JPH09264695A - Method and device for transferring heat of condensation - Google Patents

Method and device for transferring heat of condensation

Info

Publication number
JPH09264695A
JPH09264695A JP7061996A JP7061996A JPH09264695A JP H09264695 A JPH09264695 A JP H09264695A JP 7061996 A JP7061996 A JP 7061996A JP 7061996 A JP7061996 A JP 7061996A JP H09264695 A JPH09264695 A JP H09264695A
Authority
JP
Japan
Prior art keywords
condensation
heat transfer
powder particles
condensing
transfer device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7061996A
Other languages
Japanese (ja)
Inventor
Hisashi Nobunaga
尚志 延永
Junichiro Tokunaga
純一郎 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP7061996A priority Critical patent/JPH09264695A/en
Publication of JPH09264695A publication Critical patent/JPH09264695A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the heat transfer coefficient by forming the surface of condensation transfer surface in contact with the condensate element in the super-dropwise condensed condition in which no drops generated from the condensate element are adhered to easily separate the condensate from the condensation surface. SOLUTION: A paint layer 24 consisting of the powder particles (0.015-20μm) 22 of low surface tension and the binder 23 to fix the particles is formed on the surface of a base material 21 of a condensation surface of a condensation pipe. Fine rugged parts 25 are formed on the whole paint layer by projecting powder particles 22. The material of the particles 22 is silica, etc., and silicone oil, etc., is coated on the surface as the treatment agent for low surface tension. The formed condensation surface forms the super-dropwise condensed condition with a thin air film between the condensate element and the fine rugged parts, and the generated condensate is spheroidized so as to be rapidly detached from the condensation surface. Thus, the continuous heat flow of the vapor latent heat is formed to the condensation surface to remarkably improve the heat transfer coefficient.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、熱媒体の蒸気潜熱
を凝縮面に放出させて熱伝達を行う凝縮熱伝達方法とそ
の装置に関するもので、特に凝縮液の凝縮面からの離脱
を容易にする、超滴状凝縮により熱伝達性能を向上した
凝縮熱伝達装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a condensation heat transfer method and apparatus for releasing latent heat of vapor of a heat medium to a condensation surface to transfer heat, and particularly to facilitating separation of a condensate from the condensation surface. The present invention relates to a condensation heat transfer device having improved heat transfer performance by super-droplet condensation.

【0002】[0002]

【従来の技術】熱媒体の蒸気潜熱を凝縮面に放出させて
熱伝達を行う凝縮熱伝達装置は、発電プラント、大型船
舶の復水器や化学工業における各種蒸留器、ヒートパイ
プ、ヒートポンプ等に広く利用されている。これらの各
種の装置における凝縮熱伝達は、熱媒体の蒸気潜熱を凝
縮面に放出させて凝縮液化し、この凝縮を連続的に発生
させることが必要であるが、凝縮面の凝縮形態によって
は、熱伝動率に大きな差異を生ずる。
2. Description of the Related Art Condensation heat transfer devices that release the latent heat of vapor of a heat medium to a condensation surface to transfer heat are used in power plants, condensers of large ships, various distillers in the chemical industry, heat pipes, heat pumps, etc. Widely used. Condensation heat transfer in these various devices, it is necessary to release the vapor latent heat of the heat medium to the condensation surface to condense and liquefy, and to continuously generate this condensation, but depending on the condensation form of the condensation surface, It makes a big difference in the heat transfer rate.

【0003】この凝縮熱の伝達挙動には大きく分けて次
の2つの形態があり、その第1は、凝縮液が凝縮面を膜
状に覆う膜状凝縮で、第2は、凝縮液が凝縮面を滴状に
覆う滴状凝縮である。前記第1の膜状凝縮は、凝縮面が
凝縮した液で膜状で覆われ、この凝縮面の伝熱はこの液
膜を通して行われるため、この液膜が大きな伝熱抵抗と
なる。一方、第2の滴状凝縮は、凝縮液が凝縮面で滴状
に生成するために直接蒸気が凝縮面と接する部分の面積
が増大し、その結果、同一条件では前記膜状凝縮の場合
と比較して熱伝達率を十数倍高めることができる。
The transfer behavior of the heat of condensation is roughly divided into the following two forms. The first is film-like condensation in which the condensate covers the condensing surface in a film shape, and the second is the condensate is condensed. Dropwise condensation that covers the surface in drops. In the first film condensation, the condensation surface is covered with the condensed liquid in a film shape, and the heat transfer on the condensation surface is performed through the liquid film, so that the liquid film has a large heat transfer resistance. On the other hand, in the second droplet condensation, since the condensate is generated in droplets on the condensation surface, the area of the portion where the vapor directly contacts the condensation surface increases, and as a result, under the same conditions as in the case of the film condensation. In comparison, the heat transfer coefficient can be increased ten times or more.

【0004】そのため滴状凝縮に関する研究は種々検討
されており、例えば、水蒸気の滴状凝縮を発生させる方
法として以下のものがある。 凝縮面に鎖状脂肪酸類(オレイン酸、ステアリン酸
等)、アミン類、シリコーン樹脂、メルカプタン、モン
タンワックス等の促進剤を直接付着させる方法。
Therefore, various studies on the droplet condensation have been studied. For example, the following methods are available as a method for causing the droplet condensation of water vapor. A method in which a chain fatty acid (oleic acid, stearic acid, etc.), amines, silicone resin, mercaptan, montan wax, or other accelerator is directly attached to the condensation surface.

【0005】 蒸気あるいは給水中に前記の促進剤を
添加し、凝縮時に凝縮面に吸着させる方法。 凝縮面に硫化銅、硫化銀等で被覆する方法。 凝縮面表面を金、銀、ロジウム、パラジウム等の貴
金属類の薄膜によって被覆(メッキ)する方法。 凝縮面表面をフッ素樹脂によって被覆する方法。
A method in which the above-mentioned accelerator is added to steam or feed water and adsorbed on the condensation surface during condensation. A method of coating the condensation surface with copper sulfide, silver sulfide, etc. A method of coating (plating) the surface of the condensation surface with a thin film of a noble metal such as gold, silver, rhodium, or palladium. A method of coating the surface of the condensation surface with a fluororesin.

【0006】[0006]

【発明が解決しようとする課題】しかし前記従来技術に
おいては次の問題がある。即ち、の方法では促進剤が
流出し易く、耐久性に問題がある。の方法では促進剤
の補給及び回収の必要がある上、給水及び凝縮液が汚染
されたり、凝縮面が腐食したりする問題がある。の方
法では総じて硫化物には毒性があると言う問題がある。
の方法では貴金属のコストが高く、実用的ではないと
いう問題がある。の方法では経時的に被膜特性が劣化
し、長期的には初期特性を維持することができないと言
う問題を有する。
However, the above-mentioned prior art has the following problems. That is, the method (3) has a problem in durability because the accelerator easily flows out. In the method (1), it is necessary to replenish and recover the accelerator, and there are problems that the water supply and the condensate are contaminated and the condensing surface is corroded. However, there is a problem that sulfide is toxic in general.
The method (1) has a problem that the cost of the precious metal is high and it is not practical. The method (1) has a problem that the film characteristics deteriorate with time and the initial characteristics cannot be maintained in the long term.

【0007】さらに従来技術すべてにおいて、凝縮面に
対する凝縮液の接触角はまだ十分大きいとは言えず、そ
のために凝縮液は凝縮面でかなり接触して面上で広がろ
うとする性質を持ち、凝縮液は凝縮面に一部が付着して
球を押しつぶした切欠球状を形成している。例えば、凝
縮面にフッ素樹脂の被覆をして形成し、凝縮液として水
を使用した場合についていえば、接触角は高々110°
程度であり、凝縮液が凝縮面に付着し易く、そのために
熱伝達率の高い滴状凝縮は未だ実現されていないのであ
る。
Furthermore, in all the prior arts, the contact angle of the condensate with respect to the condensing surface is not yet sufficiently large, so that the condensate has a property of coming into considerable contact with the condensing surface and spreading on the surface, A part of the liquid adheres to the condensing surface to form a notched sphere that crushes the sphere. For example, in the case where water is used as the condensate when the condensing surface is coated with a fluororesin, the contact angle is at most 110 °.
However, the condensate is likely to adhere to the condensing surface, and thus droplet condensation with high heat transfer coefficient has not been realized yet.

【0008】そこで本発明は前記従来技術の問題点を解
決するもので、その目的とするところは、凝縮液成分と
の間に「薄い空気膜」を形成する、いわゆる「超滴状凝
縮状態」を発現させ、その結果、凝縮液を凝縮面から容
易に離脱させることによって熱伝達率を向上させるとい
う、従来技術にない凝縮熱伝達の方法とその装置を提供
するところにある。また、前述の問題解決ばかりではな
く新たなデバイスの創造に寄与するところにある。
The present invention solves the above-mentioned problems of the prior art. The object of the present invention is to form a "thin air film" with the condensate component, that is, a so-called "super-droplet condensed state". Therefore, it is an object of the present invention to provide a condensing heat transfer method and a device therefor, which are not present in the prior art, in which the heat transfer coefficient is improved by easily releasing the condensate from the condensing surface. In addition to solving the above problems, it also contributes to the creation of new devices.

【0009】[0009]

【課題を解決するための手段】本発明の凝縮熱伝達の方
法とその装置は次のように構成されている。 A)凝縮熱伝達装置を構成している凝縮面に、表面を低
表面張力の材料で形成し、かつ微細な凹凸部を有し、凝
縮液成分と接液した時に前記凝縮液成分と前記微細な凹
凸部との間に空気膜形成能を有する被膜を形成させるこ
とによって凝縮液を凝縮面(熱伝達面)に付着させない
ように構成したことを特徴とする。
The method and apparatus for condensing heat transfer of the present invention is constructed as follows. A) The condensing surface constituting the condensing heat transfer device has a surface formed of a material having a low surface tension and has fine irregularities, and when contacted with the condensate component, the condensate component and the fine component are contacted. It is characterized in that a condensate is prevented from adhering to the condensing surface (heat transfer surface) by forming a film having an air film forming capability between the concavo-convex portion and the rough surface.

【0010】B)凝縮面を形成する低表面張力の材料
は、少なくとも表面に低表面張力化を施した疎水性粉体
粒子、またはポリテトラフルオロエチレン(以下、PT
FEと称す)粉体粒子の中から選ばれた1種または2種
以上から構成されている。 C)また、凝縮熱伝達装置は、微細な凹凸部が低表面張
力の材料自体で形成されている。
B) The low surface tension material forming the condensing surface is a hydrophobic powder particle having a low surface tension at least on its surface, or polytetrafluoroethylene (hereinafter referred to as PT).
It is composed of one or more selected from powder particles (referred to as FE). C) Further, in the condensation heat transfer device, the fine concavo-convex portion is formed of the material itself having a low surface tension.

【0011】D)さらに、凝縮面には、微細な凹凸部
が、少なくとも機械加工、転造加工、フォトリソ加工、
高密度エネルギー加工の中から選ばれた1種または2種
以上により形成され、そしてこの微細な凹凸部表面を低
表面張力を有する材料で被覆されている。 E)また、凝縮面に塗料層を形成し、この塗料層の表面
に粉体粒子を出するように固定し、前記塗料層より突出
している前記粉体粒子が、少なくとも表面に低表面張力
化を施した疎水性粉体粒子、またはPTFE粉体粒子の
中から選ばれた1種または2種以上で構成されている。
D) Further, fine concavo-convex portions are formed on the condensing surface at least by machining, rolling, photolithography,
It is formed by one kind or two or more kinds selected from high-density energy processing, and the surface of the fine uneven portion is covered with a material having a low surface tension. E) Further, a paint layer is formed on the condensing surface, and powder particles are fixed on the surface of the paint layer so as to be exposed, and the powder particles protruding from the paint layer have a low surface tension at least on the surface. It is composed of one kind or two or more kinds selected from the hydrophobic powder particles subjected to the above, or the PTFE powder particles.

【0012】F)また、凝縮面に塗料層を形成し、この
塗料層の表面に粉体粒子を突出するように固定し、この
表面を低表面張力を有する材料で被覆して構成されてい
る。 G)さらに、凝縮面にメッキ層を形成し、このメッキ層
の表面に粉体粒子を突出するように共析メッキし、前記
メッキ層より突出している粉体粒子が、少なくとも表面
に低表面張力化を施した疎水性粉体粒子、またはPTF
Eの粉体粒子の中から選ばれた1種または2種以上で構
成されている。
F) Further, a coating layer is formed on the condensing surface, powder particles are fixed to the surface of the coating layer so as to project, and the surface is coated with a material having a low surface tension. . G) Further, a plating layer is formed on the condensing surface, and eutectoid plating is performed on the surface of the plating layer so as to project powder particles, and the powder particles protruding from the plating layer have a low surface tension at least on the surface. Hydrophobic powder particles or PTF
It is composed of one kind or two or more kinds selected from the powder particles of E.

【0013】前記のように、本発明による凝縮熱伝達装
置を形成している凝縮面は、表面が低表面張力の材料で
形成され、かつ微細な凹凸部を有し、超滴状凝縮状態を
形成する表面に加工されている点に特徴がある。その結
果、凝縮面と球状に凝縮した凝縮液との接触面積が著し
く小さくなり、凝縮液成分と接触した時、この微細な凹
凸部に空気中で予め付着していた空気が封じ込められ、
保持された状態となる。即ち、この表面を凝縮液成分液
中に浸漬させると、その表面に空気を保持する。そして
この空気が表面で薄い膜状になって、いわゆる空気膜の
状態で存在し、その空気膜の部分で光が全反射して凝縮
面が銀色に見えることになる。
As described above, the condensing surface forming the condensing heat transfer device according to the present invention has a surface formed of a material having a low surface tension, has fine irregularities, and has a super-droplet condensed state. The feature is that it is processed on the surface to be formed. As a result, the contact area between the condensate condensed on the condensing surface and the sphere becomes extremely small, and when it comes into contact with the condensate component, the air that was previously attached in the air to these fine irregularities is contained.
The state is held. That is, when this surface is immersed in the condensate component liquid, air is retained on the surface. Then, this air becomes a thin film on the surface and exists in the state of a so-called air film, and light is totally reflected at the part of the air film, so that the condensation surface looks silver.

【0014】逆に、この凝縮面に凝縮液成分液を載せる
と、液体はその表面張力作用で球状となって凝縮面に形
成されている微細な凸部の上に持ち上げられ、あたか
も、ころころと水銀のように転がることを確認できる。
したがって、凝縮面に、凝縮液成分との間に空気膜形成
能を有する被膜を形成させることにより、熱交換によっ
て生成した凝縮液を凝縮面で水銀のように球状化させ、
凝縮面からの離脱を容易にすることができる。いわば、
超滴状凝縮状態を現出し、生成した凝縮液は大きな水滴
となることなく、速やかに凝縮面から転落離脱し、直接
蒸気が凝縮面と接触する部分の面積が著しく増大し、蒸
気潜熱の凝縮面への連続した熱の流れの形成により熱伝
達率を飛躍的に向上させることができる。
On the contrary, when the condensate component liquid is placed on this condensing surface, the liquid becomes spherical due to the surface tension action and is lifted up to the fine convex portion formed on the condensing surface, as if rolling. You can see that it rolls like mercury.
Therefore, by forming a film having the ability to form an air film with the condensate component on the condensing surface, the condensate produced by heat exchange is spheroidized like mercury on the condensing surface,
The separation from the condensation surface can be facilitated. So to speak
The ultra-drop-like condensed state appears, the generated condensate does not become large water droplets, and quickly falls off the condensing surface and the area where the direct steam contacts the condensing surface significantly increases, condensing the vapor latent heat. By forming a continuous heat flow on the surface, the heat transfer coefficient can be dramatically improved.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面に基づいて詳細に説明する。図1は本発明の一実
施例を示す凝縮熱伝達装置の概略図であり、この実施の
形態では水蒸気凝縮に関するものである。蒸気発生器1
で発生した水蒸気はセパレータ2を経由して凝縮室3内
に供給される。凝縮管4は凝縮室3を横切って設けられ
ており、この凝縮管4の表面が凝縮面5を形成してい
る。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a schematic diagram of a condensing heat transfer device showing an embodiment of the present invention, and in this embodiment, it relates to steam condensation. Steam generator 1
The steam generated in 1 is supplied into the condensing chamber 3 via the separator 2. The condensing pipe 4 is provided across the condensing chamber 3, and the surface of the condensing pipe 4 forms a condensing surface 5.

【0016】この凝縮管4は銅製で外形19mm、内径
17mm、伝熱部分の長さ1000mmであり、凝縮面
5の表面に本発明の空気膜形成能を有する被膜が形成さ
れている。この凝縮管4において凝縮液が発生するの
で、その下方に凝縮液コレクタ6を配置して凝縮液を捕
集するようになっている。冷却水は、ポンプ11で圧送
され、冷却用恒温漕7、フローメータ8、混合室9を経
て凝縮管4内に供給され、この凝縮管4を通過後は混合
室10を通ってポンプ11に戻るようになっている。
The condensing tube 4 is made of copper and has an outer diameter of 19 mm, an inner diameter of 17 mm, and a heat transfer portion length of 1000 mm, and the condensing surface 5 has a film having the air film forming ability of the present invention formed on the surface thereof. Since a condensate is generated in the condensing pipe 4, a condensate collector 6 is arranged below the condensate to collect the condensate. The cooling water is pumped by the pump 11, supplied to the inside of the condensing pipe 4 through the cooling constant temperature bath 7, the flow meter 8, and the mixing chamber 9, and after passing through the condensing pipe 4, passes through the mixing chamber 10 to the pump 11. I'm supposed to come back.

【0017】凝縮管4の凝縮面5の伝熱量は、冷却水が
凝縮管4を通過する際の温度上昇と冷却水量から求め
た。また、凝縮液が凝縮する形態観察は、導電性ガラス
に通電して曇るのを防止した覗き窓を通して行った。次
にこの実施の形態において凝縮面5の表面に形成した空
気膜形成能を有する被膜およびその形成方法について説
明する。
The amount of heat transfer on the condensing surface 5 of the condensing pipe 4 was obtained from the temperature rise and the amount of cooling water when the cooling water passed through the condensing pipe 4. In addition, the morphological observation of condensation of the condensate was carried out through a viewing window in which the conductive glass was energized to prevent fogging. Next, a film having an air film forming ability formed on the surface of the condensation surface 5 in this embodiment and a method for forming the film will be described.

【0018】図2は、空気膜形成能を有する被膜を塗装
方式で形成した場合の一実施の形態を示す模式的断面図
である。21は凝縮面基材で、この場合は凝縮管4の表
面部分を示しており、この凝縮面基材21の表面に、低
表面張力の材料である粉体粒子22と粉体粒子22を固
定させるためのバインダ23からなる塗料層24が形成
される。そしてこの塗料層24上に、低表面張力の材料
である粉体粒子22が突出するように形成され、全体と
して微細な凹凸部25を有している。
FIG. 2 is a schematic cross-sectional view showing an embodiment in which a coating film having an air film forming ability is formed by a coating method. Reference numeral 21 denotes a condensing surface base material, which in this case indicates the surface portion of the condensing surface base material 4. On the surface of the condensing surface base material 21, the powder particles 22 and the powder particles 22 which are low surface tension materials are fixed. A paint layer 24 made of a binder 23 is formed. Then, on the coating layer 24, the powder particles 22 that are a material having a low surface tension are formed so as to project, and have fine irregularities 25 as a whole.

【0019】この凹凸部25は定った形状はないが、粉
体粒子22の形成する小さな凹凸と、この粉体粒子22
がバインダ23に埋め込まれて形成された大きな凹凸の
二重構造の凹凸を形成している。詳述すれば、凝縮面基
材21は、各種凝縮熱伝達装置の使用目的、用途に応じ
てその形状、構造、材質等が適宜決定されるものであ
る。例えば、形状については管状や板状であり、構造に
ついては複数の管や隔壁で区切った構造の、熱交換器が
あり、凝縮面基材21の材質はアルミニウム、ステンレ
ス、銅、銅合金、ニッケル、チタン等が挙げられる。
Although the uneven portion 25 has no fixed shape, the small unevenness formed by the powder particles 22 and the powder particles 22.
Form a double-structured concavo-convex structure having a large concavo-convex structure formed by being embedded in the binder 23. More specifically, the condensing surface base material 21 has its shape, structure, material, etc. appropriately determined according to the purpose and application of various condensing heat transfer devices. For example, there is a heat exchanger having a tubular or plate-like shape and a structure divided by a plurality of tubes or partition walls, and the material of the condensation surface base material 21 is aluminum, stainless steel, copper, copper alloy, nickel. , Titanium and the like.

【0020】粉体粒子22は、表面に低表面張力化を施
した疎水性粉体粒子、またはPTFE粉体粒子が使用さ
れ、前者としては、例えばシラン化合物を用いた疎水性
シリカが挙げられる。また疎水性粉体粒子の材質は、基
本的には粉体粒子表面を低表面張力化処理できるもので
あれば良く、シリカ粒子の他には、例えばアルミナ、チ
タニア等の無機系粒子、ポリメタクリル酸メチル、ポリ
エステル等の有機系粒子、アルミニウム等の金属系粒子
が用いられる。
As the powder particles 22, hydrophobic powder particles whose surface is made to have a low surface tension or PTFE powder particles are used, and the former includes, for example, hydrophobic silica using a silane compound. Further, the material of the hydrophobic powder particles may basically be any one capable of lowering the surface tension of the powder particle surface. In addition to silica particles, for example, inorganic particles such as alumina and titania, and polymethacryl Organic particles such as methyl acid and polyester, and metal particles such as aluminum are used.

【0021】粉体粒子22の表面の低表面張力化処理剤
としては、シラン、シラザン、シリコーンオイル等のシ
ラン化合物、チタネート系カップリング剤、アミン・ア
ミド類、アルコール・グリコール類等があり、さらに言
えば、含フッ素系処理剤で処理した粉体粒子を用いた方
が総じて空気膜形成能、耐久性が高く、好ましい。ただ
し、優れた空気膜形成能を有するためには、表面処理剤
により粉体粒子2表面の親水部を極力被覆する必要があ
り、粉体粒子22と処理剤とのマッチングを取る必要が
ある。
As the surface tension reducing agent for the surface of the powder particles 22, there are silane compounds such as silane, silazane and silicone oil, titanate coupling agents, amine amides, alcohols and glycols. In other words, it is preferable to use the powder particles treated with the fluorine-containing treatment agent because the air film forming ability and the durability are generally high. However, in order to have an excellent air film forming ability, it is necessary to cover the hydrophilic portion of the surface of the powder particles 2 with the surface treatment agent as much as possible, and it is necessary to match the powder particles 22 with the treatment agent.

【0022】粉体粒子22の表面処理方法及びこの処理
に関する条件は特に限定されるものではなく、使用する
粉体粒子22や表面処理剤の種類、材料特性等により適
宜行えば良い。さらに、粉体粒子表面の完全疎水化を施
す目的から、粉体粒子表面を表面処理剤で多段階処理し
たり、多種類の表面処理剤を用いたり、粒子表面を低表
面張力に表面処理した後、さらにF2 ガス等を用いてフ
ッ素化しても良い。
The method for treating the surface of the powder particles 22 and the conditions relating to this treatment are not particularly limited, and may be appropriately selected depending on the type of the powder particles 22 and the surface treatment agent to be used, material characteristics and the like. Further, for the purpose of completely hydrophobizing the surface of the powder particles, the surface of the powder particles is subjected to a multi-step treatment with a surface treatment agent, or various kinds of surface treatment agents are used, or the surface of the particles is subjected to a low surface tension treatment. After that, it may be further fluorinated by using F 2 gas or the like.

【0023】粉体粒子22は微細な粒子であり、平均粒
径が0.015μm〜20μm、好ましくは0.1μm
〜10μmの範囲のものが良い。前記範囲より大きいと
凝縮液の転落離脱は容易であるが、粉体粒子22を含め
た塗料層24が厚くなり、凝縮液の転落離脱の容易性の
効果より被膜自体の伝熱抵抗の増大の影響の方が大きく
なり、好ましくない。また、粒径が前記範囲より小さい
と凝縮面基材21に凹凸構造を形成した時、凹凸部が小
さく表面構造が平滑になり過ぎて、凝縮液との接触面積
が大きくなり、空気膜形成能が劣り、凝縮液の離脱がス
ムーズに行われなかったり、耐久性に劣ったりする。
The powder particles 22 are fine particles having an average particle diameter of 0.015 μm to 20 μm, preferably 0.1 μm.
The range of 10 μm is preferable. If it is larger than the above range, the condensate can easily fall off, but the coating layer 24 including the powder particles 22 becomes thicker, and the heat transfer resistance of the coating film can be increased due to the effect of facilitating the fall off of the condensate. The impact is greater, which is not preferable. Further, when the particle size is smaller than the above range, when the concavo-convex structure is formed on the condensing surface base material 21, the concavo-convex portion is small and the surface structure becomes too smooth, so that the contact area with the condensate becomes large and the air film forming ability is increased. Is inferior, the desorption of the condensate is not performed smoothly, and the durability is poor.

【0024】バインダ23は粉体粒子22を固定するた
めに用いられるものであり、凝縮面基材21の材質との
密着性や耐凝縮液性、塗装性、材料の熱抵抗等を考慮し
て適宜選択すれば良く、例えばシリコーン樹脂、フッ素
樹脂、エポキシ樹脂、アクリル樹脂等が挙げられる。そ
して、形成方法としては、まずバインダ23としてシリ
コーン樹脂を用い、このシリコーン樹脂をコーティング
剤に対し、パーフルオロアルキルシランで低表面張力化
を施した平均粒径1μmの疎水性シリカ粉体粒子22を
コーティング剤中の固形分に対して、30重量%添加し
て、十分攪拌、分散させた。次に、これを凝縮面基材2
1表面に塗布し、乾燥硬化させ、表面に微細凹凸構造を
有する空気膜形成能を有する厚さ5μmの被膜を形成さ
せた。
The binder 23 is used for fixing the powder particles 22, and in consideration of adhesion with the material of the condensation surface base material 21, condensation liquid resistance, paintability, heat resistance of the material, etc. It may be appropriately selected, and examples thereof include silicone resin, fluororesin, epoxy resin, and acrylic resin. As a forming method, first, a silicone resin is used as a binder 23, and the hydrophobic silica powder particles 22 having an average particle diameter of 1 μm are obtained by subjecting this silicone resin to a coating agent to reduce the surface tension with perfluoroalkylsilane. 30% by weight was added to the solid content in the coating agent, and the mixture was sufficiently stirred and dispersed. Next, this is condensed surface substrate 2
It was applied to one surface, dried and cured to form a film having a thickness of 5 μm and having an air film forming ability having a fine concavo-convex structure on the surface.

【0025】上述したが被膜が厚くなり過ぎると、凝縮
液の転落離脱の容易性の効果より被膜自体の伝熱抵抗の
増大の影響の方が大きくなるので、被膜厚さは凝縮面基
材との密着性、空気膜形成能、被膜の伝熱抵抗等を考慮
してマッチングを取る必要がある。本発明の凝縮熱伝達
装置における凝縮面への空気膜形成能を有する被膜の形
成方法は、基本的には凝縮面基材21表面を少なくとも
低表面張力の材料で形成し、かつ微細な凹凸部を有する
構造で形成できる方法であれば良い。
As described above, if the coating becomes too thick, the effect of increasing the heat transfer resistance of the coating itself is greater than the effect of facilitating the falling off of the condensate. It is necessary to take into consideration the adhesion, the air film forming ability, the heat transfer resistance of the film, and the like to obtain matching. The method for forming a coating film having the ability to form an air film on the condensation surface in the condensation heat transfer device of the present invention is basically such that the surface of the condensation surface substrate 21 is formed of at least a material having a low surface tension, and fine irregularities are formed. Any method capable of forming a structure having

【0026】具体的には、本実施の形態の凝縮面基材表
面に塗料層を形成し、この塗料層の表面に低表面張力化
を施した粉体粒子を突出するように形成させる方法があ
る。さらには、他に例えば大別して次の3つの形成方法
がある。 まず凝縮面基材表面に塗料層を形成し、この塗料層
の表面に粉体粒子を突出するように固定し、予め表面に
微細な凹凸を形成しておき、次にこの表面を低表面張力
を有する材料で被覆処理する。この場合、粉体粒子は後
で低表 面張力化処理ができるものであれば親水性材料
であってもかまわない。 まず凝縮面基材表面を機械加工、転造加工、フォト
リソ加工、高密度エネルギー加工等を行い、予め表面に
微細な凹凸を形成しておき、次にこの表面を低表面張力
を有する材料で被覆処理し、形成する。
Specifically, a method of forming a paint layer on the surface of the condensing surface substrate of this embodiment and forming powder particles having a low surface tension on the surface of the paint layer so as to project is there. Furthermore, there are the following three forming methods, for example. First, a paint layer is formed on the surface of the condensing surface, the powder particles are fixed to the surface of the paint layer so as to project, and fine irregularities are formed on the surface in advance. Coating with a material having In this case, the powder particles may be hydrophilic materials as long as they can be subjected to the surface tension lowering treatment later. First, the condensation surface substrate surface is machined, rolled, photolithographically processed, high-density energy processed, etc. to form fine irregularities on the surface in advance, and then this surface is coated with a material having low surface tension. Process and form.

【0027】この場合、凝縮面基材表面に直接微細な凹
凸形状付与加工を行っても良いが、例えば合成樹脂等を
介して、これを微細な凹凸形状付与用表面材料としても
良い。さらには、予め低表面張力材料を有する材料で凝
縮面基材表面を被覆し、この表面を微細な凹凸形状付与
加工しても良い。 凝縮面基材にメッキ層を形成し、このメッキ層の表
面に粉体粒子を突出するように共析メッキし、前記メッ
キ層より突出している前記粉体粒子が少なくとも表面に
低表面張力化を施した疎水性粉体粒子、またはPTFE
粉体粒子からなる微細な凹凸を有する被膜を形成する。
親水性粉体粒子を用いて共析メッキした場合は後で低表
面張力化処理を行う。
In this case, fine concavo-convex shape imparting processing may be performed directly on the surface of the condensing surface substrate, but it may be used as a surface material for imparting fine concavo-convex shape, for example, through a synthetic resin. Further, the surface of the condensing surface substrate may be coated with a material having a low surface tension material in advance, and the surface may be processed to have fine irregularities. A plating layer is formed on the condensation surface base material, and eutectoid plating is performed so that powder particles are projected on the surface of the plating layer, and the powder particles protruding from the plating layer have a low surface tension at least on the surface. Hydrophobic powder particles or PTFE
A coating film having fine irregularities made of powder particles is formed.
In the case of eutectoid plating using hydrophilic powder particles, a low surface tension treatment is performed later.

【0028】(試験例)このようにして形成された空気
膜形成能を有する表面に種々の液体を接触させた時の空
気膜形成特性を評価した。評価方法としては、イ)本実
施の形態の表面,ロ)板状のPTFE樹脂表面,ハ)シ
リコーン樹脂コーティング剤を塗布して形成した表面…
の3種類の表面を有する試験片を準備した。そしてこれ
らの試験片を水、有機溶剤等各種の液体中に浸漬して、
その表面に空気膜が形成されるかどうかを観察した。
Test Example The air film forming characteristics when various liquids were brought into contact with the surface having the air film forming ability thus formed were evaluated. The evaluation methods include a) the surface of the present embodiment, b) a plate-shaped PTFE resin surface, and c) a surface formed by applying a silicone resin coating agent ...
A test piece having three types of surfaces was prepared. Then, dip these test pieces in various liquids such as water and organic solvent,
It was observed whether an air film was formed on the surface.

【0029】これらの結果を表1に示す。表1が示すと
おり、本実施の形態の表面には、供試液体の内、エタノ
ール以外のすべての液体中で空気膜が形成され、表面が
銀色を呈するのが確認された。この空気膜は簡単には剥
離することがなく、表面に空気膜を保持していた。また
この表面に液滴を滴下させると、同じく供試液体の内、
エタノール以外のすべての液体が表面上をころころと水
銀のように転がるのが観察された。
The results are shown in Table 1. As shown in Table 1, it was confirmed that on the surface of the present embodiment, an air film was formed in all liquids other than ethanol among the liquids under test, and the surface exhibited silver color. This air film was not easily peeled off, and the air film was retained on the surface. Also, when a droplet is dropped on this surface,
It was observed that all liquids, except ethanol, rolled around the surface, rolling like mercury.

【0030】 [0030]

【0031】そして、水平にした表面上に30μlの供
試液体を接触させ、次いで表面を徐々に傾けていき、球
状になった液体が転がり落ちた時の表面の傾斜角を、液
体の転落角とすると、エタノール以外のすべての液体で
転落角は1°〜3°であり、少しでも傾けるところころ
と転落して行った。一方、板状のPTFE樹脂表面およ
びシリコーン樹脂コーティング剤を塗布して形成した表
面について前記の方法で空気膜の形成の有無を確認した
が、いずれの表面にも供試液体中で空気膜は形成されな
かった。
Then, 30 μl of the test liquid was brought into contact with the leveled surface, and then the surface was gradually tilted, and the inclination angle of the surface when the spherical liquid rolled down was determined by the falling angle of the liquid. Then, all liquids other than ethanol had a falling angle of 1 ° to 3 °, and even if it was slightly tilted, it fell down. On the other hand, whether or not an air film was formed on the plate-shaped PTFE resin surface and the surface formed by applying the silicone resin coating agent was confirmed by the above method. An air film was formed in the test liquid on both surfaces. Was not done.

【0032】また、液滴を滴下させても表面をころころ
転がることはなく、転落角も90°に傾けても落下せ
ず、表面から落下させるには30μlよりかなり多量の
供試液体を接触させる必要があり、しかも、すじ状に垂
れながら下に流れていくといった状態であった。なお、
本試験例で供試した液体以外にも空気膜が形成できる液
体であれば、超滴状凝縮が可能となり、凝縮液として使
用でき、特に限定されるものではない。
Further, even if the liquid droplet is dropped, the surface does not roll around, and even if the falling angle is tilted at 90 °, it does not drop. To drop it from the surface, a considerably large amount of test liquid of more than 30 μl is contacted. It was necessary, and it was in a state where it drooped like a streak and flowed downward. In addition,
In addition to the liquids tested in this test example, any liquid capable of forming an air film is capable of super-droplet condensation and can be used as a condensed liquid, and is not particularly limited.

【0033】前述の種々の観点に従って本実施の形態の
空気膜形成能を有する被膜を実際の凝縮面5表面に形成
し、これを水蒸気凝縮に使用し、その伝熱性能を調べ
た。凝縮実験として、まず冷却水入口温度を30℃、流
速1.2m/sとし、次いで凝縮室3に温度100℃の
水蒸気を導入し、定常状態になった後、冷却水出口温度
を測定した。
According to the above-mentioned various points of view, a film having the ability to form an air film of the present embodiment was formed on the actual surface of the condensation surface 5 and used for steam condensation, and the heat transfer performance was investigated. As a condensation experiment, first, the cooling water inlet temperature was set to 30 ° C. and the flow velocity was 1.2 m / s. Then, steam having a temperature of 100 ° C. was introduced into the condensing chamber 3, and after the steady state was reached, the cooling water outlet temperature was measured.

【0034】凝縮形態は、超滴状凝縮形態を示し、凝縮
管外周に凝縮した水はまるでミクロガラスビーズのよう
に真球状の水滴となって凝縮面を覆い、その中で少し大
きく成長した水滴が外周に沿って移動を始めると、周囲
の水滴を合体させながら瞬く間に表面を転って落下し
た。このような現象が凝縮管外周の至るところで繰り返
され、長く凝縮面に留まることはなかった。また、被膜
は耐久性に優れており、8000時間以上超滴状凝縮形
態を維持できている。
The condensed form shows a super-drop-like condensed form, in which the water condensed on the outer circumference of the condenser tube becomes a spherical drop like a micro glass bead and covers the condensed surface, and a drop that grows a little larger in it. When he started moving along the outer circumference, he fell on the surface in a blink of an eye while coalescing the surrounding water droplets. Such a phenomenon was repeated everywhere on the outer circumference of the condensing tube and did not stay on the condensing surface for a long time. Further, the coating film has excellent durability and can maintain the ultra-drop-like condensed form for 8,000 hours or more.

【0035】この時、冷却水出口温度は48.8℃で冷
却水入口温度より18.8℃上昇していた。これより、
伝熱量は18,398kcal/hであった。 〔比較例1〕比較のため空気膜形成能を有する表面の代
わりに、被膜形成のない未処理の銅管を用い、同様の凝
縮実験を行った。凝縮形態は凝縮水が銅管の外周を全面
濡れた形で膜状に覆い、いわゆる膜状凝縮の形態を示し
た。
At this time, the cooling water outlet temperature was 48.8 ° C., which was 18.8 ° C. higher than the cooling water inlet temperature. Than this,
The amount of heat transfer was 18,398 kcal / h. [Comparative Example 1] For comparison, the same condensation experiment was performed using an untreated copper tube without a film formation, instead of the surface having an air film forming ability. Regarding the condensation form, condensed water covered the outer circumference of the copper pipe in a film-like form in a wet state, and showed a so-called film-like condensation form.

【0036】この時、冷却水出口温度は44.8℃で、
冷却水入口温度より14.8℃上昇していた。これよ
り、伝熱量は14,484kcal/hであった。 〔比較例2〕比較のため銅管表面を厚さ2μmのPTF
E樹脂被膜で形成した凝縮管を用い、同様の凝縮実験を
行った。凝縮形態はいわゆる滴状凝縮の形態を示し、凝
縮水が凝縮管の外周を滴状に覆い、そして成長した水滴
が下方に移動し始めると周囲の水滴と合体し、比較的ゆ
っくりとした速度で外周を伝わってすじ状に垂れてきて
管底部に溜まり、その量が一定量以上になると管底部か
ら水滴となって落下した。 この時、冷却水出口温度は
47.5℃で、冷却水入口温度より17.5℃上昇して
いた。これより、伝熱量は17,126kcal/hであっ
た。
At this time, the cooling water outlet temperature was 44.8 ° C.
It was 14.8 ° C. higher than the cooling water inlet temperature. From this, the amount of heat transfer was 14,484 kcal / h. [Comparative Example 2] For comparison, the surface of a copper tube was coated with PTF having a thickness of 2 μm
A similar condensation experiment was conducted using a condenser tube formed of the E resin coating. The condensed form shows a so-called drop condensation form, in which condensed water covers the outer circumference of the condensation tube in a drop shape, and when the grown water drops start moving downward, they coalesce with the surrounding water drops and at a relatively slow speed. It fell down like a streak along the outer circumference and accumulated at the bottom of the tube, and when the amount exceeded a certain amount, it dropped as water droplets from the bottom of the tube. At this time, the cooling water outlet temperature was 47.5 ° C., which was 17.5 ° C. higher than the cooling water inlet temperature. From this, the amount of heat transfer was 17,126 kcal / h.

【0037】尚、PTFE樹脂被膜の滴状凝縮の持続時
間は2000時間程度であり、その後は膜状凝縮形態と
なった。以上の比較試験から、凝縮熱伝達装置の凝縮面
に空気膜形成能を有する被膜を形成した凝縮管の伝熱量
は、膜状凝縮の銅管に比べて27%、滴状凝縮のPTF
E樹脂被膜で形成した凝縮管に比べて7.4%それぞれ
増加し、優れた熱伝達性能を示した。
The duration of droplet condensation of the PTFE resin coating was about 2000 hours, and thereafter the film condensation form was obtained. From the above comparison test, the heat transfer amount of the condensation tube having the film having the air film forming ability on the condensation surface of the condensation heat transfer device is 27% as compared with the copper tube of film condensation, and the PTF of droplet condensation is
The heat transfer performance was 7.4% higher than that of the condensing tube formed with the E resin coating, and showed excellent heat transfer performance.

【0038】また、本発明の空気膜形成能を有する被膜
は、PTFE樹脂被膜に比べて、はるかに耐久性が優れ
ていた。尚、本発明の凝縮熱伝達装置は、上述の実施の
形態にのみ限定されるものではなく、本発明の要旨を逸
脱しない範囲においては種々変更を加え得ることは勿論
である。
Further, the coating film having the ability to form an air film of the present invention was far more excellent in durability than the PTFE resin coating film. The condensation heat transfer device of the present invention is not limited to the above-described embodiment, and it goes without saying that various modifications can be made without departing from the scope of the present invention.

【0039】[0039]

【発明の効果】本発明に係る凝縮熱伝達の方法は、凝縮
液成分と接触する凝縮熱伝達面を、この凝縮液成分が凝
縮して発生した液滴が実質的に付着しない超滴状凝縮状
態を形成する表面に形成し、この凝縮熱伝達面に凝縮液
成分を送給して凝縮液成分と熱交換させるように構成さ
れている。
EFFECTS OF THE INVENTION The method of condensation heat transfer according to the present invention is a super drop condensation in which the condensation heat transfer surface in contact with the condensate component does not substantially adhere to the liquid droplets generated by the condensation of the condensate component. The condensate component is formed on the surface forming the state, and the condensate component is fed to the condensate heat transfer surface to exchange heat with the condensate component.

【0040】また、本発明に係る凝縮熱伝達装置は、凝
縮熱伝達装置の凝縮面に、表面が低表面張力の材料から
なり、かつ微細な凹凸部を有し、凝縮液成分と接液した
時、この凝縮液成分と前記微細な凹凸部との間に、薄い
空気膜を形成する特性を有する被膜を形成させるように
構成されている。従って、凝縮面と凝縮液との接触面積
が著しく小さくなり、その結果、生成した凝縮液は凝縮
面で水銀のように球状化し、凝縮面からの離脱を容易に
することができる。
In the condensation heat transfer device according to the present invention, the condensing surface of the condensation heat transfer device is made of a material having a low surface tension and has fine irregularities, which come into contact with the condensate component. At this time, a film having a characteristic of forming a thin air film is formed between the condensate component and the fine irregularities. Therefore, the contact area between the condensing surface and the condensate becomes remarkably small, and as a result, the generated condensate is spheroidized like mercury on the condensing surface and can be easily separated from the condensing surface.

【0041】このような超滴状凝縮状態により、生成し
た凝縮液は大きな水滴となることなく、速やかに凝縮面
から転落離脱するので、直接蒸気が凝縮面と接触する部
分の面積が著しく増大し、蒸気潜熱の凝縮面への連続し
た熱の流れの形成により熱伝達率を飛躍的に向上させる
ことができる。また、本発明の凝縮熱伝達装置は、優れ
た耐久性を有し、長期に亘って、安定した超滴状凝縮状
態を保持、維持することができる。
Due to such an ultra-drop-like condensed state, the generated condensate does not turn into large water droplets and quickly falls off the condensing surface, so that the area of the portion where the direct vapor comes into contact with the condensing surface remarkably increases. By forming a continuous heat flow to the condensation surface of the latent heat of vapor, the heat transfer coefficient can be dramatically improved. Further, the condensation heat transfer device of the present invention has excellent durability and can maintain and maintain a stable ultra-drop-like condensed state for a long period of time.

【0042】これにより、発電プラントや大型船舶の復
水器、ヒートパイプ、ヒートポンプ、化学工業での蒸発
缶等その適用範囲は極めて広い。さらに凝縮面の熱流束
を大きくできるので凝縮面を含めた装置の小型化、軽量
化を図ることができ、また、それに伴い、材料コストの
削減、ランニングコストの削減等その効果は極めて大き
い。
As a result, the applicable range of power plants, condensers of large ships, heat pipes, heat pumps, evaporators in the chemical industry and the like is extremely wide. Further, since the heat flux on the condensing surface can be increased, the size and weight of the device including the condensing surface can be reduced, and along with that, the effects such as material cost reduction and running cost reduction are extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態を示す凝縮熱伝達装置の
概略図である。
FIG. 1 is a schematic diagram of a condensation heat transfer device showing an embodiment of the present invention.

【図2】本発明の空気膜形成能を有する被膜を塗装方式
で形成した場合の一実施の形態を示す模式的断面図であ
る。
FIG. 2 is a schematic cross-sectional view showing an embodiment in which a coating film having an air film forming ability of the present invention is formed by a coating method.

【符号の説明】[Explanation of symbols]

1 蒸気発生器 2 セパレータ 3 凝縮室 4 凝縮管 5 凝縮面 6 凝縮液コレクタ 7 冷却用恒温槽 8 フローメータ 9 混合室 10 混合室 11 ポンプ 21 凝縮面基材 22 粉体粒子 23 バインダ 24 塗料層 25 凹凸 1 Steam Generator 2 Separator 3 Condensing Chamber 4 Condensing Tube 5 Condensing Surface 6 Condensate Collector 7 Cooling Constant Temperature Tank 8 Flow Meter 9 Mixing Chamber 10 Mixing Chamber 11 Pump 21 Condensing Surface Base Material 22 Powder Particles 23 Binder 24 Paint Layer 25 Unevenness

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 凝縮液成分と接触する凝縮熱伝達面を、
この凝縮液成分が凝縮して発生した液滴が実質的に付着
しない超滴状凝縮状態を形成する表面に形成し、この凝
縮熱伝達面に凝縮液成分を送給して凝縮液成分と熱交換
させることを特徴とする凝縮熱伝達の方法。
1. A condensing heat transfer surface in contact with a condensate component,
Droplets generated by condensation of this condensate component are formed on the surface forming a super-drop-like condensed state where substantially no adherence occurs. A method of condensing heat transfer, characterized by exchanging.
【請求項2】 凝縮熱伝達装置の凝縮面に、表面が低表
面張力の材料からなり、かつ微細な凹凸部を有し、凝縮
液成分と接液した時、この凝縮液成分と前記微細な凹凸
部との間に、薄い空気膜を形成する特性を有する被膜を
形成させることを特徴とする凝縮熱伝達装置。
2. The condensing surface of the condensing heat transfer device is made of a material having a low surface tension and has fine irregularities. A condensation heat transfer device, characterized in that a film having a characteristic of forming a thin air film is formed between the concavo-convex portion and the uneven portion.
【請求項3】 低表面張力の材料が、少なくとも表面に
低表面張力化を施した疎水性粉体粒子、またはポリテト
ラフルオロエチレン粉体粒子の中から選ばれた1種また
は2種以上からなることを特徴とする請求項2記載の凝
縮熱伝達装置。
3. The low surface tension material comprises at least one kind selected from hydrophobic powder particles whose surface has been subjected to low surface tension, or polytetrafluoroethylene powder particles. The condensing heat transfer device according to claim 2, wherein
【請求項4】 微細な凹凸部が、前記低表面張力の材料
自体により形成されることを特徴とする請求項3記載の
凝縮熱伝達装置。
4. The condensation heat transfer device according to claim 3, wherein the fine irregularities are formed of the material having the low surface tension.
【請求項5】 微細な凹凸部が、少なくとも機械加工、
転造加工、フォトリソ加工、高密度エネルギー加工の中
から選ばれた1種または2種以上により形成され、この
微細な凹凸部表面を低表面張力を有する材料で被覆する
ことを特徴とする請求項2記載の凝縮熱伝達装置。
5. The fine concavo-convex portion is at least machined,
It is formed by one kind or two or more kinds selected from a rolling process, a photolithography process, and a high-density energy processing, and the surface of the fine uneven portion is coated with a material having a low surface tension. 2. The condensation heat transfer device as described in 2.
【請求項6】 凝縮面に塗料層を形成し、この塗料層の
表面に粉体粒子を突出するように固定し、前記塗料層よ
り突出している前記粉体粒子が少なくとも表面に低表面
張力化を施した疎水性粉体粒子、またはポリテトラフル
オロエチレン粉体粒子の中から選ばれた1種または2種
以上からなることを特徴とする請求項2記載の凝縮熱伝
達装置。
6. A coating layer is formed on a condensation surface, and powder particles are fixed on the surface of the coating layer so as to project, and the powder particles projecting from the coating layer have a low surface tension on at least the surface. The condensing heat transfer device according to claim 2, wherein the condensing heat transfer device is made of one kind or two or more kinds selected from the hydrophobic powder particles subjected to the above, or the polytetrafluoroethylene powder particles.
【請求項7】 凝縮面に塗料層を形成し、この塗料層の
表面に粉体粒子を突出するように固定し、この表面を低
表面張力を有する材料で被覆することを特徴とする請求
項2記載の凝縮熱伝達装置。
7. A coating layer is formed on the condensation surface, powder particles are fixed to the surface of the coating layer so as to project, and the surface is coated with a material having a low surface tension. 2. The condensation heat transfer device as described in 2.
【請求項8】 凝縮面にメッキ層を形成し、このメッキ
層の表面に粉体粒子を突出するように共析メッキし、前
記メッキ層より突出している前記粉体粒子が少なくとも
表面に低表面張力化を施した疎水性粉体粒子、またはポ
リテトラフルオロエチレン粉体粒子の中から選ばれた1
種または2種以上からなることを特徴とする請求項2記
載の凝縮熱の伝達装置。
8. A plating layer is formed on the condensing surface, and eutectoid plating is performed on the surface of the plating layer so as to project powder particles, and the powder particles protruding from the plating layer have a low surface on at least the surface. 1 selected from tensioned hydrophobic powder particles or polytetrafluoroethylene powder particles
The heat transfer device for condensing heat according to claim 2, characterized in that the heat transfer device comprises two or more kinds.
JP7061996A 1996-03-26 1996-03-26 Method and device for transferring heat of condensation Withdrawn JPH09264695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7061996A JPH09264695A (en) 1996-03-26 1996-03-26 Method and device for transferring heat of condensation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7061996A JPH09264695A (en) 1996-03-26 1996-03-26 Method and device for transferring heat of condensation

Publications (1)

Publication Number Publication Date
JPH09264695A true JPH09264695A (en) 1997-10-07

Family

ID=13436813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7061996A Withdrawn JPH09264695A (en) 1996-03-26 1996-03-26 Method and device for transferring heat of condensation

Country Status (1)

Country Link
JP (1) JPH09264695A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009503432A (en) * 2005-08-03 2009-01-29 ゼネラル・エレクトリック・カンパニイ Heat transfer device and system including the device
JP2011012921A (en) * 2009-07-03 2011-01-20 Kurita Water Ind Ltd Method of improving heat transfer efficiency of steam dryer
WO2023276319A1 (en) * 2021-07-02 2023-01-05 栗田工業株式会社 Method for improving efficiency of heat transmission by steam

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009503432A (en) * 2005-08-03 2009-01-29 ゼネラル・エレクトリック・カンパニイ Heat transfer device and system including the device
JP2011012921A (en) * 2009-07-03 2011-01-20 Kurita Water Ind Ltd Method of improving heat transfer efficiency of steam dryer
WO2023276319A1 (en) * 2021-07-02 2023-01-05 栗田工業株式会社 Method for improving efficiency of heat transmission by steam

Similar Documents

Publication Publication Date Title
JP7097312B2 (en) Equipment and methods using liquid impregnated surface
US11808531B2 (en) Droplet ejecting coatings
US20180178244A1 (en) Coating Apparatus
US20170333941A1 (en) High energy efficiency phase change device using convex surface features
JPS582596A (en) Surface treatment for heat exchanger made of aluminum
JP6538651B2 (en) Functional coatings to improve condenser performance
Ma et al. Superamphiphobic coatings from combination of a biomimetic catechol‐bearing fluoropolymer and halloysite nanotubes
CN1239128A (en) Water repelling tunicle, its mfg. process and water repelling paint compsn.
JPH09264695A (en) Method and device for transferring heat of condensation
He et al. Effect of micro-nano structure on anti-frost and defrost performance of the superhydrophobic fin surfaces
Esmeryan et al. Anti-frosting and defrosting performance of chemically modified super-nonwettable carbon soot coatings
US20120308775A1 (en) Hydrophilic surfaces and process for preparing
US20150114903A1 (en) Article and apparatus for enhancing the coalescence of a dispersed phase from a continuous phase in an emulsion
JP5643500B2 (en) Aluminum fin material for heat exchanger
Zhou et al. Superhydrophobic Cu-based materials with excellent durability, stability, and regenerability grounded of self-similarity
JPH07197017A (en) Solid with water-repellent surface and method for forming the same
EP1242650A1 (en) Patterned hydrophilic-oleophilic metal oxide coating and method of forming
US9433878B2 (en) Electrostatic coalescer for coalescing a dispersed phase from a continuous phase in an emulsion
US20150118414A1 (en) Method for manufacturing an article
JPH10102214A (en) Hydrophilic stainless steel material
Taniguchi et al. Effectiveness of composite copper/graphite fluoride platings for promoting dropwise condensation of steam: a preliminary study
JP2011163623A (en) Scale prevention method
Elshennawy et al. Fog collection rate investigation for a hydrophobic surface and different inclinations of rectangular meshes
Yu et al. Water-repellent slippery surfaces for HVAC&R systems
Schmiesing Characterizing the Condensation Heat Transfer Performance of Uniform and Patterned Silica Nanospring-Coated Tubes

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030603