JPH08311630A - Corrosion resistant and wear resistant self-fluxing alloy for thermal spraying - Google Patents

Corrosion resistant and wear resistant self-fluxing alloy for thermal spraying

Info

Publication number
JPH08311630A
JPH08311630A JP13740995A JP13740995A JPH08311630A JP H08311630 A JPH08311630 A JP H08311630A JP 13740995 A JP13740995 A JP 13740995A JP 13740995 A JP13740995 A JP 13740995A JP H08311630 A JPH08311630 A JP H08311630A
Authority
JP
Japan
Prior art keywords
resistant
self
weight
fluxing alloy
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13740995A
Other languages
Japanese (ja)
Other versions
JP3430498B2 (en
Inventor
Tatsuo Shimatani
竜男 島谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP13740995A priority Critical patent/JP3430498B2/en
Publication of JPH08311630A publication Critical patent/JPH08311630A/en
Application granted granted Critical
Publication of JP3430498B2 publication Critical patent/JP3430498B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE: To obtain a corrosion resistant and wear resistant self-fluxing alloy material for thermal spraying having characteristics of both of excellent corrosion resistance and wear resistance in combination. CONSTITUTION: This first corrosion resistant and wear resistant self-fluxing alloy material contains 0.1 to 0.4wt.% C, 3.5 to 4.5wt.% Si, 18 to 20wt.% Cr, 16 to 18wt.% Mo, 1.5 to 2.5wt.% Cu, 2.5 to 3.5wt.% Fe, 0.1 to 0.4wt.% Mn and 3.0 to 4.0wt.% B and the balance Ni with inevitable impurities. The second corrosion resistant and wear resistant self-fluxing alloy material is a powder mixture composed of 35 to 50wt.% powder consisting of WC-Ni cermet particles or WC-NiCr cermet particles and the balance the self-fluxing alloy powder described above.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐食性および耐磨耗性
に優れた溶射用自溶合金材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a self-fluxing alloy material for thermal spraying which is excellent in corrosion resistance and wear resistance.

【0002】[0002]

【従来の技術】耐食性および耐磨耗性が要求される材料
としては、例えば、自動車用表面処理鋼板の表面処理を
行う連続電気メッキラインにおいて、メッキ液(ZnS
4 +H2SO4)に触れる陰極として使用される通電ロ
ール、前記鋼板の表面処理後の酸洗処理時に使用される
ブラシバックアップロール等がある。前記通電ロールや
ブラシバックアップロールは、メッキ液や酸洗溶液に対
する耐食性と、接触する鋼板に対する耐磨耗性が要求さ
れていることから、Ni−Cr−Mo系耐食合金の鋳
造、クロムメッキ、Ni基自溶合金溶射皮覆等によって
製造されているが、近年、前記鋼板の製造原価を低下さ
せるために、ラインの速度の向上、メッキ溶液や酸溶液
の種類、濃度や温度等の使用条件が、増々苛酷になって
きており、従来以上の厳しい特性が要求されている。前
記通電ロールやブラシバックアップロールにおいては、
耐食性の良好な材料は耐磨耗性が悪く、一方耐磨耗性の
良好な材料は耐食性に劣るというように、これらの両特
性を具備した材料は知られていない。従って、せいぜい
1週間〜1ケ月程度で使用寿命に至るため、短期間の操
業毎にラインの稼働を停止して、前記ロールの新規交換
あるいはロール表面の再研磨(補修)を行わなければな
らず、このことは、ラインの回転率を低いものとし、前
記鋼板の生産性を著しく低下させている。
2. Description of the Related Art As a material required to have corrosion resistance and abrasion resistance, for example, a plating solution (ZnS) is used in a continuous electroplating line for surface treatment of a surface-treated steel sheet for automobiles.
There are a current-carrying roll used as a cathode in contact with O 4 + H 2 SO 4 ), a brush backup roll used in the pickling treatment after the surface treatment of the steel sheet, and the like. Since the energizing roll and the brush backup roll are required to have corrosion resistance against a plating solution or pickling solution and abrasion resistance against a steel plate with which they come into contact, casting of a Ni-Cr-Mo corrosion resistant alloy, chrome plating, Ni Although it is manufactured by a base self-fluxing alloy spray coating, etc., in recent years, in order to reduce the manufacturing cost of the steel sheet, the speed of the line is improved, the type of plating solution or acid solution, the usage conditions such as concentration and temperature are However, it is becoming more and more severe, and stricter characteristics than ever before are required. In the energizing roll and brush backup roll,
Materials having both of these properties are not known, such that materials with good corrosion resistance have poor wear resistance, while materials with good wear resistance have poor corrosion resistance. Therefore, since the service life reaches at most about 1 week to 1 month, it is necessary to stop the operation of the line for each short-term operation and perform a new replacement of the roll or re-polishing (repair) of the roll surface. However, this makes the line rotation rate low and significantly reduces the productivity of the steel sheet.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記の様な
欠点を解消し、優れた耐食性および耐磨耗性の両方の特
性を兼ね備えた溶射用耐食・耐磨耗自溶合金材料を提供
することを目的とする。
DISCLOSURE OF THE INVENTION The present invention provides a corrosion-resistant and wear-resistant self-fluxing alloy material for thermal spraying, which solves the above-mentioned drawbacks and has both excellent corrosion resistance and wear resistance. The purpose is to do.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するもの
として、本発明の第1の溶射用耐食・耐磨耗自溶合金材
料は、粉末状、棒状などの形状を有し、ガス式溶射用な
どに好適なものであり、その成分、組成は、Cを0.1
〜0.4重量%、Siを3.5〜4.5重量%、Crを
18〜20重量%、Moを16〜18重量%、Cuを
1.5〜2.5重量%、Feを2.5〜3.5重量%、
Mnを0.1〜0.4重量%、Bを3.0〜4.0重量
%含み、残部がNiおよび不可避不純物である。この耐
食・耐磨耗自溶合金材料において、CrとMoの合計が
37重量%以下であること、CuとFeの合計が4.5
重量%以上であることが好ましく、粉末の場合、その主
な粒度が45〜125μmの範囲内であることが好まし
い。また、本発明の第2の溶射用耐食・耐磨耗自溶合金
材料は、WC−Niサーメット粒子またはWC−NiC
rサーメット粒子からなる粉末35〜50重量%と、残
部の、上記第1の本発明の自溶合金粉末との混合粉末で
ある。この耐食・耐磨耗自溶合金材料において、球形状
のWC−Niサーメット粒子およびWC−NiCrサー
メット粒子の主な粒度は、45〜125μmの範囲内で
あることが好ましい。
In order to achieve the above object, the first corrosion-resistant and wear-resistant self-fluxing alloy material for thermal spraying according to the present invention has a shape such as powder or rod, and is gas-type thermal spraying. It is suitable for applications such as C.
-0.4 wt%, Si 3.5-4.5 wt%, Cr 18-20 wt%, Mo 16-18 wt%, Cu 1.5-2.5 wt%, Fe 2 0.5-3.5% by weight,
It contains 0.1 to 0.4% by weight of Mn, 3.0 to 4.0% by weight of B, and the balance is Ni and inevitable impurities. In this corrosion- and wear-resistant self-fluxing alloy material, the sum of Cr and Mo is 37% by weight or less, and the sum of Cu and Fe is 4.5.
It is preferably at least wt%, and in the case of powder, the main particle size thereof is preferably within the range of 45 to 125 μm. The second corrosion-resistant and wear-resistant self-fluxing alloy material for thermal spraying of the present invention is WC-Ni cermet particles or WC-NiC.
This is a mixed powder of 35 to 50% by weight of powder composed of r cermet particles and the rest of the self-fluxing alloy powder of the first aspect of the present invention. In this corrosion resistant / abrasion resistant self-fluxing alloy material, the main particle size of the spherical WC-Ni cermet particles and WC-NiCr cermet particles is preferably in the range of 45 to 125 μm.

【0005】[0005]

【作用】まず、本発明の第1の溶射用耐食・耐磨耗自溶
合金材料について説明する。 C:Cは主にCr、Moと結合して複炭化物を形成して
溶射皮膜全体の硬さを高め、耐磨耗性の向上に寄与する
元素であるが、その含有量が0.1重量%未満では炭化
物の量が少ないために充分な耐磨耗性が得られない。ま
た、0.4重量%を超える過度の添加は、複炭化物の形
成量が多くなり過ぎて耐食性および靱性が低下するた
め、その範囲は0.1〜0.4重量%とする。 Si:SiはBとともに溶射用自溶合金材料の必須元素
であり、脱酸剤としての作用の他に、自溶性を与え、さ
らにはマトリックス中に固溶して溶射皮膜の硬さや耐磨
耗性の向上に寄与する。その含有量は3.5重量%未満
では前記特性が充分に得られず、また、4.5重量%を
超えると硬さが高くなり過ぎて脆くなり、加工時や使用
時にクラックが発生し易くなるため、その範囲は3.5
〜4.5重量%とする。
First, the first corrosion resistant / wear resistant self-fluxing alloy material of the present invention will be described. C: C is an element that mainly combines with Cr and Mo to form a double carbide to increase the hardness of the entire thermal spray coating and contribute to the improvement of wear resistance, but its content is 0.1% by weight. If it is less than%, sufficient wear resistance cannot be obtained because the amount of carbides is small. Further, excessive addition of more than 0.4% by weight results in an excessively large amount of double carbides being formed, resulting in deterioration of corrosion resistance and toughness, so the range is made 0.1 to 0.4% by weight. Si: Si is an essential element of the self-fluxing alloy material for thermal spraying together with B. In addition to acting as a deoxidizing agent, it also provides self-fluxing property, and further forms a solid solution in the matrix to provide hardness and wear resistance of the thermal spray coating. Contributes to the improvement of sex. If the content is less than 3.5% by weight, the above properties cannot be sufficiently obtained, and if it exceeds 4.5% by weight, the hardness becomes too high and brittle, and cracks are likely to occur during processing or use. Therefore, the range is 3.5
~ 4.5 wt%.

【0006】Cr:CrはCと結合して複炭化物を形成
し、またBと結合して複硼化物を形成することにより、
硬さを高め、耐食性および耐磨耗性を著しく向上させる
必須の元素である。その含有量は18重量%未満では複
炭化物や複硼化物の形成が不充分で高い耐食性および耐
磨耗性が得られず、また20重量%を超えると、靱性の
低下、融点の上昇、自溶性の低下が生じるとともに、加
工面にブローホール等の欠陥を招き易くなるため、その
範囲は18〜20重量%とする。 Mo:MoはCrと同様、Cと結合して複炭化物を形成
し、またBと結合して複硼化物を形成することにより、
耐食性および耐磨耗性を大幅に向上させる必須の元素で
ある。その含有量は16重量%未満では前記複炭化物お
よび複硼化物を形成する作用が小さく、また、18重量
%を超えてもさらなる効果の向上は大きく期待できず、
かえって靱性や自溶性の低下を招くので、その含有量は
Cr含有量以下の16〜18重量%とする。また、同族
の元素であるCrとMoとの合計を34〜37重量%と
すると、溶射皮膜の脆化や自溶性の低下を抑制し易く好
ましい。
Cr: Cr combines with C to form a double carbide and also with B to form a double boride,
It is an essential element that enhances hardness and significantly improves corrosion resistance and abrasion resistance. If the content is less than 18% by weight, the formation of double carbides and double borides is insufficient and high corrosion resistance and wear resistance cannot be obtained, and if it exceeds 20% by weight, the toughness decreases, the melting point increases, and Since the solubility is lowered and defects such as blowholes are easily caused on the processed surface, the range is set to 18 to 20% by weight. Mo: Mo, like Cr, combines with C to form a double carbide and by combining with B to form a double boride,
It is an essential element that greatly improves the corrosion resistance and wear resistance. If the content is less than 16% by weight, the effect of forming the above-mentioned double carbide and double boride is small, and if it exceeds 18% by weight, further improvement of the effect cannot be expected.
On the contrary, since the toughness and the self-dissolving property are deteriorated, the content thereof is set to 16 to 18% by weight, which is less than the Cr content. When the total of Cr and Mo, which are elements of the same group, is 34 to 37% by weight, embrittlement of the thermal spray coating and deterioration of self-solubility are easily suppressed, which is preferable.

【0007】Cu:Cuは、Niマトリックス中に固溶
して溶射皮膜全体の強度を高め、さらには複炭化物や複
硼化物の形成を促し、組織を安定させる必須の元素であ
る。また、高温環境下において、Cuの存在により、こ
れらの複炭化物、複硼化物は安定した状態になるため、
優れた耐食性と耐磨耗性を得ることができる。その含有
量は1.5重量%未満であると複炭化物と複硼化物が形
成される量も不充分となるため、所望の耐食性および耐
磨耗性が得られず、また、2.5重量%を超えると複炭
化物や複硼化物の形成作用が大きくなりすぎて溶射皮膜
の脆化を招き、さらには高温において酸化が激しくなる
ため、その範囲は1.5〜2.5重量%とする。 Fe:Feは、Niマトリックス中に固溶してCuの場
合と同様、溶射皮膜全体の強度を向上させる元素であ
る。その含有量が2.5重量%未満では前記作用が小さ
く、また、その含有量が3.5重量%を超えると、溶射
皮膜の硬さが低下し、耐食性および耐磨耗性の劣化をも
たらすため、その含有量は2.5〜3.5重量%とす
る。また、CuとFeとの合計を4.5〜6.0重量%
とすると、CrとMoの含有による溶射皮膜の脆化およ
び耐食・耐磨耗性の低下を抑制し易く好ましい。
Cu: Cu is an essential element that forms a solid solution in the Ni matrix to enhance the strength of the entire thermal spray coating, promotes the formation of double carbides and double borides, and stabilizes the structure. Further, in a high temperature environment, due to the presence of Cu, these double carbides and double borides are in a stable state,
It is possible to obtain excellent corrosion resistance and abrasion resistance. If the content is less than 1.5% by weight, the amount of double carbide and double boride formed will be insufficient, and the desired corrosion resistance and wear resistance cannot be obtained. %, The effect of forming double carbides and double borides becomes too large, resulting in embrittlement of the sprayed coating, and further oxidation at high temperatures, so the range is made 1.5 to 2.5% by weight. . Fe: Fe is an element that forms a solid solution in the Ni matrix and improves the strength of the entire thermal spray coating as in the case of Cu. If the content is less than 2.5% by weight, the above-mentioned action is small, and if the content exceeds 3.5% by weight, the hardness of the sprayed coating is lowered, resulting in deterioration of corrosion resistance and wear resistance. Therefore, the content is 2.5 to 3.5% by weight. Further, the total of Cu and Fe is 4.5 to 6.0% by weight.
In that case, embrittlement of the thermal spray coating and deterioration of corrosion resistance and wear resistance due to the inclusion of Cr and Mo are easily suppressed, which is preferable.

【0008】Mn:Mnは脱酸剤としての作用の他に、
再溶融処理時の湯流れ性(溶湯の流動性)を向上させて
自溶性を促すための元素であるが、0.1重量%未満で
は前記作用は得られず、また0.4重量%を超える添加
は溶射皮膜の靱性を低下させるとともに、耐食性をも劣
化させるため、その含有量は0.1〜0.4重量%とす
る。 B:Bは、Siと同様、溶射用自溶合金材料の必須元素
であり、自溶性を与えるほかに、CrおよびMoと結合
してCr−Mo−Ni系複硼化物を形成して溶射皮膜全
体の硬さを高めて耐食性および耐磨耗性の向上に寄与す
る必須の元素である。その含有量が3.0重量%未満で
は前記複硼化物の形成量が少ないために充分な耐食性と
耐磨耗性が得られず、また4.0重量%を超える添加は
複硼化物の形成量が多くなり過ぎて靱性が低下するた
め、その範囲は3.0〜4.0重量%とする。 Ni:Niは、本発明の耐食・耐磨耗自溶合金材料のマ
トリックス(基質)を形成する元素である。
Mn: Mn acts as a deoxidizer,
It is an element for improving the flowability of molten metal (fluidity of molten metal) during remelting treatment and promoting self-fluxing property, but if it is less than 0.1% by weight, the above-mentioned action cannot be obtained, and 0.4% by weight is required. If it is added in excess, it lowers the toughness of the thermal spray coating and also deteriorates the corrosion resistance, so the content is made 0.1 to 0.4% by weight. B: B, like Si, is an essential element of the self-fluxing alloy material for thermal spraying, and in addition to providing self-fluxing property, it is combined with Cr and Mo to form a Cr-Mo-Ni-based compound boride to form a thermal spray coating. It is an essential element that increases the overall hardness and contributes to the improvement of corrosion resistance and wear resistance. If the content is less than 3.0% by weight, sufficient corrosion resistance and abrasion resistance cannot be obtained because the amount of the complex boride formed is small, and addition in excess of 4.0% by weight results in formation of complex boride. Since the amount becomes too large and the toughness deteriorates, the range is 3.0 to 4.0% by weight. Ni: Ni is an element that forms the matrix (matrix) of the corrosion resistant and wear resistant self-fluxing alloy material of the present invention.

【0009】次に、本発明の第2の溶射用耐食・耐磨耗
自溶合金材料について説明する。この耐食・耐磨耗自溶
合金材料は、WC−Niサーメット粒子またはWC−N
iCrサーメット粒子からなる粉末35〜50重量%
と、残部の、上記第1の本発明の自溶合金粉末との混合
粉末である。上記第1の本発明の自溶合金粉末に、WC
−Niサーメット粒子またはWC−NiCrサーメット
粒子からなる粉末を添加することにより、さらなる耐磨
耗性を向上させることができる。WC−Niサーメット
粒子またはWC−NiCrサーメット粒子を添加する場
合、その含有量は35〜50重量%であるのが好まし
い。35重量%未満であると、耐磨耗性の向上が少な
く、また50重量%を超えると耐食性が劣化し、さらに
再溶融処理時に酸化が激しくなり、ブローホールやピン
ホール等の欠陥が溶射皮膜中に発生し易くなる。また、
WC−Niサーメット粒子およびWC−NiCrサーメ
ット粒子の粒度は45〜125μmであるのが好まし
い。45μm未満であると、再溶融処理の際、溶射皮膜
中に微粒子が均一に分布せず、また125μmを超える
と、酸化が進み自溶性が低下して、ピンホール等の欠陥
が発生し易くなる。
Next, the second corrosion resistant / wear resistant self-fluxing alloy material for thermal spraying of the present invention will be described. This corrosion- and wear-resistant self-fluxing alloy material is WC-Ni cermet particles or WC-N
Powder composed of iCr cermet particles 35 to 50% by weight
And the balance of the self-fluxing alloy powder of the first aspect of the present invention. WC was added to the self-fluxing alloy powder of the first aspect of the present invention.
By adding a powder composed of -Ni cermet particles or WC-NiCr cermet particles, the wear resistance can be further improved. When WC-Ni cermet particles or WC-NiCr cermet particles are added, their content is preferably 35 to 50% by weight. If it is less than 35% by weight, improvement in abrasion resistance is small, and if it exceeds 50% by weight, corrosion resistance is deteriorated, and further oxidation during re-melting treatment is intense, and defects such as blowholes and pinholes are sprayed. It tends to occur inside. Also,
The particle size of the WC-Ni cermet particles and the WC-NiCr cermet particles is preferably 45 to 125 μm. When it is less than 45 μm, fine particles are not uniformly distributed in the thermal spray coating during remelting treatment, and when it exceeds 125 μm, oxidation progresses and self-solubility decreases, and defects such as pinholes are likely to occur. .

【0010】さらに、WC−Niサーメット粒子および
WC−NiCrサーメット粒子の形状は球形状を呈した
ものが好ましい。従って、WC−Niサーメット粒子お
よびWC−NiCrサーメット粒子を製造するには、W
C粉末と、Ni粉末またはNi−Cr合金粉末とを混合
した混合粉末に、有機質のバインダーを加えて造粒した
後、高温で焼結する造粒−焼結法を採用することが好ま
しい。溶解インゴットを粉砕する鋳造−粉砕法や焼結体
を粉砕する焼結−粉砕法等で製造した粒子は、その形状
が角形状であり、溶射皮膜と接触した相手材を傷つけ易
いため好ましくない。WC−Niサーメット粒子におい
て、バインダーとなるNiの含有量は12〜17重量%
が好ましい。12重量%未満では耐食性が低下し、ま
た、17重量%を超えると、粒子の硬さが低いため耐磨
耗性が向上し難くなる。WC−NiCrサーメット粒子
において、バインダーとなるNi−Cr合金の含有量
は、25〜30重量%が好ましい。この含有量が25重
量%未満では靭性および耐食性が低下し、また、30重
量%を超えると耐磨耗性が低下する。さらに、このNi
−Cr合金のCr含有量%は、18〜25重量%が好ま
しい。
Further, the WC-Ni cermet particles and the WC-NiCr cermet particles preferably have a spherical shape. Therefore, in order to produce WC-Ni cermet particles and WC-NiCr cermet particles, W
It is preferable to employ a granulation-sintering method in which an organic binder is added to a mixed powder obtained by mixing C powder and Ni powder or a Ni—Cr alloy powder, and then the mixture is granulated and then sintered at a high temperature. Particles produced by a casting-crushing method of crushing a molten ingot, a sintering-crushing method of crushing a sintered body, or the like are not preferable because the shape thereof is a square shape and the counterpart material in contact with the thermal spray coating is easily damaged. In the WC-Ni cermet particles, the content of Ni serving as a binder is 12 to 17% by weight.
Is preferred. If it is less than 12% by weight, the corrosion resistance is lowered, and if it exceeds 17% by weight, it is difficult to improve the abrasion resistance due to the low hardness of the particles. In the WC-NiCr cermet particles, the content of the Ni-Cr alloy serving as the binder is preferably 25 to 30% by weight. If the content is less than 25% by weight, toughness and corrosion resistance are reduced, and if it exceeds 30% by weight, wear resistance is reduced. Furthermore, this Ni
The Cr content% of the -Cr alloy is preferably 18 to 25% by weight.

【0011】[0011]

【実施例】【Example】

[実施例1、2]まず、所望の成分組成になるように配
合した原料を高周波誘導真空溶解炉を用いて真空溶解
し、得られた1500℃程度の溶湯を水アトマイズ法に
よって合金粉末にした。この合金粉末を熱風乾燥後、振
動式分級機にて45〜125μmに分級し、溶射用自溶
合金材料を作製した。これらの合金粉末の化学組成を表
1に示す。これらの合金粉末を用いて粉末式フレーム溶
射ガンにより、ステンレス鋼の母材上に3mmの厚さに
溶射した。次に、燃焼炎トーチ(酸素−アセチレンバー
ナ)にて1000℃以上に加熱し、再溶融処理を施して
自溶合金溶射皮膜を形成し、さらに、この皮膜の表面を
切削および研磨して試験片を作製した。この後、各試験
片の硬さ、耐磨耗性および耐食性を調べたところ、表2
に示す結果が得られた。
[Examples 1 and 2] First, raw materials blended so as to have desired component compositions were vacuum-melted using a high-frequency induction vacuum melting furnace, and the obtained molten metal at about 1500 ° C was made into alloy powder by a water atomizing method. . After drying this alloy powder with hot air, it was classified to 45 to 125 μm with a vibration classifier to prepare a self-fluxing alloy material for thermal spraying. Table 1 shows the chemical composition of these alloy powders. These alloy powders were sprayed onto a stainless steel base material with a thickness of 3 mm by a powder type flame spray gun. Next, a combustion flame torch (oxygen-acetylene burner) is heated to 1000 ° C. or higher, remelting treatment is applied to form a self-fluxing alloy sprayed coating, and the surface of this coating is cut and polished to give a test piece. Was produced. After that, the hardness, wear resistance and corrosion resistance of each test piece were examined, and Table 2
The result shown in FIG.

【0012】なお、硬さ試験は、ロックウェル(Cスケ
ール)とマイクロビッカース(荷重1kg)で行った。
磨耗試験は、スガ式往復運動磨耗試験機を用い、荷重;
1kg、往復回数;1600回(DS(ダブルストロー
ク))、相手材;SiC#320研磨紙の条件でJIS
H 8503(めっきの耐磨耗性試験方法)の第9項
(往復運動磨耗試験法)に準じて磨耗減量を測定し、耐
磨耗性WR(DS/mg)を求めた。また、腐食試験
は、試験片の大きさを2×10×30mmとし、液温6
0℃、浸漬時間24時間の条件で5重量%硫酸水溶液お
よび5重量%フッ硝酸水溶液中でそれぞれ行った。さら
に、比抵抗値の測定および通電下におけるメッキ液中の
腐食試験を行った。この際の腐食試験は、30重量%Z
nSO4+2重量%H2SO4 水溶液中に浸漬(60℃±
5℃)した試験片を陰極として、電流密度100mA/
cm2 で1週間通電し、腐食減量を測定し、耐食性を求
めた。以上により、表3に示す結果が得られた。
The hardness test was carried out with Rockwell (C scale) and Micro Vickers (load 1 kg).
The wear test uses a Suga-type reciprocating motion wear tester and loads;
1 kg, number of reciprocations; 1600 times (DS (double stroke)), mating material: SiC # 320
Abrasion resistance WR (DS / mg) was determined by measuring the amount of abrasion loss in accordance with Item 9 (Reciprocating abrasion test method) of H8503 (Abrasion resistance test method for plating). Further, in the corrosion test, the size of the test piece was 2 × 10 × 30 mm, and the liquid temperature was 6
It was carried out in a 5 wt% sulfuric acid aqueous solution and a 5 wt% hydrofluoric nitric acid aqueous solution under conditions of 0 ° C. and a dipping time of 24 hours. Further, a specific resistance value was measured and a corrosion test in a plating solution under energization was performed. The corrosion test at this time was 30% by weight Z
Immersed in nSO 4 +2 wt% H 2 SO 4 aqueous solution (60 ° C ±
5 ° C) as a cathode, current density 100 mA /
The current was applied at cm 2 for 1 week and the corrosion weight loss was measured to determine the corrosion resistance. From the above, the results shown in Table 3 were obtained.

【0013】[実施例3〜5]まず、実施例1と同様に
して、実施例1と同様の成分の自溶合金粉末を作製し
た。これらの自溶合金粉末の化学組成を表1に示す。次
に、WC−12重量%Ni粉末およびWC−25重量%
NiCr粉末を上記自溶合金粉末に表1に示す混合比で
混合して溶射用自溶合金材料を作製した。なお、上記W
C−12重量%Ni粉末は、WC微粉末とNi微粉末と
有機質のバインダーとを混合して造粒した後、高温で焼
結する造粒−焼結法により作製し、粒子の粒度を45〜
125μmの範囲に入るように分級したもので、粒子の
形状は球形状を呈する。また、WC−25重量%NiC
r粉末は、12重量%Ni微粉末の代わりに25重量%
Ni−Cr合金微粉末を使用した以外は、上記WC−1
2重量%Ni粉末と同様に作製し、粒子の粒度、形状も
上記WC−12重量%Ni粉末と同様である。これらの
溶射用自溶合金材料を用いて、粉末式フレーム溶射ガン
により溶射する以後は、実施例1と同様に試験した。得
られた結果を表2および表3に示す。
[Examples 3 to 5] First, in the same manner as in Example 1, self-fluxing alloy powder having the same components as in Example 1 was prepared. Table 1 shows the chemical composition of these self-fluxing alloy powders. Next, WC-12 wt% Ni powder and WC-25 wt%
NiCr powder was mixed with the above self-fluxing alloy powder at a mixing ratio shown in Table 1 to prepare a self-fluxing alloy material for thermal spraying. The above W
The C-12% by weight Ni powder is produced by a granulation-sintering method in which WC fine powder, Ni fine powder and an organic binder are mixed and granulated, and then sintered at a high temperature. ~
The particles are classified so as to fall within the range of 125 μm, and the particles have a spherical shape. Also, WC-25 wt% NiC
r powder is 25 wt% instead of 12 wt% Ni fine powder
WC-1 above except that Ni-Cr alloy fine powder was used.
It is produced in the same manner as the 2 wt% Ni powder, and the particle size and shape of the particles are the same as those of the WC-12 wt% Ni powder. Using these self-fluxing alloy materials for thermal spraying, the same tests as in Example 1 were performed after thermal spraying with a powder flame spray gun. The obtained results are shown in Tables 2 and 3.

【0014】[従来例1]市販のNi−Cr−Mo系合
金の鋳造品を入手した。この鋳造品の化学組成を表1に
示す。この鋳造品の諸特性を実施例1と同様にして測定
した。得られた結果を表2および表3に示す。 [従来例2〜4]市販の溶射用自溶合金材料を入手し
た。これらの合金粉末の化学組成を表1に示す。これら
の合金粉末を用いて、粉末式フレーム溶射ガンにより溶
射する以後は、実施例1と同様に試験した。得られた結
果を表2および表3に示す。 [従来例5]市販のCrメッキ品を入手した。このCr
メッキ品の諸特性を実施例1と同様にして測定した。得
られた結果を表2および表3に示す。
[Conventional Example 1] A commercially available Ni-Cr-Mo alloy cast product was obtained. Table 1 shows the chemical composition of this cast product. Various characteristics of this cast product were measured in the same manner as in Example 1. The obtained results are shown in Tables 2 and 3. [Conventional Examples 2 to 4] A commercially available self-fluxing alloy material for thermal spraying was obtained. Table 1 shows the chemical composition of these alloy powders. Using these alloy powders, the same tests as in Example 1 were performed after spraying with a powder flame spray gun. The obtained results are shown in Tables 2 and 3. [Prior art example 5] A commercially available Cr-plated product was obtained. This Cr
Various characteristics of the plated product were measured in the same manner as in Example 1. The obtained results are shown in Tables 2 and 3.

【0015】[0015]

【表1】 (重量%、残部:Ni) C Si B Cr Mo Fe Cu W Mn WC-Ni WC-NiCr WC-Co 実施例1 0.38 4.4 3.2 18.4 17.8 2.6 2.3 - 0.2 - - - 実施例2 0.13 3.6 3.3 19.8 16.1 3.2 1.7 - 0.4 - - - 実施例3 0.30 3.9 3.5 18.8 16.7 2.9 2.1 - 0.1 35.0 - - 実施例4 0.25 4.0 3.8 18.0 17.0 2.7 1.9 - 0.1 50.0 - - 実施例5 0.20 4.2 4.1 19.5 16.5 3.4 2.0 - 0.3 - 35.0 - 従来例1 0.02 0.1 - 16.3 17.1 5.2 - 4.3 - - - - 従来例2 0.65 4.2 3.5 16.0 2.3 2.5 2.1 - - - - - 従来例3 0.30 3.1 2.5 16.1 - 2.0 - - - - - 50.0 従来例4 0.70 4.4 2.7 13.9 1.2 3.8 - - - 35.0 - - 従来例5 C r メ ッ キ[Table 1] (wt%, balance: Ni) C Si B Cr Mo Fe Cu W Mn WC-Ni WC-NiCr WC-Co Example 1 0.38 4.4 3.2 18.4 17.8 2.6 2.3-0.2---Example 2 0.13 3.6 3.3 19.8 16.1 3.2 1.7-0.4---Example 3 0.30 3.9 3.5 18.8 16.7 2.9 2.1-0.1 35.0--Example 4 0.25 4.0 3.8 18.0 17.0 2.7 1.9-0.1 50.0--Example 5 0.20 4.2 4.1 19.5 16.5 3.4 2.0 -0.3-35.0-Conventional Example 1 0.02 0.1-16.3 17.1 5.2-4.3----Conventional Example 2 0.65 4.2 3.5 16.0 2.3 2.5 2.1-----Conventional Example 3 0.30 3.1 2.5 16.1-2.0-----50.0 Conventional example 4 0.70 4.4 2.7 13.9 1.2 3.8---35.0--Conventional example 5 C r

【0016】[0016]

【表2】 硬 さ 耐磨耗性 5% 硫酸 5%フッ硝酸 (HRC) (Hv) (DS/mg) (g/m2・hr) (mg/cm2・day) 実施例1 57 740 118 0.13 8.4 実施例2 58 765 125 0.11 7.9 実施例3 59 778 188 0.20 14.7 実施例4 60 792 213 0.25 14.8 実施例5 58 769 168 0.18 12.8 従来例1 HR B90 201 33 0.09 5.8 従来例2 57 732 130 0.39 10.8 従来例3 59 772 270 127.4 175.4 従来例4 56 727 205 86.4 94.8 従来例5 68 1080 127 108.5 152.2 TABLE 2 Hardness abrasion resistance 5% sulfuric acid 5% hydrofluoric nitric acid (H R C) (Hv) (DS / mg) (g / m 2 · hr) (mg / cm 2 · day) Example 1 57 740 118 0.13 8.4 Example 2 58 765 125 0.11 7.9 Example 3 59 778 188 0.20 14.7 Example 4 60 792 213 0.25 14.8 Example 5 58 769 168 0.18 12.8 Conventional Example 1 H R B90 201 33 0.09 5.8 Conventional Example 2 57 732 130 0.39 10.8 Conventional example 3 59 772 270 127.4 175.4 Conventional example 4 56 727 205 86.4 94.8 Conventional example 5 68 1080 127 108.5 152.2

【0017】[0017]

【表3】 [Table 3]

【0018】表2および表3に示される結果から、次の
ことが分かる。すなわち、実施例1〜5の材料は、いず
れも、優れた耐食性と耐磨耗性を兼ね備えた材料であ
る。これに対して、従来材料は、耐食性が良好であると
耐磨耗性が劣り(従来例1)、耐磨耗性が良好であると
耐食性が劣っており(従来例2〜5)、耐食性および耐
磨耗性のうちのいずれかの特性が劣っている。
From the results shown in Tables 2 and 3, the following can be seen. That is, the materials of Examples 1 to 5 are materials having both excellent corrosion resistance and abrasion resistance. On the other hand, the conventional materials have poor wear resistance when the corrosion resistance is good (conventional example 1), and poor corrosion resistance when the wear resistance is good (conventional examples 2 to 5). And one of the abrasion resistance is inferior.

【0019】[0019]

【発明の効果】本発明によれば、優れた耐食性および耐
磨耗性の両方の特性を兼ね備えた溶射用耐食・耐磨耗自
溶合金材料を提供することができる。従って、本発明の
溶射用耐食・耐磨耗自溶合金材料を、電気メッキ通電ロ
ールやブラシバックアップロール用等の溶射皮膜材とし
て用いると、優れた耐食性と耐磨耗性により、長い使用
寿命を示しラインの連続運転時間を大幅に延長すること
ができるため、鋼板の生産性を著しく向上させる効果が
得られる。
According to the present invention, it is possible to provide a corrosion-resistant and wear-resistant self-fluxing alloy material for thermal spraying, which has both excellent corrosion resistance and wear resistance. Therefore, when the corrosion-resistant and wear-resistant self-fluxing alloy material for thermal spraying of the present invention is used as a thermal spray coating material for electroplating energizing rolls, brush backup rolls, etc., it has excellent corrosion resistance and wear resistance, resulting in a long service life. Since the continuous operation time of the indicating line can be greatly extended, the effect of significantly improving the productivity of the steel sheet can be obtained.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 Cを0.1〜0.4重量%、Siを3.
5〜4.5重量%、Crを18〜20重量%、Moを1
6〜18重量%、Cuを1.5〜2.5重量%、Feを
2.5〜3.5重量%、Mnを0.1〜0.4重量%、
Bを3.0〜4.0重量%含み、残部がNiおよび不可
避不純物である溶射用耐食・耐磨耗自溶合金材料。
1. C of 0.1 to 0.4% by weight and Si of 3.
5 to 4.5 wt%, Cr 18 to 20 wt%, Mo 1
6-18% by weight, Cu 1.5-2.5% by weight, Fe 2.5-3.5% by weight, Mn 0.1-0.4% by weight,
A corrosion-resistant and wear-resistant self-fluxing alloy material for thermal spraying, which contains 3.0 to 4.0% by weight of B, and the balance of Ni and unavoidable impurities.
【請求項2】 CrとMoの合計が37重量%以下であ
る請求項1に記載の溶射用耐食・耐磨耗自溶合金材料。
2. The corrosion-resistant and wear-resistant self-fluxing alloy material for thermal spraying according to claim 1, wherein the sum of Cr and Mo is 37% by weight or less.
【請求項3】 CuとFeの合計が4.5重量%以上で
ある請求項1または2に記載の溶射用耐食・耐磨耗自溶
合金材料。
3. The corrosion-resistant and wear-resistant self-fluxing alloy material for thermal spraying according to claim 1, wherein the sum of Cu and Fe is 4.5% by weight or more.
【請求項4】 形状は、粉末状である請求項1、2また
は3に記載の溶射用耐食・耐磨耗自溶合金材料。
4. The corrosion-resistant and wear-resistant self-fluxing alloy material for thermal spraying according to claim 1, 2 or 3, which has a powder form.
【請求項5】 形状は、棒状である請求項1、2または
3に記載の溶射用耐食・耐磨耗自溶合金材料。
5. The corrosion-resistant and wear-resistant self-fluxing alloy material for thermal spraying according to claim 1, 2 or 3, which has a rod shape.
【請求項6】 粉末粒子の主な粒度が45〜125μm
の範囲内である請求項4に記載の溶射用耐食・耐磨耗自
溶合金材料。
6. The main particle size of the powder particles is 45 to 125 μm.
5. The corrosion-resistant and wear-resistant self-fluxing alloy material for thermal spraying according to claim 4, which is within the range.
【請求項7】 球形状のWC−Niサーメット粒子また
はWC−NiCrサーメット粒子からなる粉末35〜5
0重量%と、残部の、請求項4または6に記載の自溶合
金粉末との混合粉末である溶射用耐食・耐磨耗自溶合金
材料。
7. A powder 35 to 5 comprising spherical WC-Ni cermet particles or WC-NiCr cermet particles.
A corrosion resistant and wear resistant self-fluxing alloy material for thermal spraying, which is a mixed powder of 0 wt% and the balance of the self-fluxing alloy powder according to claim 4 or 6.
【請求項8】 球形状のWC−Niサーメット粒子また
はWC−NiCrサーメット粒子の主な粒度は、45〜
125μmの範囲内である請求項7に記載の溶射用耐食
・耐磨耗自溶合金材料。
8. The main particle size of the spherical WC-Ni cermet particles or WC-NiCr cermet particles is 45-45.
The corrosion-resistant and wear-resistant self-fluxing alloy material for thermal spraying according to claim 7, which is in a range of 125 μm.
JP13740995A 1995-05-12 1995-05-12 Corrosion- and wear-resistant self-fluxing alloy material for thermal spraying Expired - Fee Related JP3430498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13740995A JP3430498B2 (en) 1995-05-12 1995-05-12 Corrosion- and wear-resistant self-fluxing alloy material for thermal spraying

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13740995A JP3430498B2 (en) 1995-05-12 1995-05-12 Corrosion- and wear-resistant self-fluxing alloy material for thermal spraying

Publications (2)

Publication Number Publication Date
JPH08311630A true JPH08311630A (en) 1996-11-26
JP3430498B2 JP3430498B2 (en) 2003-07-28

Family

ID=15197974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13740995A Expired - Fee Related JP3430498B2 (en) 1995-05-12 1995-05-12 Corrosion- and wear-resistant self-fluxing alloy material for thermal spraying

Country Status (1)

Country Link
JP (1) JP3430498B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6027583A (en) * 1996-06-25 2000-02-22 Castolin S.A. Material in powder or wire form on a nickel basis for a coating and processes and uses therefor
JP2002088461A (en) * 2000-09-14 2002-03-27 Kawasaki Steel Corp Corrosion resisting roll
EP1857204A1 (en) * 2006-05-17 2007-11-21 MEC Holding GmbH Nonmagnetic material for producing parts or coatings adapted for high wear and corrosion intensive applications, nonmagnetic drill string component, and method for the manufacture thereof
JP2010099693A (en) * 2008-10-23 2010-05-06 Sumitomo Heavy Ind Ltd Method for producing wear resistant lining layer and composite cylinder
JP2015143372A (en) * 2014-01-31 2015-08-06 山陽特殊製鋼株式会社 Ni-BASED SELF FLUXING ALLOY POWDER HAVING SUPPRESSED FLUIDITY DURING REMELTING TREATMENT IN SPRAY COATING AND PARTS EXCELLENT IN CORROSION RESISTANCE AND ABRASION RESISTANCE USING THE POWDER
WO2017141925A1 (en) * 2016-02-19 2017-08-24 Jfeスチール株式会社 Cermet powder, protective film-coated member and method for producing same, and electroplating-bath roll and method for producing same
CN111004954A (en) * 2020-01-07 2020-04-14 湖南大学 Wear-resistant corrosion-resistant Ti (C, N) -based metal ceramic and preparation method thereof
WO2020235547A1 (en) * 2019-05-23 2020-11-26 東洋製罐グループホールディングス株式会社 Ni-based self-fluxing alloy, glass production member using ni-based self-fluxing alloy, and mold and glass mass transport member each using glass production member
CN115069366A (en) * 2022-05-19 2022-09-20 萍乡市兴丰高科实业有限公司 High-aluminum zirconium ceramic wear-resistant rod used in vertical mill

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6027583A (en) * 1996-06-25 2000-02-22 Castolin S.A. Material in powder or wire form on a nickel basis for a coating and processes and uses therefor
JP2002088461A (en) * 2000-09-14 2002-03-27 Kawasaki Steel Corp Corrosion resisting roll
EP1857204A1 (en) * 2006-05-17 2007-11-21 MEC Holding GmbH Nonmagnetic material for producing parts or coatings adapted for high wear and corrosion intensive applications, nonmagnetic drill string component, and method for the manufacture thereof
WO2007132020A1 (en) * 2006-05-17 2007-11-22 Mec Holding Gmbh Nonmagnetic material for producing parts or coatings adapted for high wear and corrosion intensive applications, nonmagnetic drill string component, and method for the manufacture thereof
US8460604B2 (en) 2006-05-17 2013-06-11 Mec Holding Gmbh Nonmagnetic material for producing parts or coatings adapted for high wear and corrosion intensive applications, nonmagnetic drill string component, and method for the manufacture thereof
NO343525B1 (en) * 2006-05-17 2019-04-01 Mec Holding Gmbh Non-magnetic material for the manufacture of parts and coatings intended for high wear and corrosion-intensive applications, non-magnetic drill string components, and methods of making them
JP2010099693A (en) * 2008-10-23 2010-05-06 Sumitomo Heavy Ind Ltd Method for producing wear resistant lining layer and composite cylinder
JP2015143372A (en) * 2014-01-31 2015-08-06 山陽特殊製鋼株式会社 Ni-BASED SELF FLUXING ALLOY POWDER HAVING SUPPRESSED FLUIDITY DURING REMELTING TREATMENT IN SPRAY COATING AND PARTS EXCELLENT IN CORROSION RESISTANCE AND ABRASION RESISTANCE USING THE POWDER
JP6232524B1 (en) * 2016-02-19 2017-11-15 Jfeスチール株式会社 Cermet powder, protective coating member and method for producing the same, roll in electroplating bath and method for producing the same
WO2017141925A1 (en) * 2016-02-19 2017-08-24 Jfeスチール株式会社 Cermet powder, protective film-coated member and method for producing same, and electroplating-bath roll and method for producing same
WO2020235547A1 (en) * 2019-05-23 2020-11-26 東洋製罐グループホールディングス株式会社 Ni-based self-fluxing alloy, glass production member using ni-based self-fluxing alloy, and mold and glass mass transport member each using glass production member
JPWO2020235547A1 (en) * 2019-05-23 2020-11-26
US11643708B2 (en) 2019-05-23 2023-05-09 Toyo Seikan Group Holdings, Ltd. Nickel-based self-fluxing alloy, glass manufacturing member using the nickel-based self-fluxing alloy, as well as mold and glass gob transporting member each using the glass manufacturing member
CN111004954A (en) * 2020-01-07 2020-04-14 湖南大学 Wear-resistant corrosion-resistant Ti (C, N) -based metal ceramic and preparation method thereof
CN115069366A (en) * 2022-05-19 2022-09-20 萍乡市兴丰高科实业有限公司 High-aluminum zirconium ceramic wear-resistant rod used in vertical mill
CN115069366B (en) * 2022-05-19 2023-12-29 萍乡市兴丰高科实业有限公司 High-alumina zirconium ceramic wear-resistant rod used in vertical mill

Also Published As

Publication number Publication date
JP3430498B2 (en) 2003-07-28

Similar Documents

Publication Publication Date Title
US11326239B2 (en) Iron based alloy suitable for providing a hard and corrosion resistant coating on a substrate, article having a hard and corrosion resistant coating, and method for its manufacture
US6503290B1 (en) Corrosion resistant powder and coating
JP5642295B2 (en) Ni-Fe-Cr-based alloy and engine valve plated with it
AU2017419294B2 (en) Iron based alloy suitable for providing a hard and wear resistant coating on a substrate, article having a hard and wear resistant coating, and method for its manufacture
JP5058645B2 (en) Thermal spray powder, thermal spray coating and hearth roll
EP2224031B1 (en) Wear resistant alloy
JP5486093B2 (en) Wear-resistant cobalt base alloy and engine valve
JP3430498B2 (en) Corrosion- and wear-resistant self-fluxing alloy material for thermal spraying
JPWO2012063511A1 (en) High toughness cobalt base alloy and engine valve
JP2005533186A (en) Abrasion and corrosion resistant cobalt alloys
JP4762583B2 (en) Ni-based self-fluxing alloy powder and corrosion and wear resistant parts using the powder
JP2012102362A (en) Boride cermet-based powder for thermal spraying
JP2001105177A (en) Powder for overlay
CN102672166A (en) Novel high-temperature wear-resisting iron-base alloy powder
JP2011017049A (en) Boride-based cermet powder for thermal spraying
JPH0860278A (en) Corrosion and wear resistant material excellent in cavitation erosion resistance
JPH0649573A (en) High hardness roll material
JPS601387B2 (en) Tungsten carbide-based cemented carbide with high strength and high oxidation resistance
JP3134768B2 (en) Boride cermet spraying powder
JP2011017058A (en) Boride-based cermet powder for thermal spraying
JPH08269787A (en) Conductor roll for ni plating excellent in corrosion resistance and wear resistance
JPH08296023A (en) Material for coating and member for immersing in metallic bath coated with the same material
JP2004353046A (en) Boride cermet powder for thermal spraying
JPH049441A (en) Wear-resistant alloy excellent in corrosion resistance
JPS60262953A (en) Powder for spraying

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080523

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090523

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100523

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100523

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20130523

LAPS Cancellation because of no payment of annual fees