JPH0926436A - Electronic element evaluation device - Google Patents

Electronic element evaluation device

Info

Publication number
JPH0926436A
JPH0926436A JP17461295A JP17461295A JPH0926436A JP H0926436 A JPH0926436 A JP H0926436A JP 17461295 A JP17461295 A JP 17461295A JP 17461295 A JP17461295 A JP 17461295A JP H0926436 A JPH0926436 A JP H0926436A
Authority
JP
Japan
Prior art keywords
probes
probe
sample
azimuth angle
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17461295A
Other languages
Japanese (ja)
Inventor
Takeshi Hasegawa
剛 長谷川
Shigeyuki Hosoki
茂行 細木
Takahisa Doi
隆久 土井
Makiko Kono
真貴子 河野
Satoshi Tomimatsu
聡 富松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17461295A priority Critical patent/JPH0926436A/en
Publication of JPH0926436A publication Critical patent/JPH0926436A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Measuring Leads Or Probes (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To evaluate the characteristics of a specific element circuit which is formed at a submicron region of an actual device by arranging a plurality of probes with a sharp tip on a sample surface at a specific inclination and interval. SOLUTION: For example, the center axes of probes 2-4 are deviated from the normal direction of the surface of the surface of a measurement sample 1 and the deviation θ is set to a range of 30-60 deg.. Also, the probes 2-4 are arranged with an interval exceeding an azimuth angle with the sample 1 as the center, namely at least 30 deg. from a reference line when the probes 2-4 are projected on the surface of the sample 1. By setting the azimuth angle to 2π/n, the distance between contacts among the probes can be minimized. By deviating the center axes of the probes 2-4 from the normal line of the surface of the measurement sample 1 and arranging the probes 2-4 with an interval exceeding an azimuth angle of at least 30 deg., the probes cannot be in contact with one another and a plurality of probes can be brought into contact with a small region on the surface of the sample 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子素子の特性を評価
する装置に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for evaluating characteristics of electronic devices.

【0002】[0002]

【従来の技術】従来電子素子の特性評価は、プローバと
呼ばれる装置を用いて行われていた。例えば、半導体計
測評価事典(サイエンスフォーラム社)第544頁にそ
の例が記載されている。この方法では、プローブと呼ば
れる探針を試料表面上に形成されたボンディングパッド
と呼ばれる電極にあて、電子素子の特定部分との電気的
接触をはかる。例えば、2本の探針を用いることによっ
て、回路の特定部分の電流電圧特性などの素子特性を評
価することができる。この方法では、一辺100μm程
度のボンディングパッドが表面上に形成された、評価用
の試料(TestElement Group:TEG)を予め用意する
必要があった。
2. Description of the Related Art Conventionally, the characteristics of electronic devices have been evaluated by using a device called a prober. For example, the example is described on page 544 of the Semiconductor Measurement and Evaluation Encyclopedia (Science Forum). In this method, a probe called a probe is applied to an electrode called a bonding pad formed on the surface of a sample to make electrical contact with a specific portion of an electronic element. For example, by using two probes, element characteristics such as current-voltage characteristics of a specific portion of a circuit can be evaluated. In this method, it was necessary to prepare in advance a sample for evaluation (Test Element Group: TEG) in which a bonding pad having a side of about 100 μm was formed on the surface.

【0003】[0003]

【発明が解決しようとする課題】前記従来の方法では、
測定のための一辺100μm程度のボンディングパッド
を試料表面上にあらかじめ形成する必要があった。すな
わち、光学顕微鏡で容易に位置合わせができ、かつ探針
を乗せるだけで確実に電気的接触をとることができる測
定用の電極(ボンディングパッド)が必要だったのであ
る。しかし、電子素子の微細化が進むにつれて(例え
ば、16メガDRAMでは0.5μm 線幅の微細加工技
術が用いられている。)、その微細化ゆえに現れる不良
が顕著になってきた。
SUMMARY OF THE INVENTION In the above conventional method,
It was necessary to previously form a bonding pad having a side of about 100 μm for measurement on the surface of the sample. That is, a measurement electrode (bonding pad) that can be easily aligned with an optical microscope and can be surely brought into electrical contact simply by mounting a probe was required. However, with the progress of miniaturization of electronic devices (for example, a microfabrication technique of 0.5 μm line width is used in 16-mega DRAM), defects caused by the miniaturization have become remarkable.

【0004】このような不良は、素子形成プロセスの微
妙な条件の違いで現れることが多い。ところが、TEG
は一辺100μm程度のボンディングパッドを形成する
必要があるため、形成プロセス及び構造自体が実デバイ
スと完全には一致していない。そのため、解析すべき不
良が現れないことがある。即ち、従来のプローバでは、
実デバイスを測定することができないため、目的とする
不良解析が行えないという問題が発生していた。これを
解決するためには、実デバイス上の微小な領域に(〜0.
1μm)に複数の探針を接触させる必要があった。
Such defects often appear due to subtle differences in the conditions of the element forming process. However, TEG
Since it is necessary to form a bonding pad having a side of about 100 μm, the formation process and structure itself do not completely match those of the actual device. Therefore, a defect to be analyzed may not appear. That is, in the conventional prober,
Since the actual device cannot be measured, there has been a problem that the intended failure analysis cannot be performed. In order to solve this, a small area (~ 0.
It was necessary to bring a plurality of probes into contact with 1 μm).

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
には、従来のプローバにおいて探針の先端を鋭利(曲率
半径10nm〜1μm程度)にすれば良いだけでない。
従来のプローバでは、支持部材30の先端に設置された
探針31をボンディングパッドに接触させていた。この
探針の先端を鋭くすることによって、一本の探針の先端
を微小領域に接触させることは可能である。しかし、複
数の探針を微小領域に接触させようとすると、探針同士
が先端部以外の部分で先に接触してしまう。その結果、
試料の微小領域に複数の探針を接触させることができな
かった。これは、従来法では、先に述べた操作性と信頼
性の問題から、先端の鈍い探針を試料表面にほぼ垂直に
接触させていたことに問題があることが分かった。すな
わち、試料の微小領域に複数の探針を接触させるために
は、以下に述べる手段が必要であることが本発明により
明らかになった。
In order to solve the above-mentioned problems, it is only necessary to make the tip of the probe sharp in the conventional prober (the radius of curvature is about 10 nm to 1 μm).
In the conventional prober, the probe 31 installed at the tip of the support member 30 is brought into contact with the bonding pad. By sharpening the tip of this probe, it is possible to bring the tip of one probe into contact with a minute region. However, when trying to bring a plurality of probes into contact with a minute area, the probes come into contact with each other first in a portion other than the tip portion. as a result,
It was not possible to bring a plurality of probes into contact with the minute area of the sample. It was found that the conventional method had a problem in that the blunt probe was brought into contact with the surface of the sample almost vertically from the problems of operability and reliability described above. That is, the present invention has revealed that the following means are required to bring a plurality of probes into contact with a minute region of a sample.

【0006】本発明では、探針の中心軸を測定試料表面
の法線方向からずらすようにした。そのずれθを、30
〜60°の範囲に設定した。
In the present invention, the central axis of the probe is shifted from the direction normal to the surface of the sample to be measured. The deviation θ is 30
The range was set to -60 °.

【0007】また、複数(n本)の探針を、試料を中心
として方位角30°以上の間隔で配置するようにした。
なお、方位角を2π/nにすると、探針間の接触点間距
離を最も小さくできる。
Further, a plurality of (n) probes are arranged at intervals of an azimuth angle of 30 ° or more around the sample.
When the azimuth angle is 2π / n, the distance between the contact points between the probes can be minimized.

【0008】なお、法線とは試料表面に垂直な線のこと
であり、方位角φとは、試料表面上に探針を投影した場
合のある基準線からの角度である(図3参照)。
The normal line is a line perpendicular to the sample surface, and the azimuth angle φ is an angle from a reference line when the probe is projected on the sample surface (see FIG. 3). .

【0009】[0009]

【作用】本発明では、探針の中心軸を測定試料表面の法
線からずらし、かつ方位角30°以上の間隔で探針を配置
したので、探針同士が接触することなく、試料表面上の
微小な領域に複数の探針を接触させることができる。
In the present invention, the central axis of the probe is displaced from the normal line of the surface of the sample to be measured, and the probes are arranged at intervals of 30 ° or more in azimuth. A plurality of probes can be brought into contact with the minute area of the.

【0010】[0010]

【実施例】本発明の一実施例を図1を用いて説明する。
図1は、本発明の主要部を真上から見た図である。測定
試料1を中心にして、3本の探針2〜4が方位角120
°(2π/3ラジアン)の間隔で配置されている。それ
ぞれの探針は探針移動機構5〜7により移動させられ、
試料の目的とする位置に探針先端部を接触させられるよ
うになっている。それぞれの探針は、評価・測定部8と
電気的に結合されており、電圧の印加や各探針間を流れ
る電流の計測などが行えるようになっている。
An embodiment of the present invention will be described with reference to FIG.
FIG. 1 is a diagram of a main part of the present invention viewed from directly above. Around the measurement sample 1, the three probes 2 to 4 have an azimuth angle of 120.
They are arranged at an interval of ° (2π / 3 radians). Each probe is moved by the probe moving mechanism 5-7,
The tip of the probe can be brought into contact with the target position of the sample. Each probe is electrically coupled to the evaluation / measurement unit 8 so that application of voltage and measurement of current flowing between each probe can be performed.

【0011】図2は、本発明の主要部を横から見た図
(図1において探針2側から見た図、探針2は省略)で
ある。2本の探針3,4が、試料1の特定の場所に、試
料に対して斜め方向から接触していることがわかる。本
発明ではこのように先端の鋭利な探針の中心軸9,10
を試料に対して斜め方向に設定することによって、微小
領域に複数の探針を接触させられるようにしている。
FIG. 2 is a side view of the main part of the present invention (a view from the side of the probe 2 in FIG. 1, the probe 2 is omitted). It can be seen that the two probes 3 and 4 are in contact with a specific location of the sample 1 obliquely with respect to the sample. In the present invention, the central axes 9 and 10 of the probe having such a sharp tip are
Is set in an oblique direction with respect to the sample, so that a plurality of probes can be brought into contact with the minute region.

【0012】このような探針の配置にする理由を、次に
説明する。探針の先端をいくら鋭利なものにしても、ナ
ノメーターレベルでは有限な大きさになる。さらに先端
部から離れるにしたがって、その大きさ(径)は大きく
なる。探針先端を試料表面に接触させても探針を破損さ
せないために、探針の根元の径rは少なくともミクロン
オーダーにならざるを得ない。例えば、図4に示すよう
に探針を表面に垂直に配置してしまうと、探針の先端2
0,21がいくら鋭利でも、探針22,23間の距離は
探針の根元の径r以下にはできない。すなわち、接触点
間距離dはr以下にはならない。探針の根元の径rは少
なくともミクロンオーダーにならざるを得ないから、探
針を試料に対して垂直に接触させると、接触点間距離は
ミクロンオーダーより小さくならない。このため、図2
に示すように斜め方向から探針を試料に接触させる必要
があるのである。
The reason why such a probe is arranged will be described below. No matter how sharp the tip of the probe is, it has a finite size at the nanometer level. Further, the size (diameter) increases as the distance from the tip end increases. Even if the tip of the probe is brought into contact with the sample surface, the probe is not damaged, so that the root diameter r of the probe must be at least on the order of microns. For example, if the probe is arranged perpendicularly to the surface as shown in FIG.
No matter how sharp 0 or 21 is, the distance between the probes 22 and 23 cannot be less than the diameter r of the root of the probe. That is, the distance d between contact points does not fall below r. Since the root diameter r of the probe must be at least on the order of microns, the contact point distance does not become smaller than the order of microns when the probe is brought into contact with the sample perpendicularly. Therefore, FIG.
It is necessary to bring the probe into contact with the sample from an oblique direction, as shown in.

【0013】なお、従来法でも操作上の問題から、試料
に対して斜め方向から探針の接触をはかっているが、そ
れは探針を支持する部分30(図5参照)のことであっ
て、先端部31のことではないことに注意願いたい。
Even in the conventional method, due to operational problems, the probe is contacted with the sample from an oblique direction, which is the portion 30 (see FIG. 5) that supports the probe. Note that it is not the tip 31.

【0014】以上、探針をマクロスコピックにとらえて
説明したが、複数の探針を0.1μm程度の領域に接触さ
せようとした場合、本発明の重要性がより顕著になる。
Although the probe has been described as macroscopically described above, the importance of the present invention becomes more significant when a plurality of probes are to be brought into contact with a region of about 0.1 μm.

【0015】探針先端がいかに鋭くとも、原子レベルで
見ればその最先端部の形状は球状に近い(図6参照)。
原子が一列に積み上がったような探針(図7参照)は現
実には存在しないし、あったとしても探針先端を試料表
面に接触させるには強度的に問題がある。
No matter how sharp the tip of the probe is, at the atomic level, the tip of the probe has a shape close to a sphere (see FIG. 6).
A probe (see FIG. 7) in which atoms are piled up in a line does not actually exist, and even if there is, there is a problem in strength to bring the tip of the probe into contact with the sample surface.

【0016】以下、簡単のため探針先端の形状を放物線
を仮定して説明する。探針の中心軸を試料の法線に一致
させては探針同志を接近させられないことを先に説明し
た。このため本発明では、図8に示すように、探針の中
心軸40,41を試料表面46の法線47から傾ける。
このとき探針は最先端部42,43で試料に接触するの
ではなく、他の部位44,45で接触することになる。
このため、あまり傾けすぎると接触部位が最先端部より
遠くなり、結果として探針接触点間の距離dが大きくな
ってしまう。
For the sake of simplicity, the shape of the tip of the probe will be described below assuming a parabola. It has been explained above that the probes cannot be brought close to each other by aligning the central axis of the probes with the normal line of the sample. Therefore, in the present invention, as shown in FIG. 8, the central axes 40 and 41 of the probe are inclined from the normal line 47 of the sample surface 46.
At this time, the probe does not come into contact with the sample at the tip portions 42 and 43, but comes into contact with the other portions 44 and 45.
For this reason, if it is tilted too much, the contact portion becomes farther from the tip end portion, and as a result, the distance d between the probe contact points increases.

【0017】図9は、2探針を用いた場合に、探針の中
心軸の試料法線からの傾き(2本とも共通、図8参照)
と各探針と試料との接触点間の最小距離を示す図であ
る。探針の中心軸が法線に一致すると、最小接触点間距
離は探針の根元の径に依存してしまうので大きくなって
しまう。一方、中心軸が傾きすぎると、接触点が探針の
最先端部から離れてしまうために、最小接触点間距離が
大きくなってしまう。このため本発明では、中心軸の試
料法線からの傾きを30〜60°の範囲にとるようにし
た。この範囲で最小接触点間距離を小さくできること
が、図8,図9から分かるであろう。
FIG. 9 shows the inclination of the center axis of the probe from the sample normal when two probes are used (both are common, see FIG. 8).
FIG. 3 is a diagram showing a minimum distance between contact points between each probe and a sample. When the central axis of the probe coincides with the normal line, the minimum contact point distance becomes large because it depends on the diameter of the root of the probe. On the other hand, if the central axis is tilted too much, the contact point is separated from the tip of the probe, and the minimum distance between contact points becomes large. Therefore, in the present invention, the inclination of the central axis from the sample normal line is set in the range of 30 to 60 °. It will be understood from FIGS. 8 and 9 that the minimum contact point distance can be reduced in this range.

【0018】次に、方位角について説明する。まず、2
探針の場合、探針を対向して設置するのが良い。図10
は、2探針を真上から見た図である。図10aが2探針
を対向して設置した場合、図10bが方位角120°で
設置した場合の図である。なお、法線からの中心軸の傾
きは30°を仮定し、試料表面との接触点を×点で示し
てある。方位角120°の場合の最小接触点間距離は、
180°の場合のおよそ1.5 倍となってしまう。2本
の探針を用いる場合、方位角を180°に設定すると、
最小接触点間距離を最も小さくできる。同様の理由か
ら、3本の探針を用いる場合には方位角を120°に
(図11参照)、4本の探針を用いる場合には方位角を
90°に設定すると良い(図12参照)。
Next, the azimuth angle will be described. First, 2
In the case of a probe, it is good to install the probes so as to face each other. FIG.
[Fig. 6] is a view of the two probes seen from directly above. FIG. 10a is a view when two probes are installed facing each other, and FIG. 10b is a view when they are installed at an azimuth angle of 120 °. It is assumed that the inclination of the central axis from the normal line is 30 °, and the point of contact with the sample surface is indicated by x. The minimum distance between contact points when the azimuth angle is 120 ° is
It is about 1.5 times that at 180 °. When using two probes, if the azimuth angle is set to 180 °,
Minimum distance between contact points can be minimized. For the same reason, the azimuth angle may be set to 120 ° when three probes are used (see FIG. 11) and the azimuth angle may be set to 90 ° when four probes are used (see FIG. 12). ).

【0019】図10〜図12を用いて設定すべき方位角
の説明を行った。上述のように、n本の探針を用いる場
合、方位角を2π/nに設定することによって、探針と
試料との接触点間距離を最も小さくできる。
The azimuth angle to be set has been described with reference to FIGS. As described above, when using n probes, the distance between the contact points between the probes and the sample can be minimized by setting the azimuth angle to 2π / n.

【0020】図13は、探針間の方位角と最小接触点間
距離の関係を示す図である。方位角が小さくなるに従っ
て、最小接触点間距離が大きくなることが分かる。特
に、30°以下では、探針の根元同士が接触してしまう
ため、最小接触点間距離が急に大きくなる(図9におけ
る説明参照)。このため、本発明では方位角を30°以
上に設定した。
FIG. 13 is a diagram showing the relationship between the azimuth angle between the probes and the distance between the minimum contact points. It can be seen that the distance between the minimum contact points increases as the azimuth angle decreases. Particularly, when the angle is 30 ° or less, the roots of the probes come into contact with each other, and the distance between the minimum contact points suddenly increases (see the description in FIG. 9). Therefore, in the present invention, the azimuth angle is set to 30 ° or more.

【0021】方位角2π/nは、n本の探針を用いる場
合の目安である。装置構成上方位角を2π/nより小さ
くした方が良い場合もある。たとえば、接触点を走査型
電子顕微鏡で確認する場合、図14に示すように二次電
子検出器60が、探針61〜64にさえぎられずに、試
料と探針との接触点を望めるようにする必要がある。こ
のような場合、4本の探針の隣りあう探針間の方位角は
90°(2π/4)より小さい値になる。
The azimuth angle 2π / n is a standard when using n probes. In some cases, it is better to set the azimuth angle to be smaller than 2π / n due to the device configuration. For example, when confirming the contact point with a scanning electron microscope, as shown in FIG. 14, the secondary electron detector 60 is not interrupted by the probes 61 to 64 so that the contact point between the sample and the probe can be desired. There is a need to. In such a case, the azimuth angle between the four adjacent probes is smaller than 90 ° (2π / 4).

【0022】図15は、本発明を実際の電子素子特性評
価に応用した実施例を示す図である。探針50がゲート
電極51に、探針52がソース電極53に、探針54が
ドレイン電極55にそれぞれ接触させられている。探針
50に印加する電圧を変化させることで、ゲート電圧を
操作できる。このとき、探針52ー54間に流れる電
流、すなわちソース・ドレイン間に流れる電流を測定す
ることで、素子特性を評価することができる。このよう
な素子はサブミクロン領域に形成されているため、従来
法では探針を直接電極に当ててこのような測定をするこ
とはできなかった。そのため、測定用のTEGを形成す
る必要があった。しかし、本発明を用いれば、実デバイ
ス上の局所的な素子の特性測定が可能になるのである。
FIG. 15 is a diagram showing an embodiment in which the present invention is applied to actual electronic element characteristic evaluation. The probe 50 is in contact with the gate electrode 51, the probe 52 is in contact with the source electrode 53, and the probe 54 is in contact with the drain electrode 55. The gate voltage can be manipulated by changing the voltage applied to the probe 50. At this time, the device characteristics can be evaluated by measuring the current flowing between the probes 52 and 54, that is, the current flowing between the source and the drain. Since such an element is formed in the submicron region, it was not possible to perform such a measurement by directly contacting the probe with the electrode by the conventional method. Therefore, it was necessary to form a TEG for measurement. However, the use of the present invention makes it possible to measure the local element characteristics on the actual device.

【0023】さらに本発明を用いれば0.1μm をきる
微小領域の電気特性などを測定することができるので、
デバイス上の素子特性のみならず、薄膜材料などの電気
伝導度など基本的な材料特性を測定することができる。
例えば、基板上に形成された原子層オーダーの薄膜の電
気伝導度は、薄膜自身の電気伝導特性に加え、基板の凹
凸等にも影響される。基板上にはμmオーダーで見れば
必ず原子層高さのステップが存在するから、従来のプロ
ーバを用いてマクロな領域の電気伝導度を測定しても、
薄膜自身の電気伝導特性を測定することはできない。本
発明を用いれば微小領域の電気特性を測定できるので、
基板の凹凸などに影響されずに薄膜自身の電気特性を測
定することができる。今後、量子効果デバイスなどナノ
メーターレベルの微小構造を用いたデバイスの開発に
は、このような微細構造の電気特性の解明が不可欠であ
り、本発明の有用性が分かる。
Furthermore, according to the present invention, it is possible to measure the electrical characteristics of a minute region of less than 0.1 μm.
Not only device characteristics on the device but also basic material properties such as electric conductivity of thin film materials can be measured.
For example, the electrical conductivity of an atomic layer order thin film formed on a substrate is affected by the unevenness of the substrate as well as the electrical conductivity of the thin film itself. There is always a step of atomic layer height on the substrate when viewed in μm order, so even if the electric conductivity of a macro region is measured using a conventional prober,
It is not possible to measure the electrical conductivity properties of the thin film itself. By using the present invention, it is possible to measure the electrical characteristics of a minute region,
The electrical characteristics of the thin film itself can be measured without being affected by the unevenness of the substrate. In the future, in order to develop a device using a nanostructure such as a quantum effect device, elucidation of the electrical characteristics of such a microstructure will be indispensable, and the usefulness of the present invention can be seen.

【0024】[0024]

【発明の効果】本発明では、微小領域に形成された電子
素子の特性を評価するために、単に先端の鋭利な探針を
用いるようにしただけではなく、探針の中心軸を試料表
面の法線より傾け(30〜60°)、複数本(n本)の
探針を方位角30°以上の間隔で設置するようにしたの
で、前記複数の探針をサブミクロン領域に同時に接触さ
せることができる。このため、サブミクロン領域に形成
された実デバイス上の素子特性を評価でき、従来のよう
に測定用のTEGを形成する必要がない。
According to the present invention, in order to evaluate the characteristics of the electronic element formed in the minute area, not only the sharp tip of the tip is used, but the central axis of the tip is set to the surface of the sample. Since a plurality of (n) probes are tilted (30 to 60 °) from the normal line and arranged at intervals of azimuth angles of 30 ° or more, the plurality of probes should be brought into contact with the submicron region at the same time. You can Therefore, the element characteristics on the actual device formed in the submicron region can be evaluated, and there is no need to form a TEG for measurement as in the conventional case.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理的構成を示す説明図。FIG. 1 is an explanatory diagram showing a principle configuration of the present invention.

【図2】図1の主要部を横から見た図。FIG. 2 is a side view of the main part of FIG.

【図3】法線と方位角の説明図。FIG. 3 is an explanatory diagram of a normal line and an azimuth angle.

【図4】探針を試料表面に垂直に接触させた場合の説明
図。
FIG. 4 is an explanatory view when a probe is brought into contact with the surface of a sample perpendicularly.

【図5】従来の探針及び探針支持部の説明図。FIG. 5 is an explanatory view of a conventional probe and a probe supporting portion.

【図6】ナノメーターレベルで見た探針先端部を示す模
式図。
FIG. 6 is a schematic view showing a tip end portion of a probe seen at a nanometer level.

【図7】原子が一列に積み上ったできた探針を示す模式
図。
FIG. 7 is a schematic diagram showing probes formed by stacking atoms in a row.

【図8】探針と試料表面との接触点間距離を示す説明
図。
FIG. 8 is an explanatory diagram showing a distance between contact points between the probe and the sample surface.

【図9】最小接触点間距離の角度依存性を示す説明図。FIG. 9 is an explanatory diagram showing the angle dependence of the distance between the minimum contact points.

【図10】2探針での方位角の説明図。FIG. 10 is an explanatory diagram of an azimuth angle with two probes.

【図11】3探針での方位角の説明図。FIG. 11 is an explanatory diagram of an azimuth angle with a three-probe.

【図12】4探針での方位角の説明図。FIG. 12 is an explanatory diagram of an azimuth angle with a four-point probe.

【図13】最小接触点間距離の方位角依存性を示す説明
図。
FIG. 13 is an explanatory diagram showing the azimuth angle dependency of the minimum contact point distance.

【図14】二次電子検出器を設置する場合の実施例を示
す説明図。
FIG. 14 is an explanatory diagram showing an example in which a secondary electron detector is installed.

【図15】実デバイスの測定例を示す平面図。FIG. 15 is a plan view showing a measurement example of an actual device.

【符号の説明】[Explanation of symbols]

1…試料、2,3,4…探針、5,6,7…探針移動機
構、8…評価・測定部、9,10…探針の中心軸、2
0,21…探針先端、22,23…探針、30…探針支
持部、31…探針先端部、40,41…探針の中心軸、
42,43…最先端部、44,45…試料表面との接触
部位、46…試料、47…法線、50…探針、51…ゲ
ート電極、52…探針、53…ソース電極、54…探
針、55…ドレイン電極、60…二次電子検出器、6
1,62,63,64…探針。
1 ... Sample, 2,3,4 ... probe, 5,6,7 ... probe moving mechanism, 8 ... evaluation / measurement part, 9,10 ... probe center axis, 2
0, 21 ... Tip tip, 22, 23 ... Tip, 30 ... Tip support part, 31 ... Tip tip, 40, 41 ... Central axis of the tip,
42, 43 ... Tip part, 44, 45 ... Contact part with sample surface, 46 ... Sample, 47 ... Normal line, 50 ... Probe, 51 ... Gate electrode, 52 ... Probe, 53 ... Source electrode, 54 ... Probe, 55 ... Drain electrode, 60 ... Secondary electron detector, 6
1, 62, 63, 64 ... Probes.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河野 真貴子 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 富松 聡 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Makiko Kono 1-280, Higashi Koikekubo, Kokubunji City, Tokyo Metropolitan Research Laboratory, Hitachi, Ltd. (72) Satoshi Tomimatsu 1-280 Higashi Koikeku, Kokubunji, Tokyo Hitachi Ltd. Central Research Center

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】複数の探針を有する電子素子評価装置であ
って、前記探針の中心軸は測定すべき試料表面の法線よ
り傾いており、かつ、試料面内の測定すべき点を中心と
して、方位角30°以上の間隔で配置されていることを
特徴とする電子素子評価装置。
1. An electronic element evaluation apparatus having a plurality of probes, wherein a central axis of the probes is tilted from a normal line of a sample surface to be measured, and a point on the sample surface to be measured is measured. An electronic element evaluation apparatus, which is arranged with an azimuth angle of 30 ° or more as a center.
【請求項2】前記探針の中心軸と試料表面の法線とのな
す角が30〜60°の範囲にあることを特徴とする請求
項1記載の電子素子評価装置。
2. The electronic element evaluation apparatus according to claim 1, wherein an angle formed by a central axis of the probe and a normal line of the sample surface is in a range of 30 to 60 °.
【請求項3】2本の探針が方位角30°以上の間隔で配
置されていることを特徴とする請求項1ないし2記載の
電子素子評価装置。
3. The electronic element evaluation apparatus according to claim 1, wherein the two probes are arranged at an azimuth angle of 30 ° or more.
【請求項4】方位角が120°であることを特徴とする
請求項3記載の電子素子評価装置。
4. The electronic device evaluation apparatus according to claim 3, wherein the azimuth angle is 120 °.
【請求項5】3本の探針が試料表面の測定すべき点を中
心として方位角30°以上の間隔で配置されていること
を特徴とする請求項1ないし2記載の電子素子評価装
置。
5. The electronic element evaluation apparatus according to claim 1, wherein the three probes are arranged at intervals of an azimuth angle of 30 ° or more around a point to be measured on the sample surface.
【請求項6】方位角が120°であることを特徴とする
請求項5記載の電子素子評価装置。
6. The electronic device evaluation apparatus according to claim 5, wherein the azimuth angle is 120 °.
【請求項7】4本の探針が試料表面の測定すべき点を中
心として方位角30°以上の間隔で配置されていること
を特徴とする請求項1ないし2記載の電子素子評価装
置。
7. The electronic element evaluation apparatus according to claim 1, wherein the four probes are arranged at intervals of an azimuth angle of 30 ° or more around a point to be measured on the sample surface.
【請求項8】方位角が90°であることを特徴とする請
求項7記載の電子素子評価装置。
8. The electronic device evaluation apparatus according to claim 7, wherein the azimuth angle is 90 °.
JP17461295A 1995-07-11 1995-07-11 Electronic element evaluation device Pending JPH0926436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17461295A JPH0926436A (en) 1995-07-11 1995-07-11 Electronic element evaluation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17461295A JPH0926436A (en) 1995-07-11 1995-07-11 Electronic element evaluation device

Publications (1)

Publication Number Publication Date
JPH0926436A true JPH0926436A (en) 1997-01-28

Family

ID=15981641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17461295A Pending JPH0926436A (en) 1995-07-11 1995-07-11 Electronic element evaluation device

Country Status (1)

Country Link
JP (1) JPH0926436A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001174491A (en) * 1999-12-20 2001-06-29 Japan Science & Technology Corp Apparatus for evaluating electric characteristic
KR100430419B1 (en) * 2001-12-28 2004-05-04 주식회사 실트론 Method for the probe test pad on the semiconductor
US6881597B2 (en) 2001-01-22 2005-04-19 Renesas Technology Corp. Method of manufacturing a semiconductor device to provide a plurality of test element groups (TEGs) in a scribe region
US7297945B2 (en) 2003-12-05 2007-11-20 Hitachi High-Technologies Corporation Defective product inspection apparatus, probe positioning method and probe moving method
US9709600B2 (en) 2013-08-14 2017-07-18 Fei Company Circuit probe for charged particle beam system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001174491A (en) * 1999-12-20 2001-06-29 Japan Science & Technology Corp Apparatus for evaluating electric characteristic
JP4526626B2 (en) * 1999-12-20 2010-08-18 独立行政法人科学技術振興機構 Electrical property evaluation equipment
US6881597B2 (en) 2001-01-22 2005-04-19 Renesas Technology Corp. Method of manufacturing a semiconductor device to provide a plurality of test element groups (TEGs) in a scribe region
KR100430419B1 (en) * 2001-12-28 2004-05-04 주식회사 실트론 Method for the probe test pad on the semiconductor
US7297945B2 (en) 2003-12-05 2007-11-20 Hitachi High-Technologies Corporation Defective product inspection apparatus, probe positioning method and probe moving method
US7553334B2 (en) 2003-12-05 2009-06-30 Hitachi High-Technologies Corporation Defective product inspection apparatus, probe positioning method and probe moving method
US8074293B2 (en) 2003-12-05 2011-12-06 Hitachi High-Technologies Corporation Defective product inspection apparatus, probe positioning method and probe moving method
US9709600B2 (en) 2013-08-14 2017-07-18 Fei Company Circuit probe for charged particle beam system

Similar Documents

Publication Publication Date Title
US6300756B2 (en) Micro-mechanical probes for charge sensing
US7520165B2 (en) Micro structure, cantilever, scanning probe microscope and a method of measuring deformation quantity for the fine structure
KR100384359B1 (en) Manufacturing method of microscope probe tip
US20070278405A1 (en) Multi-tip surface cantilever probe
JP2000298142A (en) Method and device for obtaining relative position of probe chip on probe card of printed circuit board
US11709199B2 (en) Evaluation apparatus for semiconductor device
US6930502B2 (en) Method using conductive atomic force microscopy to measure contact leakage current
US7365551B2 (en) Excess overdrive detector for probe cards
JPH0926436A (en) Electronic element evaluation device
JPH01262403A (en) Probe and its manufacture
JP2001124798A (en) Contacting type micro prober
US5965943A (en) Semiconductor device with bonding pad electrode
JPH01150862A (en) Probe card
JPH04233746A (en) Measuring method of size of contact at semiconductor integrated circuit
EP0802394A1 (en) Scanning probe microscope, semiconductor distortion sensor for use therein and manufacturing process for manufacture thereof
JP2000227444A (en) Element inspecting probe, manufacture thereof, and semiconductor inspecting device using it
US6563321B2 (en) Method and apparatus for detecting line-shorts by potential and temperature distribution
JPH01219566A (en) Probe card
US6208151B1 (en) Method and apparatus for measurement of microscopic electrical characteristics
KR100595137B1 (en) Method for inspecting electric properties of semiconductor device with fib system
JPH01150863A (en) Probe card
JPH07253435A (en) Manufacture of probe
KR101783602B1 (en) Standard sample for calibration of nano-meter scale measuring device
JP3441928B2 (en) Probe for detecting minute force or minute current and method of manufacturing the same
JP2531043Y2 (en) Probe head tip structure