JPH09264356A - Manufacture of rubber dust metallic complex and frictional material - Google Patents

Manufacture of rubber dust metallic complex and frictional material

Info

Publication number
JPH09264356A
JPH09264356A JP7467296A JP7467296A JPH09264356A JP H09264356 A JPH09264356 A JP H09264356A JP 7467296 A JP7467296 A JP 7467296A JP 7467296 A JP7467296 A JP 7467296A JP H09264356 A JPH09264356 A JP H09264356A
Authority
JP
Japan
Prior art keywords
rubber dust
metal
rubber
raw material
friction material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7467296A
Other languages
Japanese (ja)
Inventor
Katsuo Arai
勝男 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akebono Research and Development Centre Ltd
Original Assignee
Akebono Research and Development Centre Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akebono Research and Development Centre Ltd filed Critical Akebono Research and Development Centre Ltd
Priority to JP7467296A priority Critical patent/JPH09264356A/en
Publication of JPH09264356A publication Critical patent/JPH09264356A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Braking Arrangements (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate separation and unevenness caused by the difference of the specific gravity and the difference of the shape in starting materials, by partially exposing metallic powder to be taken as a frictional raw material and burying it in the front surface of a rubber dust to be taken as a raw material of the frictional material. SOLUTION: In a rubber dust as one component of a rubber dust metallic complex 4, all organic particles used as a raw material of a frictional material can be used. Concretely, the particles are made of vulcanized or unvulcanized natural or synthetic rubber. Metal as the other component can use metal used as a raw material of the frictional material, and concretely, it is copper, aluminum, zinc, or alloy of them. The rubber dust complex 4 is completed by burying these metallic particles in the front surface of the rubber dust or forming a film as a thin film. Therefor, the difference of adhesive properties between the rubber dust and the metal is eliminated, dispersibility of starting materials is improved, and a frictional material excellent in mechanical strength, in which various kinds of raw materials are uniformly dispersed can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、各種車両や産業機
械等のブレーキやクラッチ等に使用される摩擦材の製造
方法並びにその出発原料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a friction material used for brakes and clutches of various vehicles and industrial machines, and a starting material for the friction material.

【0002】[0002]

【従来の技術】各種車両や産業機械等のブレーキパッ
ド、ブレーキライニングやクラッチフェーシング等に広
く使用される摩擦材は、耐熱性有機繊維や無機繊維、金
属繊維等の繊維原料と、無機・有機充填材、摩擦調整剤
及び熱硬化性樹脂バインダー等の粉末原料とを混合して
なる出発原料を冷間にて所定圧力で成形(予備成形)
し、次いで所定温度にセットされた金型に入れてプレス
成形し、硬化(アフタキュア)及び仕上げ処理して得ら
れる。上記の製造工程において、各種原料は摩擦材中に
均一に分布して存在することが望ましく、従って出発原
料の調製に際して、各種原料はより均一に混合されなけ
ればならない。また、出発原料の調製方法は、各種原料
を溶媒を用いて混合する湿式法と、各種原料をそのまま
の状態で攪拌混合する乾式法とに大別される。
BACKGROUND OF THE INVENTION Friction materials widely used for brake pads, brake linings, clutch facings, etc. of various vehicles and industrial machines include fiber materials such as heat-resistant organic fibers, inorganic fibers, and metal fibers, and inorganic / organic fillers. Material, friction modifier and powdered raw material such as thermosetting resin binder are mixed to form a starting raw material at a predetermined pressure while cold (preforming)
Then, it is obtained by subjecting it to a mold set at a predetermined temperature, press-molding, curing (after-cure) and finishing treatment. In the above manufacturing process, it is desirable that the various raw materials be uniformly distributed and present in the friction material, and therefore the various raw materials must be mixed more uniformly when preparing the starting raw material. The method for preparing the starting materials is roughly classified into a wet method in which various raw materials are mixed with a solvent and a dry method in which various raw materials are stirred and mixed as they are.

【0003】ところで、出発原料は多種多様の材料から
構成されており、例えば摩擦調整剤でも、合成ゴムやカ
シュー樹脂等に代表される有機物粒子、黒鉛や二硫化モ
リブデン、バライタ、炭酸カルシウム等に代表される無
機物粒子、更には銅やアルミニウム、亜鉛等に代表され
る金属粒子の3種類がある。また、摩擦材とした時の制
動時の熱伝導性を良くするために金属粒子と有機物粒
子、金属粒子と無機物粒子、もしくは3者の混合物とし
て使用されるのが一般的である。しかしながら、特に有
機物粒子と金属粒子とでは両者の比重差が大きく、また
形状も大きく異なるために、これらを出発原料中に均一
に分散させるのは困難である。一般的に湿式法の方が分
散性に優れるが、分散媒中で金属粒子が沈降することは
避けられず、湿式法においても十分な均一分散が得にく
い。また、比重差が大きいことから、出発原料の移送や
保管時に両者が分離して偏在しやすく、特に移送時に有
機物粒子または金属粒子が落下して所定の原料組成にな
らないという問題がある。更に、有機物粒子と金属粒子
とでは、その他の摩擦材原料との付着性も異なるため、
出発原料の分散性が更に悪化する。このような出発原料
の分散性の悪さは、最終製品である摩擦材の均質性やそ
れに伴う機械的強度を低下させる原因となる。
By the way, the starting materials are composed of various kinds of materials. For example, even friction modifiers are represented by organic particles such as synthetic rubber and cashew resin, graphite, molybdenum disulfide, baryta, calcium carbonate and the like. There are three types of inorganic particles, and metal particles represented by copper, aluminum, zinc and the like. Further, in order to improve the thermal conductivity during braking when used as a friction material, it is generally used as metal particles and organic particles, metal particles and inorganic particles, or a mixture of the three. However, it is difficult to disperse the organic particles and the metal particles uniformly in the starting material, because the organic particles and the metal particles have a large difference in specific gravity and a large difference in shape. Generally, the wet method is superior in dispersibility, but it is inevitable that the metal particles settle in the dispersion medium, and it is difficult to obtain sufficient uniform dispersion even in the wet method. Further, since the difference in specific gravity is large, there is a problem in that the starting materials are easily separated and unevenly distributed during transportation or storage, and in particular, organic material particles or metal particles fall during transportation and a predetermined material composition cannot be obtained. Furthermore, since the organic particles and the metal particles have different adhesiveness with other friction material materials,
The dispersibility of the starting material is further deteriorated. Such poor dispersibility of the starting material causes a reduction in the homogeneity of the friction material as the final product and the resulting mechanical strength.

【0004】[0004]

【発明が解決しようとする課題】上述したように、従来
技術では出発原料の分散性に関する問題があり、各種の
構成材料が均一に分散した高品質の摩擦材を製造する方
法が望まれている。本発明は上記事情に鑑みてなされた
ものであり、出発原料の分散性を改善し、更には各種の
構成材料が均一に分散した高品質の摩擦材を提供するこ
とを目的とする。
As described above, the prior art has a problem regarding the dispersibility of the starting material, and a method for producing a high-quality friction material in which various constituent materials are uniformly dispersed is desired. . The present invention has been made in view of the above circumstances, and an object thereof is to improve the dispersibility of a starting material and to provide a high-quality friction material in which various constituent materials are uniformly dispersed.

【0005】[0005]

【課題を解決するための手段】上記の目的は、本発明
の、(1)摩擦材の原料となるゴムダスト表面に、摩擦
材原料となる金属粉末がその一部が露出して埋め込まれ
たことを特徴とするゴムダスト金属複合体、及び、
(2)摩擦材の原料となるゴムダスト表面に、摩擦材原
料となる金属の薄膜が成膜されたことを特徴とするゴム
ダスト金属複合体、によって達成される。また、同様の
目的は、本発明の、(3)前記(1)または(2)に記
載のゴムダスト金属複合体を含む出発原料を加熱成形す
ることを特徴とする摩擦材の製造方法によっても達成さ
れる。
Means for Solving the Problems The above objects are as follows: (1) A part of metal powder, which is a raw material of a friction material, is embedded and exposed on a surface of rubber dust, which is a raw material of a friction material. A rubber dust metal composite, and
(2) The present invention is achieved by a rubber dust metal composite characterized in that a thin film of metal, which is a raw material of a friction material, is formed on a surface of rubber dust, which is a raw material of a friction material. The same object is also achieved by a method for producing a friction material, which is characterized in that (3) a starting material containing the rubber dust metal composite according to (1) or (2) above is heat-molded. To be done.

【0006】本発明に係るゴムダスト金属複合体は、ゴ
ムダストの表面に金属粒子がその一部を露出して埋め込
まれたり、金属薄膜が成膜されて一体化されているた
め、出発原料中での両者の比重差や形状の違いによる分
離や偏在が無くなる。しかも、その表面は大部分が金属
で覆われているため、他の摩擦材原料との接触は金属が
支配的となり、ゴムダストと金属との間の付着性の差も
無くなり、出発原料の分散性を更に向上させる。従っ
て、このゴムダスト金属複合体を出発原料として得られ
る摩擦材は、各種原料が均一に分散した機械的強度に優
れたものとなる。
In the rubber dust metal composite according to the present invention, metal particles are partially exposed and embedded on the surface of the rubber dust, or a metal thin film is formed as a film to be integrated. Separation and uneven distribution due to the difference in specific gravity between the two and the difference in shape are eliminated. Moreover, since most of the surface is covered with metal, the metal becomes dominant in contact with other friction material and the difference in adhesiveness between rubber dust and metal is eliminated, and the dispersibility of the starting material is reduced. To further improve. Therefore, the friction material obtained by using this rubber-dust metal composite as a starting material has excellent mechanical strength in which various materials are uniformly dispersed.

【0007】[0007]

【発明の実施の形態】以下、本発明に係るゴムダスト金
属複合体並びにこのゴムダスト金属複合体を用いた摩擦
材の製造方法に関して詳細に説明する。本発明のゴムダ
スト金属複合体の一方の成分であるゴムダストは、従来
より摩擦材の原料として使用されている有機物粒子を全
て使用することができる。具体的には、加硫もしくは未
加硫の天然もしくは合成のゴムからなる粒子である。ま
た前記合成ゴムとしては、例えばSBR(スチレン・ブ
タジエンゴム)やNBR(ニトリル・ブタジエンゴム)
等を代表的に挙げることができる。上記ゴムダストの粒
径は、他の摩擦材原料との混合に支障の無い範囲であれ
ば制限されるものではなく、またゴムの種類により若干
異なるものの、平均粒径として約100〜400μmで
あることが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a rubber dust metal composite according to the present invention and a method for manufacturing a friction material using the rubber dust metal composite will be described in detail. As the rubber dust, which is one component of the rubber dust metal composite of the present invention, all organic particles conventionally used as a raw material of a friction material can be used. Specifically, it is a particle made of vulcanized or unvulcanized natural or synthetic rubber. Examples of the synthetic rubber include SBR (styrene / butadiene rubber) and NBR (nitrile / butadiene rubber).
And the like. The particle size of the rubber dust is not limited as long as it does not hinder the mixing with other friction material materials, and the average particle size is about 100 to 400 μm although it slightly varies depending on the type of rubber. Is preferred.

【0008】本発明のゴムダスト金属複合体のもう一方
の成分である金属は、従来より摩擦材の原料として使用
されている金属を全て使用することができる。具体的に
は、銅やアルミニウム、亜鉛並びにそれらの合金等であ
る。そして、これら金属の粒子を前記ゴムダスト表面に
埋め込むか、薄膜として成膜してゴムダスト複合体が完
成する。
As the metal which is the other component of the rubber dust metal composite of the present invention, all the metals conventionally used as a raw material for friction materials can be used. Specifically, copper, aluminum, zinc and alloys thereof are used. Then, particles of these metals are embedded in the surface of the rubber dust or formed into a thin film to complete the rubber dust composite.

【0009】ここで、金属粒子をゴムダスト表面に埋め
込む場合には、例えば図1に示すような、楕円形状の内
径を有するベッセル1と楕円形状の外径を有するロータ
2とを同一中心で回動自在に配置してなる混合機3を用
いる。そして、ゴムダストと金属粒子とをそれぞれ所定
量秤量してベッセル1とロータ2との間の空間に投入
し、ベッセル1とロータ2とを互いに逆方向に所定時間
回転させることによりゴムダスト複合体が得られる。こ
の時のベッセル1の短軸径Dとロータ2の長軸径dとの
差であるクリアランス(CL=(D−d)/2)、ベセ
ッル1及びロータ2の回転数、処理時間は、ゴムダスト
の種類や大きさ、金属粒子の粒径等を考慮して適宜設定
される。ベッセル1及びロータ2の回転数が高くなるほ
ど、また処理時間が長くなるほど、ゴムダスト表面に埋
め込まれる金属粒子の量が増す傾向にある。また、クリ
アランスはロータ2のサイズ(長軸径d)を適宜選択す
ることによって変えることができ、クリアランスが小さ
いほど、金属粒子の付着強度が増強する。
Here, when the metal particles are embedded in the rubber dust surface, for example, as shown in FIG. 1, the vessel 1 having an elliptical inner diameter and the rotor 2 having an elliptic outer diameter are rotated about the same center. The mixer 3 which is freely arranged is used. Then, a predetermined amount of each of the rubber dust and the metal particles is weighed and put into the space between the vessel 1 and the rotor 2, and the vessel 1 and the rotor 2 are rotated in opposite directions for a predetermined time, whereby a rubber dust composite is obtained. To be At this time, the clearance (CL = (D−d) / 2), which is the difference between the minor axis diameter D of the vessel 1 and the major axis diameter d of the rotor 2, the rotation speed of the bezel 1 and the rotor 2, and the processing time are rubber dust. It is appropriately set in consideration of the type and size of the metal, the particle size of the metal particles, and the like. The higher the rotation speed of the vessel 1 and the rotor 2 and the longer the processing time, the more the amount of metal particles embedded in the rubber dust surface tends to increase. The clearance can be changed by appropriately selecting the size of the rotor 2 (major axis diameter d), and the smaller the clearance, the stronger the adhesion strength of the metal particles.

【0010】ところで、摩擦材の熱伝導性は金属粒子の
量が多いほど高まることから、ゴムダスト複合体におい
ても金属粒子の埋め込み量が多い方が好ましい。そのた
め、金属粒子の粒径は小さい方が有利であり、平均粒径
として約5〜30μmであることが好ましい。同様の理
由から、ゴムダストと金属粒子との配合比率においても
金属粒子の量が多い方が望ましく、金属粒子はゴムダス
ト複合体全量の少なくとも10重量%であることが好ま
しい。但し、50重量%を超えると、もう一方の成分で
あるゴムダストが有する潤滑調整機能や予備成形時の密
度調整作用、摩擦材とした時のノイズ吸収作用等が十分
に発現しなくなる。
By the way, since the thermal conductivity of the friction material increases as the amount of metal particles increases, it is preferable that the amount of metal particles embedded in the rubber dust composite is large. Therefore, it is advantageous that the particle size of the metal particles is small, and the average particle size is preferably about 5 to 30 μm. For the same reason, it is preferable that the amount of the metal particles is large also in the compounding ratio of the rubber dust and the metal particles, and the metal particles are preferably at least 10% by weight of the total amount of the rubber dust composite. However, when it exceeds 50% by weight, the lubrication adjusting function of the other component, rubber dust, the density adjusting function during preforming, the noise absorbing effect when used as a friction material, and the like are not sufficiently exhibited.

【0011】得られたゴムダスト複合体の外観を図2に
示す。ここで、図中白色で示される部分が金属粒子であ
り、図中黒色で示される部分がゴムダストである。図示
されるように、ゴムダストのほぼ全表面を覆うように金
属粒子が分散して埋め込まれているのがわかる。ゴムダ
スト複合体の形態上の作用効果は、ゴムダストと金属と
の比重差や形状の違いによる出発原料中での両者の分離
や偏在を解消することにあるから、埋め込まれた金属粒
子は、最低限摩擦材の出発原料調製時、望ましくは予備
成形のためのプレス装填時までゴムダスト表面に保持さ
れていれば十分である。この金属粒子の付着強度は、混
合機のクリアランスにより調整できる。
The appearance of the obtained rubber dust composite is shown in FIG. Here, the portions shown in white in the drawing are metal particles, and the portions shown in black in the drawing are rubber dust. As shown in the figure, it can be seen that the metal particles are dispersed and embedded so as to cover almost the entire surface of the rubber dust. The morphological effect of the rubber dust composite is to eliminate the separation and uneven distribution of the rubber dust and the metal in the starting material due to the difference in specific gravity and the shape of the metal. It is sufficient that the friction material is kept on the surface of the rubber dust at the time of preparing the starting material, preferably at the time of press loading for preforming. The adhesion strength of the metal particles can be adjusted by the clearance of the mixer.

【0012】一方、金属を薄膜として成膜する場合は、
常法に従って無電解めっきや蒸着を行う。金属薄膜の膜
厚は特に制限されるものではないが、摩擦材とした時の
熱伝導性を考慮して厚膜とすることが好ましい。好まし
くは、5〜20μmである。尚、金属薄膜はゴムダスト
の全表面を完全に被覆する必要はなく、成膜作業に特別
の配慮を必要としない。また、金属薄膜の付着強度も、
金属粒子埋め込みの場合と同様の理由から、それほど強
固である必要はない。
On the other hand, when a metal is formed as a thin film,
Electroless plating and vapor deposition are performed according to a conventional method. The film thickness of the metal thin film is not particularly limited, but it is preferable that the metal thin film be a thick film in consideration of the thermal conductivity of the friction material. The thickness is preferably 5 to 20 μm. The metal thin film does not need to completely cover the entire surface of the rubber dust, and no special consideration is required for the film forming operation. Also, the adhesion strength of the metal thin film is
For the same reason as in the case of embedding metal particles, it need not be so strong.

【0013】本発明は、更に、上記のゴムダスト金属複
合体を含む出発原料から摩擦材を製造することを特徴と
する。以下に、その製造工程を説明する。先ず、上記の
如くゴムダストと金属との複合体を作成する。そして、
その他の摩擦材原料、例えば有機繊維や無機繊維、金属
繊維等の繊維原料、無機・有機充填材及び熱硬化性樹脂
バインダー等を攪拌混合して出発原料を調製する。ここ
で、有機繊維としては、例えば芳香族ポリアミド繊維
(アラミド繊維:市販品ではヂュポン社製、商品名「ケ
ブラー」等がある)、耐炎化アクリル繊維等の耐熱性有
機繊維を使用することで、摩擦材とした時の耐熱性を向
上させることができる。また、無機繊維としては、チタ
ン酸カリウム繊維やアルミナ繊維等のセラミック繊維、
ガラス繊維、カーボン繊維、ロックウール等を使用する
ことができる。金属繊維としては、銅繊維やスチール繊
維を代表的に使用することができる。充填材としては、
バーミキュライトやマイカ等の鱗片状無機物、硫酸バリ
ウムや炭酸カルシウム等を使用することができる。熱硬
化性樹脂バインダーとしては、フェノール樹脂(ストレ
ートフェノール樹脂及びゴム等による各種変性フェノー
ル樹脂を含む)、メラミン樹脂、エポキシ樹脂、シアン
酸エステル樹脂等を挙げることができる。その他にも、
アルミナやシリカ、ジルコニア等の金属酸化物等の摩擦
調整剤、グラファイトや二硫化モリブデン等の固体潤滑
剤を配合することができる。
The present invention is further characterized in that a friction material is produced from a starting material containing the rubber dust metal composite. The manufacturing process will be described below. First, a composite of rubber dust and metal is prepared as described above. And
Other friction material raw materials, for example, fiber raw materials such as organic fibers, inorganic fibers, and metal fibers, inorganic / organic fillers, thermosetting resin binders, and the like are mixed with stirring to prepare starting materials. Here, as the organic fiber, for example, by using a heat-resistant organic fiber such as aromatic polyamide fiber (aramid fiber: commercially available product manufactured by Dupont Co., trade name “Kevlar”, etc.), flame-resistant acrylic fiber, etc. The heat resistance of the friction material can be improved. Further, as the inorganic fiber, a ceramic fiber such as potassium titanate fiber or alumina fiber,
Glass fiber, carbon fiber, rock wool, etc. can be used. Copper fibers and steel fibers can be typically used as the metal fibers. As a filler,
Scale-like inorganic substances such as vermiculite and mica, barium sulfate, calcium carbonate and the like can be used. Examples of the thermosetting resin binder include phenol resin (including straight phenol resin and various modified phenol resins such as rubber), melamine resin, epoxy resin, cyanate ester resin and the like. In addition,
Friction modifiers such as metal oxides such as alumina, silica and zirconia, and solid lubricants such as graphite and molybdenum disulfide can be added.

【0014】また、出発原料の組成は、通常の摩擦材の
原料組成と同様で構わない。例えば、ゴムダスト金属複
合体2〜10重量部、繊維原料5〜20重量部、充填材
30〜60重量部、熱硬化性樹脂バインダー5〜20重
量部を秤量し、攪拌混合して出発原料が得られる。
The composition of the starting material may be the same as the composition of the normal friction material. For example, 2 to 10 parts by weight of rubber dust metal composite, 5 to 20 parts by weight of fiber raw material, 30 to 60 parts by weight of filler, and 5 to 20 parts by weight of thermosetting resin binder are weighed and mixed by stirring to obtain a starting material. To be

【0015】次いで、上記の出発原料をタブレット状に
予備成形した後、これをプレッシャープレートがセット
された熱プレスに投入して熱成形して所定の厚さ及び密
度の成形品とし、アフターキュア、仕上げ処理を施して
プレッシャープレートと一体の摩擦材が完成する。これ
ら一連の工程は、常法に従って行うことができ、例えば
予備成形は面圧100〜500Kgf/cm2 で行い、
熱成形は温度130〜180℃、面圧200〜1000
Kgf/cm2 で3〜15分間程度行い、アフターキュ
アは温度150〜300℃で1〜15時間程度行う。ま
た、必要に応じてアフターキュア後にスコーチ処理を施
してもよい。このスコーチ処理では、例えば摩擦材の表
面をバーナーを用いて30〜300sec火炎処理した
り、400〜700℃に熱した熱板を30〜300se
c接触させる等して表面を焼くことが行われる。
Next, after preforming the above-mentioned starting material into a tablet shape, it is put into a hot press in which a pressure plate is set and thermoformed into a molded article having a predetermined thickness and density, after-curing, Finishing process is performed to complete the friction material integrated with the pressure plate. These series of steps can be performed according to a conventional method, for example, preforming is performed at a surface pressure of 100 to 500 Kgf / cm 2 ,
Thermoforming is performed at a temperature of 130 to 180 ° C and a surface pressure of 200 to 1000.
Kgf / cm 2 is performed for about 3 to 15 minutes, and after-curing is performed at a temperature of 150 to 300 ° C. for about 1 to 15 hours. If desired, scorch treatment may be performed after after-cure. In this scorch treatment, for example, the surface of the friction material is flame-treated for 30 to 300 sec using a burner, or a hot plate heated to 400 to 700 ° C. is heated for 30 to 300 se.
The surface is baked by contacting with c.

【0016】〔実施例〕以下に、本発明を実施例及び比
較例により更に具体的に説明するが、本発明はこれらに
よりなんら限定されるものではない。ゴムダストとして
SBR(平均粒径300μm)及びNBR(平均粒径1
50μm)の2種類を使用し、金属粒子として銅粉(平
均粒径20μm)及び亜鉛粉(平均粒径10μm)の2
種類を使用して、ゴムダストと金属粒子の組み合わせ並
びにその配合比率を表−1に示す如く変えて図1に示す
混合機に投入した。混合は、ベッセル回転数50rp
m、ロータ回転数3000rpm、クリアランス(C
L)1.0mmの条件で15分間行った。得られたゴム
ダスト金属複合体4は、金属粒子の配合量により差はあ
るもの、いずれも図2に示されるようなその表面に金属
粉が分散して埋め込まれた外観を呈していた。とりわ
け、試料記号SC40及びZN40のゴムダスト金属複
合体は金属粒子がゴムダストのほぼ全面を覆うように埋
め込まれており、最も表面状態が良好であった。
[Examples] The present invention will be described in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited thereto. SBR (average particle size 300 μm) and NBR (average particle size 1 as rubber dust
50 μm) and copper powder (average particle size 20 μm) and zinc powder (average particle size 10 μm) 2 as metal particles.
Various types of rubber dust and metal particles were mixed and the compounding ratio thereof was changed as shown in Table 1, and the mixture was charged into the mixer shown in FIG. Mixing is done at a vessel rotation speed of 50 rp
m, rotor speed 3000 rpm, clearance (C
L) The test was performed for 15 minutes under the condition of 1.0 mm. The obtained rubber dust metal composite 4 had an appearance in which metal powder was dispersed and embedded on the surface thereof as shown in FIG. 2, although there was a difference depending on the blending amount of metal particles. In particular, in the rubber dust metal composites of sample symbols SC40 and ZN40, the metal particles were embedded so as to cover almost the entire surface of the rubber dust, and the surface state was the best.

【0017】上記の処理条件は、表−2に示す実験結果
から得られたものである。即ち、最適処理条件を見い出
すために、NBR70重量%と銅粉30重量%とを図1
に示す混合機に投入し、表−2に示すようにベッセル回
転数、ロータ回転数、クリアランス(CL)及び混合時
間を変えてゴムダスト金属複合体を作成した。そして、
その表面状態を観察したところ、条件No8及び9がゴ
ムダスト表面の全面に金属粒子が埋め込まれており、表
面状態としては最も良好であった。このことから、処理
条件としてベッセル回転数50rpm、ロータ回転数3
000rpm、クリアランス(CL)1.0mm、混合
時間15分間が求められた。また、上記の実験から、ベ
ッセル回転数及びロータ回転数が高くなるほど、また混
合時間が長くなるほどゴムダスト表面の金属粒子量が多
くなる傾向にあることが判明した。更に、条件No5、
6より、同一のベッセル回転数、ロータ回転数及び混合
時間であっても、クリアランスの選定によってはゴムダ
スト表面の金属粒子量が少なくなることがあることが判
明した。
The above processing conditions are obtained from the experimental results shown in Table 2. That is, in order to find the optimum treatment conditions, 70% by weight of NBR and 30% by weight of copper powder are used in FIG.
The rubber dust metal composite was prepared by charging the mixer shown in Table 2 and changing the vessel rotation speed, rotor rotation speed, clearance (CL) and mixing time as shown in Table 2. And
When the surface condition was observed, the condition Nos. 8 and 9 were the best as the surface condition because the metal particles were embedded on the entire surface of the rubber dust. From this, as processing conditions, the vessel rotation speed was 50 rpm and the rotor rotation speed was 3
000 rpm, clearance (CL) 1.0 mm, mixing time 15 minutes were required. Further, from the above experiment, it was found that the higher the vessel rotation speed and the rotor rotation speed and the longer the mixing time, the larger the amount of metal particles on the rubber dust surface. Furthermore, condition No. 5,
From 6, it was found that the amount of metal particles on the surface of the rubber dust may be reduced depending on the selection of the clearance even if the Bessel rotation speed, rotor rotation speed and mixing time are the same.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】また、表−1の配合において表面状態が最
も良好であった試料記号SC40及びZN40を現行摩
擦材のゴムダストに変えて配合して、常法に従い攪拌、
秤量、予備成形、熱成形、アフターキュア、研磨、溝切
を行い摩擦材を作成した。この摩擦材は、現行摩擦材に
比べて各種原料の分散性が良好で、機械的強度も優れて
いた。
In addition, the sample symbols SC40 and ZN40, which had the best surface condition in the formulations of Table-1, were blended in place of the rubber dust of the current friction material, and agitated according to a conventional method.
A friction material was prepared by weighing, preforming, thermoforming, after-curing, polishing and grooving. This friction material had good dispersibility of various raw materials and excellent mechanical strength as compared with the current friction material.

【0021】[0021]

【発明の効果】以上説明したように、本発明に係るゴム
ダスト金属複合体は、ゴムダストの表面に金属粒子がそ
の一部を露出して埋め込まれたり、金属薄膜が成膜され
て一体化されているため、出発原料中での両者の比重差
や形状の違いによる分離や偏在が無くなる。しかも、そ
の表面は大部分が金属で覆われているため、他の摩擦材
原料との接触は金属が支配的となり、ゴムダストと金属
との間の付着性の差も無くなり、出発原料の分散性を更
に向上させる。従って、このゴムダスト金属複合体を出
発原料として得られる摩擦材は、各種原料が均一に分散
した機械的強度に優れたものとなる。
As described above, in the rubber dust metal composite according to the present invention, metal particles are partially exposed and embedded on the surface of the rubber dust, or a metal thin film is formed and integrated. Therefore, the separation and uneven distribution due to the difference in specific gravity and the difference in shape in the starting material are eliminated. Moreover, since most of the surface is covered with metal, the metal becomes dominant in contact with other friction material and the difference in adhesiveness between rubber dust and metal is eliminated, and the dispersibility of the starting material is reduced. To further improve. Therefore, the friction material obtained by using this rubber-dust metal composite as a starting material has excellent mechanical strength in which various materials are uniformly dispersed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に使用される混合機を示す概略構成図で
ある。
FIG. 1 is a schematic configuration diagram showing a mixer used in the present invention.

【図2】本発明のゴムダスト金属複合体の外観を示す図
である。
FIG. 2 is a diagram showing the appearance of the rubber dust metal composite of the present invention.

【符号の説明】[Explanation of symbols]

1 ベッセル 2 ロータ 3 混合機 4 ゴムダスト金属複合体 1 Vessel 2 Rotor 3 Mixer 4 Rubber dust metal composite

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 摩擦材の原料となるゴムダスト表面に、
摩擦材原料となる金属粉末がその一部を露出して埋め込
まれたことを特徴とするゴムダスト金属複合体。
1. A rubber dust surface which is a raw material of a friction material,
A rubber dust metal composite characterized in that a metal powder as a friction material raw material is partially exposed and embedded.
【請求項2】 摩擦材の原料となるゴムダスト表面に、
摩擦材原料となる金属の薄膜が成膜されたことを特徴と
するゴムダスト金属複合体。
2. A rubber dust surface which is a raw material of a friction material,
A rubber dust metal composite characterized in that a thin film of a metal as a friction material raw material is formed.
【請求項3】 請求項1または2に記載のゴムダスト金
属複合体を含む出発原料を加熱成形することを特徴とす
る摩擦材の製造方法。
3. A method for producing a friction material, which comprises heat-molding a starting material containing the rubber dust metal composite according to claim 1.
JP7467296A 1996-03-28 1996-03-28 Manufacture of rubber dust metallic complex and frictional material Withdrawn JPH09264356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7467296A JPH09264356A (en) 1996-03-28 1996-03-28 Manufacture of rubber dust metallic complex and frictional material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7467296A JPH09264356A (en) 1996-03-28 1996-03-28 Manufacture of rubber dust metallic complex and frictional material

Publications (1)

Publication Number Publication Date
JPH09264356A true JPH09264356A (en) 1997-10-07

Family

ID=13553963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7467296A Withdrawn JPH09264356A (en) 1996-03-28 1996-03-28 Manufacture of rubber dust metallic complex and frictional material

Country Status (1)

Country Link
JP (1) JPH09264356A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254564A (en) * 2006-03-23 2007-10-04 Nisshinbo Ind Inc Friction material
JP2009058127A (en) * 2007-08-31 2009-03-19 Campagnolo Spa Brake pad for bicycle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254564A (en) * 2006-03-23 2007-10-04 Nisshinbo Ind Inc Friction material
JP2009058127A (en) * 2007-08-31 2009-03-19 Campagnolo Spa Brake pad for bicycle

Similar Documents

Publication Publication Date Title
JP5797073B2 (en) Friction material manufacturing method
JP6042599B2 (en) Friction material
US6670408B2 (en) Friction material
FR2893374A1 (en) FRICTION MEMBER WITHOUT ASBESTOS.
JP2002138273A (en) Brake friction material
JP3754122B2 (en) Friction material
WO2014115594A1 (en) Friction material
US20010005547A1 (en) Friction material
JP2004346179A (en) Friction material composition and friction material using the same
WO2014112440A1 (en) Friction material
JPH09264356A (en) Manufacture of rubber dust metallic complex and frictional material
JP5183902B2 (en) Non-asbestos friction member
JP2991970B2 (en) Friction material
JP2009209288A (en) Friction material
JPH09264358A (en) Manufacture of grain and frictional material
JP2015093935A (en) Friction material
JP2016172871A (en) Friction material
JP2000290636A (en) Friction material
JP3782243B2 (en) Friction material for brake
JP2001020986A (en) Friction material
JP4795213B2 (en) Friction material and manufacturing method thereof
JP3983038B2 (en) Friction material
JP2000344901A (en) Non-asbestos friction material for automabile
JP2000219750A (en) Friction material for brake
JPH11106742A (en) Frictional material composition, preparation of frictional material composition and frictional material using frictional material composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050829

Free format text: JAPANESE INTERMEDIATE CODE: A971007

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A761 Written withdrawal of application

Effective date: 20060328

Free format text: JAPANESE INTERMEDIATE CODE: A761