された。
The above results show that the boride-based cermet spray coating obtained by using the spray powder according to the present invention has hardness and abrasion resistance comparable to those of the conventionally used WC-Co cermet spray coating. And has Cr 3 C 2
It can be seen that it has oxidation resistance and heat resistance superior to that of the NiCr-based cermet thermal spray coating, and has significantly higher thermal shock resistance than these conventional cermet thermal spray coatings. Zn-0.15% Al melted at 470 ° C
When an immersion test was performed for 120 hours (5 days), the corrosion weight loss of Example 1 was 121 mg / cm 2 and the film residual rate was 78.6%. Similarly, in Conventional Example 1, the corrosion weight loss was 282 mg / cm 2 , and the film residual rate was 33.9.
According to the results of the immersion test in the molten zinc and the molten aluminum, it was confirmed that the corrosion resistance of the cermet sprayed coating of the present invention to these molten metals is far superior to that of the conventional cermet sprayed coating. It was

【0029】[0029]

【発明の効果】以上述べたように、本発明の溶射用粉末
を使用して得られた硼化物系サーメット溶射被膜は、硬
度、耐摩耗性、耐食性、耐熱性に優れ、しかも耐熱衝撃
性および靭性をも有するので幅広い用途に使用すること
ができ、工業上極めて有用な発明であるということがで
きる。
As described above, the boride-based cermet thermal sprayed coating obtained by using the thermal spraying powder of the present invention is excellent in hardness, wear resistance, corrosion resistance, and heat resistance, and also has a thermal shock resistance and Since it also has toughness, it can be used in a wide range of applications and can be said to be an extremely useful invention in industry.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量比にてB5.0〜8.0%、Co1
5.0〜30.0%、Cr5.0〜15.0%、W3.
0〜9.0%を含み、残部Moと不可避的不純物から構
成された複合粉末組成物からなる硼化物系サーメット溶
射用粉末。
1. A weight ratio of B5.0 to 8.0% and Co1.
5.0 to 30.0%, Cr 5.0 to 15.0%, W3.
A boride-based cermet thermal spraying powder comprising a composite powder composition containing 0 to 9.0% and the balance Mo and unavoidable impurities.
【請求項2】 粒度が5〜45μmである請求項1記載
の硼化物系サーメット溶射用粉末。
2. The boride-based cermet thermal spraying powder according to claim 1, which has a particle size of 5 to 45 μm.
【請求項3】 粒度が15〜53μmである請求項1記
載の硼化物系サーメット溶射用粉末。
3. The boride-based cermet thermal spraying powder according to claim 1, which has a particle size of 15 to 53 μm.
【請求項4】 重量比にてMoとBとの合計量が50.
0〜70.0%、CoとCrとWとの合計量が25.0
〜45.0%である請求項1〜3のいずれか1項に記載
の硼化物系サーメット溶射用粉末。
4. The total amount of Mo and B is 50.
0 to 70.0%, the total amount of Co, Cr and W is 25.0
It is -45.0%, The boride type cermet thermal spraying powder of any one of Claims 1-3.
JP08106201A 1996-04-03 1996-04-03 Boride cermet spraying powder Expired - Lifetime JP3134767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08106201A JP3134767B2 (en) 1996-04-03 1996-04-03 Boride cermet spraying powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08106201A JP3134767B2 (en) 1996-04-03 1996-04-03 Boride cermet spraying powder

Publications (2)

Publication Number Publication Date
JPH09268361A true JPH09268361A (en) 1997-10-14
JP3134767B2 JP3134767B2 (en) 2001-02-13

Family

ID=14427560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08106201A Expired - Lifetime JP3134767B2 (en) 1996-04-03 1996-04-03 Boride cermet spraying powder

Country Status (1)

Country Link
JP (1) JP3134767B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6984255B2 (en) 2003-03-31 2006-01-10 Fujimi Incorporated Thermal spraying powder and method of forming a thermal sprayed coating using the same
JP2009068052A (en) * 2007-09-11 2009-04-02 Toyo Kohan Co Ltd Highly corrosion resistant wear resistant member for forming thermal sprayed layer, and powder for forming thermal sprayed layer forming the same
US7862911B2 (en) 2006-02-09 2011-01-04 Fujimi Incorporated Thermal spray coating and thermal spray powder
EP2969246A4 (en) * 2013-03-15 2016-11-16 Mesocoat Inc Ternary ceramic thermal spraying powder and coating method
CN116121579A (en) * 2022-11-25 2023-05-16 西安近代化学研究所 Preparation method of MoCoB-WCoB based composite material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6984255B2 (en) 2003-03-31 2006-01-10 Fujimi Incorporated Thermal spraying powder and method of forming a thermal sprayed coating using the same
US7862911B2 (en) 2006-02-09 2011-01-04 Fujimi Incorporated Thermal spray coating and thermal spray powder
JP2009068052A (en) * 2007-09-11 2009-04-02 Toyo Kohan Co Ltd Highly corrosion resistant wear resistant member for forming thermal sprayed layer, and powder for forming thermal sprayed layer forming the same
EP2969246A4 (en) * 2013-03-15 2016-11-16 Mesocoat Inc Ternary ceramic thermal spraying powder and coating method
US9885100B2 (en) 2013-03-15 2018-02-06 Mesocoat, Inc. Ternary ceramic thermal spraying powder and method of manufacturing thermal sprayed coating using said powder
US10458011B2 (en) 2013-03-15 2019-10-29 Mesocoat, Inc. Ternary ceramic thermal spraying powder and method of manufacturing thermal sprayed coating using said powder
CN116121579A (en) * 2022-11-25 2023-05-16 西安近代化学研究所 Preparation method of MoCoB-WCoB based composite material

Also Published As

Publication number Publication date
JP3134767B2 (en) 2001-02-13

Similar Documents

Publication Publication Date Title
US6641917B2 (en) Spray powder and method for its production
US4507151A (en) Coating material for the formation of abrasion-resistant and impact-resistant coatings on workpieces
US3313633A (en) High temperature flame spray powder
US6503290B1 (en) Corrosion resistant powder and coating
US4594106A (en) Spraying materials containing ceramic needle fiber and composite materials spray-coated with such spraying materials
KR20010082717A (en) Spray powder, thermal spraying process using it, and sprayed coating
JP4532343B2 (en) Carbide cermet sprayed coating member excellent in corrosion resistance and method for producing the same
CN108677129A (en) A kind of FeCoNiCrSiAl high-entropy alloys coating and preparation method thereof
CA2567089C (en) Wear resistant alloy powders and coatings
US20110262295A1 (en) Method for fabricating hard particle-dispersed composite materials
JP2012102362A (en) Boride cermet-based powder for thermal spraying
JP2988281B2 (en) Ceramic / metal composite powder for thermal spraying and method for forming thermal spray coating
JP3134767B2 (en) Boride cermet spraying powder
US4678511A (en) Spray micropellets
JP3091690B2 (en) Method for producing TiB2-based coating
CN106591761A (en) Preparation method for composite coating resisting etching of molten metal
JPH0645863B2 (en) Thermal spray material excellent in high temperature wear resistance and build-up resistance and its coated article
JP2011017049A (en) Boride-based cermet powder for thermal spraying
JP3134768B2 (en) Boride cermet spraying powder
JP2011026666A (en) Powder of boride-based cermet for thermal spraying
JPH08311630A (en) Corrosion resistant and wear resistant self-fluxing alloy for thermal spraying
JP2002173758A (en) Powder for flame spraying and parts with flame sprayed coating by using the powder
JP2011017058A (en) Boride-based cermet powder for thermal spraying
Debasish et al. Improvement of microstructural and mechanical properties of plasma sprayed Mo coatings deposited on Al-Si substrates by pre-mixing of Mo with TiN powder
JP2004353046A (en) Boride cermet powder for thermal spraying

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071201

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081201

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 13

EXPY Cancellation because of completion of term