JPH09264733A - Measuring method for flatness of high-temperature specimen - Google Patents
Measuring method for flatness of high-temperature specimenInfo
- Publication number
- JPH09264733A JPH09264733A JP8076244A JP7624496A JPH09264733A JP H09264733 A JPH09264733 A JP H09264733A JP 8076244 A JP8076244 A JP 8076244A JP 7624496 A JP7624496 A JP 7624496A JP H09264733 A JPH09264733 A JP H09264733A
- Authority
- JP
- Japan
- Prior art keywords
- flatness
- measurement
- high temperature
- bonding tool
- measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Wire Bonding (AREA)
- Instruments For Measurement Of Length By Optical Means (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、高温状態にある
精密加工品や樹脂成形品などの平坦度測定方法に関し、
特に、IC等の半導体素子の実装におけるTAB(Tape
Automated Bondig )方式のワイヤレスボンディングに
圧着工具として使用されるボンディングツールの先端押
圧面の平坦度測定に適用される、高温被検体の平坦度測
定方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flatness measuring method for precision processed products or resin molded products in a high temperature state,
Especially, when mounting semiconductor elements such as ICs, TAB (Tape
The present invention relates to a flatness measuring method for a high temperature object, which is applied to the flatness measurement of a tip pressing surface of a bonding tool used as a crimping tool in a wireless bonding of an Automated Bondig method.
【0002】[0002]
【従来の技術】高温状態にある被検体の平坦度測定の例
として、半導体素子実装用の前記ボンディングツールの
使用温度(400〜650℃)における先端押圧面の平
坦度測定方法が、特開平5−326642号公報に開示
されている。この平坦度測定方法は、図5に示すよう
に、表面が平坦な基体51上に各々が同一直径の金など
の軟質材料による複数のワイヤー52,52…を平行に
並べ、この複数のワイヤー52上に使用温度に加熱した
ボンディングツール53の先端押圧面53aを基体51
に対して直交方向に押し付け、各ワイヤー52を先端押
圧面53aに沿って変形させる。しかる後、常温の下で
各ワイヤー52の基体51に対する直交方向の変位量を
図6に示すように触針式の変位計54により測定し、間
接的にボンディングツール53の測定面である先端押圧
面53aの平坦度を求めるようにしたものである。な
お、ボンディングツールの先端押圧面は、多結晶ダイヤ
モンド、単結晶ダイヤモンド、ダイヤモンド焼結体、C
BN(立方晶窒化ホウ素)等の硬質物質からなり、平坦
度の測定結果に基づいて、半導体チップの電極とリード
との剥離や接合不良を生じさせないように先端押圧面の
研磨が行われる。2. Description of the Related Art As an example of measuring the flatness of an object in a high temperature state, a method for measuring the flatness of a tip pressing surface at a working temperature (400 to 650 ° C.) of the bonding tool for mounting a semiconductor element is disclosed in Japanese Patent Application Laid-Open No. Hei 5 (1999) -54. -326642. In this flatness measuring method, as shown in FIG. 5, a plurality of wires 52 made of a soft material such as gold each having the same diameter are arranged in parallel on a substrate 51 having a flat surface, and the plurality of wires 52 are arranged. The tip pressing surface 53a of the bonding tool 53 heated to the operating temperature is attached to the base 51.
The wire 52 is deformed along the distal end pressing surface 53a by pressing the wire 52 in a direction orthogonal to. Thereafter, the displacement amount of each wire 52 in the direction orthogonal to the base body 51 at room temperature is measured by a stylus displacement meter 54 as shown in FIG. 6, and the tip of the bonding tool 53 is indirectly pressed. The flatness of the surface 53a is obtained. The pressing surface of the tip of the bonding tool is polycrystalline diamond, single crystal diamond, diamond sintered body, C
It is made of a hard substance such as BN (cubic boron nitride), and the tip pressing surface is polished based on the measurement result of the flatness so as not to cause peeling between the electrodes of the semiconductor chip and the leads or defective bonding.
【0003】[0003]
【発明が解決しようとする課題】しかし前述した従来の
高温被検体の平坦度測定方法では、測定面(先端押圧
面)の形状を複数のワイヤー上に転写させる間接的な測
定方法であるため、高温状態から常温状態にする間に転
写形状そのものが形状変化し、転写形状と測定面形状と
が合致しなくなり、測定精度が低くなるという問題点が
あった。However, in the above-mentioned conventional method for measuring the flatness of the high temperature object, since it is an indirect measuring method in which the shape of the measurement surface (tip pressing surface) is transferred onto a plurality of wires, There is a problem in that the transferred shape itself changes in shape from the high temperature state to the normal temperature state, the transferred shape and the measurement surface shape do not match, and the measurement accuracy decreases.
【0004】一方、高温被検体の平坦度の非接触測定方
法としては、鉄鋼業での熱間圧延ラインにおいて、熱延
鋼板の平坦度測定を、鋼板にレーザ光を照射する半導体
レーザと鋼板からのレーザスポットを結像させるPSD
(位置検出素子)とによって熱延鋼板の形状変位情報を
検出する光学式検出器である光学式変位計(変位セン
サ)を用いて行うことが知られている。しかしながら、
0.1μm以下の測定精度が必要とされる高温被検体の
平坦度測定については、従来、適当な方法がなかった。On the other hand, as a non-contact measuring method of flatness of a high temperature object, flatness of a hot rolled steel sheet is measured in a hot rolling line in the steel industry by using a semiconductor laser and a steel sheet for irradiating the steel sheet with laser light. To image the laser spot of
It is known to use an optical displacement gauge (displacement sensor) which is an optical detector for detecting the shape displacement information of the hot-rolled steel sheet by (position detecting element). However,
Conventionally, there is no suitable method for measuring the flatness of a high-temperature test object that requires a measurement accuracy of 0.1 μm or less.
【0005】この発明は、斯かる事情に鑑みてなされた
ものであって、光学式検出器を用いTAB方式のボンデ
ィングツールのような高温状態にある被検体の平坦度測
定を精度良く安定に行うことができる、高温被検体の平
坦度測定方法を提供することを目的とする。The present invention has been made in view of such circumstances, and accurately and stably measures the flatness of an object in a high temperature state such as a TAB type bonding tool using an optical detector. An object of the present invention is to provide a method for measuring the flatness of a high temperature object, which is capable of performing the measurement.
【0006】[0006]
【課題を解決するための手段】前記目的を達成するため
に、請求項1の発明は、光源からの光を測定面に照射
し、その反射光を受光して測定面の形状変位情報を検出
する光学式検出器を用いて、高温被検体の測定面の平坦
度を測定する高温被検体の平坦度測定方法において、高
温被検体を真空雰囲気中に位置させた状態で平坦度測定
を行うことを特徴とするものである。また、請求項2の
発明は、前記請求項1の高温被検体の平坦度測定方法に
おいて、前記光学式検出器として干渉計を用い、この干
渉計と高温被検体の測定面との光軸合わせをすべく高温
被検体を微動傾斜させその測定面の傾き調整を行うこと
を特徴とするものである。In order to achieve the above object, the invention of claim 1 irradiates the measurement surface with light from a light source and receives the reflected light to detect shape displacement information of the measurement surface. In the flatness measurement method for a high temperature object, which measures the flatness of the measurement surface of the high temperature object using an optical detector, perform the flatness measurement in a state where the high temperature object is placed in a vacuum atmosphere. It is characterized by. The invention of claim 2 uses the interferometer as the optical detector in the method for measuring flatness of a high temperature object according to claim 1, and aligns the optical axis between the interferometer and the measurement surface of the high temperature object. In order to achieve this, the high temperature subject is finely tilted, and the tilt of the measurement surface is adjusted.
【0007】光学式検出器を用い、高温状態にある被検
体の測定面(例えばボンディングツールの先端押圧面)
の平坦度測定を行う場合、高温被検体が大気雰囲気中に
あるときには、高温被検体周囲の加熱された空気が乱れ
てゆらぎ、光学式検出器による測定光路での空気の密度
分布が変動するために測定ノイズ(測定誤差)が生じ、
平坦度測定を精度良く安定して行えない。これに対し
て、本願請求項1の発明による平坦度測定方法では、高
温被検体を真空雰囲気(例えば真空度:1ミリTorr
〜10ミリTorr)中に位置させた状態で平坦度測定
を行うようにしたので、測定光路での前記空気のゆらぎ
による空気密度分布の変動がほとんどなくなることで測
定ノイズが大幅に減り、平坦度測定を精度良く安定に行
うことができる。Using an optical detector, the measurement surface of the object under high temperature (for example, the tip pressing surface of the bonding tool)
When measuring the flatness of, when the high temperature object is in the atmosphere, the heated air around the high temperature object is disturbed and fluctuates, and the air density distribution in the measurement optical path by the optical detector fluctuates. Measurement noise (measurement error) occurs in
Flatness cannot be measured accurately and stably. On the other hand, in the flatness measuring method according to the first aspect of the present invention, the high temperature object is subjected to a vacuum atmosphere (for example, the degree of vacuum: 1 milliTorr).
Since the flatness measurement is performed in a state of being positioned within 10 mm Torr), the fluctuation of the air density distribution due to the fluctuation of the air in the measurement optical path is almost eliminated, and the measurement noise is greatly reduced, and the flatness is reduced. The measurement can be performed accurately and stably.
【0008】前記光学式検出器の代表としては、半導体
レーザ(光源)と位置検出素子(PSD)とを組み合わ
せ、三角測量方式あるいは光量検出方式による測定原理
によって変位測定(平坦度測定)を行う前述した光学式
変位計と、干渉計とが挙げられる。干渉計は、周知のよ
うに、測定面(被検面)と参照基準面とからの光波干渉
によって測定面の凹凸の度合いに応じた干渉縞を得、こ
の干渉縞に基づいて測定面の平坦度を測定するものであ
る。0.1μm以下の測定精度での平坦度測定を行おう
とする場合、光学式変位計ヘッドと測定面との間隔距離
(作動距離)は、一般に10mm程度である一方、干渉
計のときの間隔距離は、一般に数十cmと光学式変位計
に比べて相当長くすることができる。A typical example of the optical detector is a combination of a semiconductor laser (light source) and a position detecting element (PSD), and displacement measurement (flatness measurement) is performed by a triangulation method or a light quantity detection method. The optical displacement meter and the interferometer are mentioned. As is well known, an interferometer obtains interference fringes according to the degree of unevenness of the measurement surface by light wave interference from the measurement surface (test surface) and a reference reference surface, and the flatness of the measurement surface is obtained based on this interference fringe. It measures the degree. When attempting to measure flatness with a measurement accuracy of 0.1 μm or less, the distance (working distance) between the optical displacement gauge head and the measurement surface is generally about 10 mm, while the distance between interferometers is about 10 mm. Is generally several tens of cm, which can be considerably longer than that of an optical displacement meter.
【0009】さて、干渉計では、その測定可能な領域
(平坦度の範囲)は使用光波の数波長オーダ(=数ミク
ロン程度)であり、これ以上に測定面の凹凸が大きかっ
たり、測定面が傾くことで高低差がついたりすると、隣
り合う干渉縞同士のピッチが細かくなりすぎて測定不能
となる。このため、干渉計を用いて前述したTAB方式
のボンディングツールの使用時(例えば500℃程度の
高温状態)における先端押圧面の平坦度測定を行う際に
は、ボンディングツールを常温(室温)から加熱する過
程でボンディングツール自体の熱変形でその先端押圧面
(測定面)が微妙に傾き、そのままでは干渉計の測定可
能領域をはずれてしまうことから、高温状態にあるボン
ディングツールを微動傾斜させてその先端押圧面の傾き
調整を行い、測定面である先端押圧面と干渉計との光軸
合わせを行う必要がある。In the interferometer, the measurable area (flatness range) is on the order of several wavelengths (= several microns) of the used light wave, and the unevenness of the measurement surface is larger than this and the measurement surface is larger. If there is a height difference due to tilting, the pitch between adjacent interference fringes becomes too fine and measurement becomes impossible. For this reason, when measuring the flatness of the tip pressing surface when using the above-mentioned TAB method bonding tool using an interferometer (for example, at a high temperature of about 500 ° C.), heat the bonding tool from room temperature (room temperature). In the process, the tip pressing surface (measurement surface) is slightly tilted due to thermal deformation of the bonding tool itself, and if it is left as it is, it will deviate from the measurable area of the interferometer. It is necessary to adjust the inclination of the tip pressing surface and align the optical axis of the tip pressing surface, which is the measurement surface, with the interferometer.
【0010】そこで、請求項2の発明による平坦度測定
方法では、光学式検出器として干渉計を用いる場合、常
温から所定測定温度になるように加熱される過程での被
検体の熱変形によって測定面が微妙に傾いたときにも、
高温被検体を微動傾斜させその測定面の傾き調整を行っ
て、高温被検体の測定面と干渉計との光軸合わせを行う
ようにしたので、干渉計を用いて干渉計測定可能領域を
はずれることなく平坦度測定を行うことができる。Therefore, in the flatness measuring method according to the second aspect of the present invention, when the interferometer is used as the optical detector, the measurement is performed by thermal deformation of the object in the process of heating from room temperature to the predetermined measurement temperature. Even when the surface is slightly tilted,
The high-temperature object is finely tilted and the tilt of the measurement surface is adjusted to align the optical axis between the measurement surface of the high-temperature object and the interferometer, so the interferometer can be used to move out of the measurable range. The flatness measurement can be performed without the need.
【0011】[0011]
【発明の実施の形態】図1はこの発明方法の実施に用い
られる高温被検体の平坦度測定装置の構成を示す構成図
である。ここでは、TAB方式のボンディングツールの
先端押圧面の平坦度測定にこの発明を適用した場合につ
いて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram showing the structure of a flatness measuring apparatus for a high temperature object used for carrying out the method of the present invention. Here, the case where the present invention is applied to the measurement of the flatness of the tip pressing surface of the TAB type bonding tool will be described.
【0012】図1に示すように、高温被検体の平坦度測
定装置は、高温被検体であるボンディングツール1を石
英ガラスよりなる図示しない断熱部材を介して支持する
被検体支持台2と、ボンディングツール1を支持した被
検体支持台2が載置される平面視正方形をなす板状の可
動テーブル3aを、図における手前・奥方向(X方向)
と左右方向(Y方向)との2方向にそれぞれ傾斜させ
て、ボンディングツール1の先端押圧面(測定面)1a
の傾きを調整する被検体傾斜調整ステージ3と、これら
を収容する真空チャンバ4と、真空チャンバ4の観察窓
4aの上方に配設され、0.02μm以下の平坦度を持
つ光学ガラス(石英ガラス)よりなる前記観察窓4aを
経て平行光をボンディングツール1の先端押圧面(測定
面)1aへ入射させ、その反射光を再び観察窓4aを経
て受光して、先端押圧面1aの凹凸に応じた干渉縞の画
像を出力する干渉計ヘッド部(干渉計本体)5と、前記
干渉縞画像に基づいて先端押圧面1aの測定方向におけ
る平坦度プロフィールを求める干渉縞解析部6とを備え
て構成されている。As shown in FIG. 1, a flatness measuring apparatus for a high temperature object has an object support base 2 for supporting a bonding tool 1 which is a high temperature object through a heat insulating member (not shown) made of quartz glass, and a bonding tool. The plate-shaped movable table 3a, which has a square shape in a plan view, on which the subject support base 2 supporting the tool 1 is placed is shown in the front and back directions (X direction) in the drawing.
And a left-right direction (Y direction), respectively, and the tip pressing surface (measurement surface) 1a of the bonding tool 1 is inclined.
Tilt adjusting stage 3 for adjusting the tilt of the object, a vacuum chamber 4 for housing these, and an optical glass (quartz glass) having a flatness of 0.02 μm or less, which is arranged above the observation window 4a of the vacuum chamber 4. Parallel light is incident on the tip pressing surface (measurement surface) 1a of the bonding tool 1 through the observation window 4a, and the reflected light is received again through the observation window 4a, and the reflected light is detected according to the unevenness of the tip pressing surface 1a. And an interference fringe analysis unit 6 for obtaining a flatness profile in the measuring direction of the tip pressing surface 1a based on the interference fringe image. Has been done.
【0013】前記真空チャンバ4内に配されるボンディ
ングツール1自体は、ヒータ装着穴1bに装着されたヒ
ータ線(図示省略)により加熱され、その温度は熱電対
装着穴1cに装着された熱電対(図示省略)の温度変換
出力から測定される。The bonding tool 1 itself arranged in the vacuum chamber 4 is heated by a heater wire (not shown) mounted in the heater mounting hole 1b, and the temperature thereof is the thermocouple mounted in the thermocouple mounting hole 1c. It is measured from the temperature conversion output (not shown).
【0014】また、前記被検体傾斜調整ステージ3は、
図1に示すように、支点3cと2個の電動アクチュエー
タ3dの各進退軸との合計3点にて、固定テーブル3b
上に可動テーブル3aを支持してなり、各電動アクチュ
エータ3dの図における上下方向に進退する軸を微動さ
せて、可動テーブル3aを前記の2方向にそれぞれ傾斜
可能に構成してある。電動アクチュエータ3dは、小型
モータとギアヘッドおよび進退軸とを組み合わせてなる
ものである。この2個の電動アクチュエータ3dによる
可動テーブル3aの傾斜調整は、真空チャンバ4の外か
ら遠隔操作にて行えるようになっている。同様に、前述
したヒータ線によるボンディングツール1の加熱制御、
および熱電対による温度測定も真空チャンバ4の外から
行えるようになっている。Further, the subject tilt adjusting stage 3 is
As shown in FIG. 1, the fixed table 3b is provided at a total of 3 points including the fulcrum 3c and the advancing / retreating axes of the two electric actuators 3d.
The movable table 3a is supported on the upper side, and the movable table 3a can be tilted in each of the two directions by finely moving the shafts of the electric actuators 3d that move in the vertical direction in the drawing. The electric actuator 3d is a combination of a small motor, a gear head, and an advancing / retreating shaft. The tilt adjustment of the movable table 3a by the two electric actuators 3d can be remotely performed from the outside of the vacuum chamber 4. Similarly, heating control of the bonding tool 1 by the above-mentioned heater wire,
Also, temperature measurement with a thermocouple can be performed from outside the vacuum chamber 4.
【0015】前記干渉計ヘッド部5は、この例では図1
に示すように、フィゾー干渉計の光学系を構成してい
る。このヘッド部5においては、光源5aからの光は、
ハーフミラー5bを通過しコリメータレンズ5cによっ
て平行光になる。コリメータレンズ5cの前方に配され
た参照基準面5dは、ハーフミラーになっていて高精度
に作られた平面である。この参照基準面5dで反射した
光は、光源5a方向へ戻り、前記ハーフミラー5bで反
射し、レンズ5eを経て工業用TVカメラ5fに入射す
る。The interferometer head section 5 is shown in FIG.
As shown in, the optical system of the Fizeau interferometer is constructed. In this head unit 5, the light from the light source 5a is
The light passes through the half mirror 5b and is collimated by the collimator lens 5c. The reference reference surface 5d arranged in front of the collimator lens 5c is a half mirror and is a highly precise flat surface. The light reflected by the reference reference surface 5d returns toward the light source 5a, is reflected by the half mirror 5b, and enters the industrial TV camera 5f via the lens 5e.
【0016】一方、参照基準面5dを通過し、真空チャ
ンバ4の観察窓4aを通過してボンディングツール1の
先端押圧面1aに到着した光も反射して光源5a方向へ
戻り、ハーフミラー5bおよびレンズ5eを経て工業用
TVカメラ5fに入射する。このとき、参照基準面5d
からの反射光と測定面である先端押圧面1aからの反射
光とによる二つの波面での干渉がおこり、先端押圧面1
aの凹凸に応じた干渉縞を発生する。この干渉縞を工業
用TVカメラ5fによって撮像し、その干渉縞画像が干
渉縞解析部6に与えられ、干渉縞解析部6により先端押
圧面1aの測定方向における平坦度プロフィールが測定
されるようになっている。On the other hand, the light passing through the reference reference surface 5d, passing through the observation window 4a of the vacuum chamber 4 and arriving at the tip pressing surface 1a of the bonding tool 1 is also reflected and returned toward the light source 5a, and the half mirror 5b and The light enters the industrial TV camera 5f through the lens 5e. At this time, the reference reference surface 5d
The reflected light from the front surface and the reflected light from the tip pressing surface 1a, which is the measurement surface, interfere with each other in two wavefronts, and the tip pressing surface 1
Interference fringes corresponding to the unevenness of a are generated. The interference fringes are picked up by the industrial TV camera 5f, the interference fringe image is given to the interference fringe analysis unit 6, and the interference fringes analysis unit 6 measures the flatness profile of the tip pressing surface 1a in the measurement direction. Has become.
【0017】前記構成になる平坦度測定装置を用いてボ
ンディングツール1の先端押圧面1aの平坦度プロフィ
ールを次の手順にて測定した。なおこの例では、図1に
おける干渉計ヘッド部5(参照基準面5dの位置)と真
空チャンバ4内に位置されるボンディングツール1の先
端押圧面1aとの間隔距離は、約200mmであり、先
端押圧面1aと真空チャンバ4の観察窓4aとの間隔距
離は、約100mmである。The flatness profile of the tip pressing surface 1a of the bonding tool 1 was measured by the following procedure using the flatness measuring device having the above-mentioned structure. In this example, the distance between the interferometer head portion 5 (the position of the reference reference surface 5d) in FIG. 1 and the tip pressing surface 1a of the bonding tool 1 located in the vacuum chamber 4 is about 200 mm. The distance between the pressing surface 1a and the observation window 4a of the vacuum chamber 4 is about 100 mm.
【0018】〔手順1〕 まず、真空チャンバ4内にセ
ットされた被検体傾斜調整ステージ3の可動テーブル3
a上に、ボンディングツール1を支持した被検体支持台
2を載置する。図示しないヒータ線および熱電対をそれ
ぞれボンディングツール1の各装着穴1b,1cに取り
付ける。[Procedure 1] First, the movable table 3 of the subject tilt adjusting stage 3 set in the vacuum chamber 4
The subject support base 2 supporting the bonding tool 1 is placed on a. A heater wire and a thermocouple (not shown) are attached to the mounting holes 1b and 1c of the bonding tool 1, respectively.
【0019】〔手順2〕 大気雰囲気、常温(25℃)
での平坦度測定に先立ち、干渉計ヘッド部5とボンディ
ングツール1の先端押圧面1aとの光軸合わせを行う。
すなわち、干渉計ヘッド部5の参照基準面5dと測定面
である先端押圧面1aとがほぼ平行になると工業用TV
カメラ5fにて干渉縞が観察されるので、干渉縞が得ら
れるように被検体傾斜調整ステージ3によってボンディ
ングツール1の傾きを調整し、光軸合わせを行う。[Procedure 2] Atmosphere, normal temperature (25 ° C.)
Prior to the flatness measurement in 1., the optical axes of the interferometer head 5 and the tip pressing surface 1a of the bonding tool 1 are aligned.
That is, when the reference reference surface 5d of the interferometer head portion 5 and the tip pressing surface 1a which is the measurement surface are substantially parallel to each other, the industrial TV
Since the interference fringes are observed by the camera 5f, the tilt of the bonding tool 1 is adjusted by the subject tilt adjusting stage 3 so as to obtain the interference fringes, and the optical axis is aligned.
【0020】〔手順3〕 光軸合わせされた干渉計ヘッ
ド部5と干渉縞解析部6とにより、常温におけるボンデ
ィングツール1の矩形をなす先端押圧面1aの平坦度プ
ロフィールを測定する。[Procedure 3] The flatness profile of the rectangular tip pressing surface 1a of the bonding tool 1 at room temperature is measured by the interferometer head unit 5 and the interference fringe analyzing unit 6 whose optical axes are aligned.
【0021】〔手順4〕 次いで、真空チャンバ4内を
減圧して所定の真空度に維持する一方、ボンディングツ
ール1(先端押圧面1a)をその使用温度まで加熱しこ
の温度を維持する。ここで、ボンディングツール1の使
用温度が一般に400〜650℃程度の範囲であること
から、真空チャンバ4内の真空度は、平坦度測定精度の
低下を招く前述した空気のゆらぎを低減させる効果が得
られるように、1ミリTorr〜10ミリTorrの範
囲に設定すればよい。この例では、使用温度500℃に
おける平坦度プロフィールを測定することにし、真空度
は5ミリTorrに設定した。[Procedure 4] Next, the inside of the vacuum chamber 4 is decompressed to maintain a predetermined degree of vacuum, while the bonding tool 1 (tip pressing surface 1a) is heated to its operating temperature and maintained at this temperature. Here, since the operating temperature of the bonding tool 1 is generally in the range of about 400 to 650 ° C., the degree of vacuum in the vacuum chamber 4 has an effect of reducing the above-mentioned fluctuation of air that causes a decrease in accuracy of flatness measurement. It may be set in the range of 1 mmTorr to 10 mmTorr so as to be obtained. In this example, the flatness profile at a use temperature of 500 ° C. is to be measured, and the degree of vacuum is set to 5 mmTorr.
【0022】〔手順5〕 手順4での加熱にともなうボ
ンディングツール1自体の熱変形により、先端押圧面1
aが傾いて、干渉計ヘッド部5の参照基準面5dに対す
る平行関係にずれが生じるので、真空雰囲気、高温(5
00℃)での平坦度測定に先立ち、被検体傾斜調整ステ
ージ3を用いて先端押圧面1aの傾きを調整し、干渉計
ヘッド部5と高温状態にある先端押圧面1aとの光軸合
わせを行う。[Procedure 5] The tip pressing surface 1 is caused by the thermal deformation of the bonding tool 1 itself caused by the heating in the procedure 4.
Since a is inclined and the parallel relationship of the interferometer head 5 with respect to the reference reference plane 5d is deviated, a vacuum atmosphere, high temperature (5
Prior to the flatness measurement at (00 ° C.), the tilt of the tip pressing surface 1a is adjusted by using the specimen tilt adjusting stage 3 to align the optical axes of the interferometer head 5 and the tip pressing surface 1a in a high temperature state. To do.
【0023】〔手順6〕 光軸合わせの後、温度500
℃におけるボンディングツール1の矩形をなす先端押圧
面1aの平坦度プロフィールを測定する。なお、この例
では、前記手順2,3にて常温での平坦度測定を行った
が、高温での平坦度プロフィールのみが必要な場合は、
当然ながら、前記手順2,3は不要である。[Procedure 6] After the optical axis alignment, the temperature is set to 500.
The flatness profile of the rectangular tip pressing surface 1a of the bonding tool 1 at 0 ° C. is measured. In this example, the flatness measurement at room temperature was performed in steps 2 and 3 above, but if only the flatness profile at high temperature is required,
Of course, the above steps 2 and 3 are unnecessary.
【0024】高温状態にあるボンディングツール1の矩
形をなす先端押圧面1aの平坦度プロフィールの測定結
果の具体例を図3に示す。図3は温度500℃における
先端押圧面の平坦度プロフィールを示す。また比較のた
め、常温(25℃)における先端押圧面の平坦度プロフ
ィールを図4に示す。A concrete example of the measurement result of the flatness profile of the rectangular tip pressing surface 1a of the bonding tool 1 in a high temperature state is shown in FIG. FIG. 3 shows a flatness profile of the tip pressing surface at a temperature of 500 ° C. For comparison, FIG. 4 shows the flatness profile of the tip pressing surface at room temperature (25 ° C.).
【0025】図3、図4からわかるように、図4に示す
常温における平坦度測定と同様にして、500℃の高温
状態にある先端押圧面の平坦度をこの例では0.05μ
m以下の測定精度で安定に行うことができた。そして、
このボンディングツールについては、常温時では凸状面
をなす先端押圧面が500℃の高温状態では凹状面に変
化すること、常温時での平坦度(約0.95μm:凹凸
の最大値と最小値の差)に比べて高温状態での平坦度
(約0.4μm)が小さくボンディングツールとして優
れていること、などを知ることができ、この発明方法に
よるとボンディングツールの良否を正確に判断すること
ができる。As can be seen from FIGS. 3 and 4, the flatness of the tip pressing surface at a high temperature of 500 ° C. is 0.05 μm in this example in the same manner as the flatness measurement at room temperature shown in FIG.
Stable measurement was possible with a measurement accuracy of m or less. And
Regarding this bonding tool, the tip pressing surface forming a convex surface at room temperature changes to a concave surface at a high temperature of 500 ° C., and the flatness at room temperature (about 0.95 μm: maximum and minimum values of unevenness) It is possible to know that the flatness (about 0.4 μm) in a high temperature state is smaller than that of the bonding tool and is excellent as a bonding tool. According to the method of the present invention, it is possible to accurately judge the quality of the bonding tool. You can
【0026】図2はこの発明方法の実施に用いられる高
温被検体の平坦度測定装置の他の構成例を模式的に示す
構成図である。ここでは、前記干渉計に代えて光学式検
出器として光学式変位計を用い、TAB方式のボンディ
ングツールの先端押圧面の平坦度測定を行う場合につい
て説明する。FIG. 2 is a schematic diagram showing another structural example of the flatness measuring apparatus for a high temperature object used for carrying out the method of the present invention. Here, a case will be described in which an optical displacement meter is used as an optical detector instead of the interferometer to measure the flatness of the tip pressing surface of the TAB type bonding tool.
【0027】図2に示すように、この高温被検体の平坦
度測定装置は、高温被検体であるボンディングツール1
を石英ガラスよりなる図示しない断熱部材を介して支持
する被検体支持台2と、この被検体支持台2を収容する
とともに窓部として輻射熱遮断フィルタ7が取り付けら
れた真空チャンバ8と、前記輻射熱遮断フィルタ7の上
方に配設された光学式変位計9と、この光学式変位計9
を測定方向に駆動する駆動装置10とを備えて構成され
ている。As shown in FIG. 2, this flatness measuring apparatus for a high temperature object is a bonding tool 1 which is a high temperature object.
Object support base 2 for supporting the object support via a heat insulating member (not shown) made of quartz glass, a vacuum chamber 8 accommodating the object support base 2 and having a radiant heat cutoff filter 7 attached as a window portion, and the radiant heat cutoff. An optical displacement meter 9 arranged above the filter 7 and the optical displacement meter 9
And a drive device 10 for driving in the measurement direction.
【0028】前記輻射熱遮断フィルタ7は、光学式変位
計9からのレーザ光源光及びその反射光のみを透過させ
る光学フィルタ(例えば石英ガラス)が用いられてお
り、高温状態にあるボンディングツール1からの輻射熱
の赤外線は、レーザ光源光より長波長域にあるので輻射
熱遮断フィルタ7によって反射又は吸収されるようにな
っている。なお、光学式変位計9と真空チャンバ4内に
位置されるボンディングツール1の先端押圧面1aとの
間隔距離は、0.1μm以下の測定精度で平坦度測定を
行うため、約10mmに設定されている。As the radiant heat cutoff filter 7, an optical filter (for example, quartz glass) which transmits only the laser light source light from the optical displacement meter 9 and its reflected light is used. The infrared rays of the radiant heat are in a wavelength range longer than that of the light from the laser light source, and thus are reflected or absorbed by the radiant heat blocking filter 7. The distance between the optical displacement meter 9 and the tip pressing surface 1a of the bonding tool 1 located in the vacuum chamber 4 is set to about 10 mm in order to measure the flatness with a measurement accuracy of 0.1 μm or less. ing.
【0029】前記構成になる平坦度測定装置を用いてボ
ンディングツール1の先端押圧面1aの平坦度プロフィ
ールを測定する場合には、図2に示すように、被検体支
持台2上に先端押圧面1a(測定面)を光学式変位計9
側に向け、ボンディングツール1の先端押圧面1aが駆
動装置10による光学式変位計9の移動方向と平行にな
るようにボンディングツール1を載置する。そして、ボ
ンディングツール1を例えば500℃の使用温度に加熱
し、真空チャンバ8内を例えば真空度5ミリTorrに
維持し、駆動装置10により光学式変位計9を図示矢印
方向に移動させて、レーザ光により先端押圧面1aを走
査し、その反射光を検出することで先端押圧面1aの変
位量、すなわち平坦度が測定される。When the flatness profile of the tip pressing surface 1a of the bonding tool 1 is measured by using the flatness measuring device having the above-mentioned structure, as shown in FIG. 1a (measurement surface) is an optical displacement meter 9
The bonding tool 1 is mounted so that the tip pressing surface 1a of the bonding tool 1 is parallel to the moving direction of the optical displacement meter 9 driven by the drive device 10. Then, the bonding tool 1 is heated to a working temperature of, for example, 500 ° C., the inside of the vacuum chamber 8 is maintained at, for example, a vacuum degree of 5 mmTorr, and the driving device 10 moves the optical displacement meter 9 in the direction of the arrow shown in the drawing to cause laser The displacement amount of the tip pressing surface 1a, that is, the flatness is measured by scanning the tip pressing surface 1a with light and detecting the reflected light.
【0030】このように、500℃の高温状態にあるボ
ンディングツール1を真空雰囲気中に位置させた状態で
平坦度測定を行うようにしたので、測定光路での空気の
ゆらぎによる空気密度分布の変動がほとんどなくなるこ
とで測定ノイズが激減し、平坦度測定を精度良く安定に
行うことができる。また、この例のように光学式変位計
9と測定面との間隔距離を10mm程度に接近させる必
要のある場合、輻射熱遮断フィルタ7を用いることによ
り、高温被検体であるボンディングツール1からの輻射
熱が遮断され、光学式変位計9は熱ダメージによる誤動
作を起こすことがない。As described above, since the flatness measurement is performed while the bonding tool 1 at a high temperature of 500 ° C. is positioned in the vacuum atmosphere, the fluctuation of the air density distribution due to the fluctuation of the air in the measurement optical path is performed. Since the noise is almost eliminated, the measurement noise is drastically reduced, and the flatness can be measured accurately and stably. Further, when the distance between the optical displacement meter 9 and the measurement surface needs to be close to about 10 mm as in this example, the radiant heat cutoff filter 7 is used to radiate the radiant heat from the bonding tool 1 which is a high temperature object. Is blocked, and the optical displacement meter 9 does not malfunction due to heat damage.
【0031】[0031]
【発明の効果】以上述べたように、この発明による高温
被検体の平坦度測定方法によると、干渉計あるいは光学
式変位計のような光学式検出器を用いて、400〜65
0℃程度の温度範囲で使用される半導体素子実装用のボ
ンディングツールのような高温被検体の測定面の平坦度
測定に際し、高温被検体を真空雰囲気中に位置させた状
態で平坦度測定を行うようにしたものであるから、高温
被検体周囲の加熱された空気のゆらぎがほとんど発生せ
ず、光学式検出器の測定光路における空気のゆらぎによ
る空気密度分布の変動がほとんどなく、これにより測定
ノイズが大幅に減り、平坦度測定を精度良く安定に行う
ことができる。As described above, according to the method of measuring the flatness of a high temperature object according to the present invention, an optical detector such as an interferometer or an optical displacement meter is used to measure 400 to 65 degrees.
When measuring the flatness of the measurement surface of a high temperature test object such as a bonding tool for mounting a semiconductor element used in a temperature range of about 0 ° C., the flatness measurement is performed while the high temperature test object is placed in a vacuum atmosphere. As a result, fluctuations in the heated air around the high temperature subject are hardly generated, and there is almost no fluctuation in the air density distribution due to fluctuations in the air in the measurement optical path of the optical detector. Is greatly reduced, and the flatness can be measured accurately and stably.
【図1】この発明方法の実施に用いられる高温被検体の
平坦度測定装置の構成を示す構成図である。FIG. 1 is a configuration diagram showing a configuration of a flatness measuring apparatus for a high temperature object used for carrying out a method of the present invention.
【図2】この発明方法の実施に用いられる高温被検体の
平坦度測定装置の他の構成例を模式的に示す構成図であ
る。FIG. 2 is a configuration diagram schematically showing another configuration example of the flatness measuring apparatus for a high temperature object used for carrying out the method of the present invention.
【図3】温度500℃におけるボンディングツール先端
押圧面の平坦度測定結果を示す図である。FIG. 3 is a view showing a result of measuring flatness of a pressing surface of a bonding tool tip at a temperature of 500 ° C.
【図4】常温(25℃)におけるボンディングツール先
端押圧面の平坦度測定結果を示す図である。FIG. 4 is a diagram showing a measurement result of flatness of a pressing surface of a bonding tool tip at room temperature (25 ° C.).
【図5】従来技術を説明するための図である。FIG. 5 is a diagram for explaining a conventional technique.
【図6】従来技術を説明するための図である。FIG. 6 is a diagram for explaining a conventional technique.
1…ボンディングツール(高温被検体) 1a…先端押
圧面(測定面) 1b…ヒータ装着穴 1c…熱電対装
着穴 2…被検体支持台 3…被検体傾斜調整ステージ
3a…可動テーブル 3d…電動アクチュエータ 4
…真空チャンバ 4a…観察窓 5…干渉計ヘッド部 5a…光源 5b
…ハーフミラー 5c…コリメータレンズ 5d…参照
基準面 5e…レンズ 5f…工業用TVカメラ 6…
干渉縞解析部 7…輻射熱遮断フィルタ 8…真空チャ
ンバ 9…光学式変位計 10…駆動装置DESCRIPTION OF SYMBOLS 1 ... Bonding tool (high temperature test object) 1a ... Tip pressing surface (measurement surface) 1b ... Heater mounting hole 1c ... Thermocouple mounting hole 2 ... Test object support stand 3 ... Test object tilt adjusting stage 3a ... Movable table 3d ... Electric actuator Four
... vacuum chamber 4a ... observation window 5 ... interferometer head 5a ... light source 5b
... Half mirror 5c ... Collimator lens 5d ... Reference reference plane 5e ... Lens 5f ... Industrial TV camera 6 ...
Interference fringe analysis unit 7 ... Radiant heat blocking filter 8 ... Vacuum chamber 9 ... Optical displacement meter 10 ... Driving device
Claims (2)
射光を受光して測定面の形状変位情報を検出する光学式
検出器を用いて、高温被検体の測定面の平坦度を測定す
る高温被検体の平坦度測定方法において、 高温被検体を真空雰囲気中に位置させた状態で平坦度測
定を行うことを特徴とする高温被検体の平坦度測定方
法。1. A flatness of a measurement surface of a high temperature object is measured by using an optical detector which irradiates a measurement surface with light from a light source and receives reflected light to detect shape displacement information of the measurement surface. A method for measuring flatness of a high temperature object to be measured, characterized in that the flatness measurement is performed in a state where the high temperature object is positioned in a vacuum atmosphere.
この干渉計と前記高温被検体の測定面との光軸合わせを
すべく前記高温被検体を微動傾斜させその測定面の傾き
調整を行うことを特徴とする請求項1記載の高温被検体
の平坦度測定方法。2. An interferometer is used as the optical detector,
The flatness of the high temperature object according to claim 1, wherein the high temperature object is finely tilted to adjust the tilt of the measurement surface in order to align the optical axis between the interferometer and the measurement surface of the high temperature object. Degree measuring method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8076244A JPH09264733A (en) | 1996-03-29 | 1996-03-29 | Measuring method for flatness of high-temperature specimen |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8076244A JPH09264733A (en) | 1996-03-29 | 1996-03-29 | Measuring method for flatness of high-temperature specimen |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09264733A true JPH09264733A (en) | 1997-10-07 |
Family
ID=13599778
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8076244A Withdrawn JPH09264733A (en) | 1996-03-29 | 1996-03-29 | Measuring method for flatness of high-temperature specimen |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09264733A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108444679A (en) * | 2017-12-14 | 2018-08-24 | 北京空间机电研究所 | The vacuum and low temperature test device and its test method of a kind of Infrared Lens face shape |
KR20230045420A (en) * | 2021-09-28 | 2023-04-04 | 현대제철 주식회사 | System for measuring flatness of steel plate |
-
1996
- 1996-03-29 JP JP8076244A patent/JPH09264733A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108444679A (en) * | 2017-12-14 | 2018-08-24 | 北京空间机电研究所 | The vacuum and low temperature test device and its test method of a kind of Infrared Lens face shape |
CN108444679B (en) * | 2017-12-14 | 2019-11-29 | 北京空间机电研究所 | The vacuum and low temperature test device and its test method of a kind of Infrared Lens face shape |
KR20230045420A (en) * | 2021-09-28 | 2023-04-04 | 현대제철 주식회사 | System for measuring flatness of steel plate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11481887B2 (en) | Apparatuses and methods for warpage measurement | |
KR960013995B1 (en) | Method for measuring surface temperature of semiconductor wafer substrate and heat-treating apparatus | |
US5324381A (en) | Semiconductor chip mounting method and apparatus | |
JP4033939B2 (en) | Method for calibrating a temperature measurement system | |
US6504615B1 (en) | Optical instrument for measuring shape of wafer | |
JPH10166262A (en) | Polishing device | |
JPH1098084A (en) | Substrate temperature measuring method and device | |
JP2005072143A (en) | Probe unit | |
US20180283957A1 (en) | Apparatus and method to measure temperature of 3d semiconductor structures via laser diffraction | |
EP0493827B1 (en) | Sensor for semiconductor device manufacturing process control | |
JP2019519762A (en) | Apparatus and method for determining absolute thermal expansion coefficient of ultra low expansion material | |
US5872629A (en) | Analytical depth monitor utilizing differential interferometric analysis | |
JP5591565B2 (en) | Temperature measuring probe, temperature measuring system, and temperature measuring method using the same | |
JP2004069380A (en) | Apparatus for measuring coefficient of linear expansion | |
JPH09264733A (en) | Measuring method for flatness of high-temperature specimen | |
JP3814397B2 (en) | Expansion measuring device | |
Gao et al. | A precision angle sensor using a multi-cell photodiode array | |
JP2637170B2 (en) | Method and apparatus for measuring brush wear of motor | |
JP2010101808A (en) | Method and device for measuring radius of curvature | |
US7164481B2 (en) | Coefficient of linear expansion measuring apparatus and coefficient of linear expansion measuring method | |
US6051844A (en) | Scanning system for rapid thermal cycle stress/curvature measurement | |
JPH09218104A (en) | Temperature measuring device for substrate | |
JPH08178630A (en) | Measuring method for high temperature object and its device | |
WO2013050007A1 (en) | Method and apparatus for measuring shape deviations of mechanical parts | |
JP5009560B2 (en) | Apparatus for measuring the shape of a thin object to be measured |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20030603 |