JPH09264325A - Sliding member - Google Patents

Sliding member

Info

Publication number
JPH09264325A
JPH09264325A JP7669096A JP7669096A JPH09264325A JP H09264325 A JPH09264325 A JP H09264325A JP 7669096 A JP7669096 A JP 7669096A JP 7669096 A JP7669096 A JP 7669096A JP H09264325 A JPH09264325 A JP H09264325A
Authority
JP
Japan
Prior art keywords
titanium
sintered body
boride
sliding member
sliding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7669096A
Other languages
Japanese (ja)
Inventor
Toshiyuki Suzuki
利幸 鈴木
Shigeki Niwa
茂樹 丹羽
Yutaka Okada
裕 岡田
Taiji Okiyama
泰治 沖山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP7669096A priority Critical patent/JPH09264325A/en
Publication of JPH09264325A publication Critical patent/JPH09264325A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a sliding member with excellent durability in which excellent sliding characteristics such as small coefficient of friction and high wear resistance can be kept for a long time. SOLUTION: A sliding member is made of the sintered body which is <=5% in porosity, formed of at least 80%, by mass, titanium di-borate, and in which titanium di-borate in the sintered body is formed of particles of <=25μm in mean grain size. More specifically, the sliding member is formed of the sintered body of <=5% in porosity formed of 80-95% titanium di-borate, 2.5-17.5% chromium borate, and 2.5-17.5% titanium carbonate, and titanium di-borate in the sintered body is formed of particles of <=25μm in mean grain size.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は摺動部材に係り、さ
らに詳しくは吸着などを起こすことなく、長期間に亘っ
てすぐれた摺動特性(低摩擦係数でかつ高耐摩耗性)を
呈するメカニカルシール用などに適する摺動部材に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sliding member, and more specifically, a mechanical member that exhibits excellent sliding characteristics (low friction coefficient and high wear resistance) for a long period of time without causing adsorption. The present invention relates to a sliding member suitable for sealing.

【0002】[0002]

【従来の技術】たとえばメカニカルシール用摺動部材と
しては、固定側にカーボン材,二硫化モリブデン( MoS
2 )もしくは窒化ホウ素(BN)などの固体潤滑性材が、
また、回転側に炭化ケイ素( SiC),窒化ケイ素(Si3
N4 ),アルミナ(Al2 O 3 ),ジルコニア( Zr
O2 ),超硬合金(WC−Co系),サーメット( TiC系,
Ti(C,N)系など)もしくは金属質材料などの硬質材料が
一般的に使用されている。
2. Description of the Related Art For example, as a sliding member for a mechanical seal, a carbon material, molybdenum disulfide (MoS
2 ) or solid lubricant such as boron nitride (BN)
In addition, silicon carbide (SiC), silicon nitride (Si 3
N 4 ), alumina (Al 2 O 3 ), zirconia (Zr
O 2 ), cemented carbide (WC-Co type), cermet (TiC type,
Hard materials such as Ti (C, N) based) or metallic materials are generally used.

【0003】ところで、高速高圧用(高PV値用,P:密封
圧力,V:回転速度)のメカニカルシールの場合は、固定
側としてカーボン材,回転側として炭化ケイ素を組み合
わせることが多い。すなわち、カーボン材は、自己潤滑
性,耐熱性,耐食性,耐熱衝撃性にすぐれており、ま
た、気孔に金属質材料,金属塩,合成樹脂など含浸させ
ることにより、全体の特性を容易に改良,調整などでき
る。一方、炭化ケイ素は高硬度,高熱伝導性,高耐食
性,低密度など摺動部材に適する特性を有するからであ
る。
By the way, in the case of a mechanical seal for high speed and high pressure (for high PV value, P: sealing pressure, V: rotation speed), a carbon material is often used as the fixed side and a silicon carbide is used as the rotation side. That is, the carbon material has excellent self-lubricating property, heat resistance, corrosion resistance, and thermal shock resistance, and by impregnating the pores with a metallic material, a metal salt, a synthetic resin, etc., the overall characteristics can be easily improved. You can make adjustments. On the other hand, silicon carbide has properties suitable for sliding members such as high hardness, high thermal conductivity, high corrosion resistance, and low density.

【0004】さらに、流体がアブレッシブ流体(硬質粒
子が流体に含まれている場合)、あるいは高腐食性流体
の場合は、固定側および回転側とも炭化ケイ素同士もし
くは超硬合金同士などの硬質材料同士の組み合わせが、
一般的に採られている。
Further, when the fluid is an abrasive fluid (when hard particles are contained in the fluid) or a highly corrosive fluid, hard materials such as silicon carbide or cemented carbide on both the fixed side and the rotating side. Combination of
Commonly used.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
メカニカルシール用摺動部材もしくはその他の摺動部材
の組み合わせは、以下に詳述するように、耐久性など実
用上問題点がある。
However, conventional sliding members for mechanical seals or combinations of other sliding members have practical problems such as durability, as will be described in detail below.

【0006】.固体潤滑材と硬質材料の組み合わせ 比較的高速高圧力用もしくは高粘性高温油用として使用
する場合には、摺動によって摩擦熱が発生し易く、固定
側に使用されている固体潤滑材の一部に膨れもしくは巣
穴状のようなブリスタ現象が発生し易い。また、比較的
高温の水を密封する場合は、異音を発生することもあっ
て耐久性に問題がある。
[0006] Combination of solid lubricant and hard material When used for relatively high speed and high pressure or for high viscosity high temperature oil, friction heat is easily generated by sliding, and a part of solid lubricant used on the fixed side A blister phenomenon such as a bulge or a burrow is likely to occur. Further, when water of relatively high temperature is sealed, noise may be generated, which causes a problem in durability.

【0007】.硬質材料同士の組み合わせ 流体がアブレッシブ流体の場合は異常摩耗を起こし易
く、また、高腐食性流体の場合は耐食性に問題があるた
め、カーボン材など固体潤滑材料は使用できない。そこ
で、高硬度(高耐摩耗性),高腐食性を有する炭化ケイ
素同士あるいは超硬合金同士の組み合わせが採られる。
しかし、この硬質材料同士の組み合わせは、自己潤滑性
に欠けているため、吸着,焼き付き,かじり,異音など
が起こり易くて耐久性に問題がある。
[0007] Combination of hard materials If the fluid is an abrasive fluid, abnormal wear is likely to occur, and if it is a highly corrosive fluid, there is a problem in corrosion resistance, so solid lubricating materials such as carbon materials cannot be used. Therefore, a combination of silicon carbides or cemented carbides having high hardness (high wear resistance) and high corrosion resistance is adopted.
However, this combination of hard materials lacks in self-lubricating property, so that adsorption, seizure, galling, abnormal noise, etc. are likely to occur, resulting in a problem in durability.

【0008】上記の問題に対して、メカニカルシール面
に外周端から内周端に到達する曲線環状溝を形設するこ
とにより、流体の液密封止を確保しながら吸着,焼き付
き,かじり,異音などの発生を防止する手段が提案され
ている(特公平 2−5949号公報,特公平 2−5951号公
報)。しかし、前記曲線環状溝を同程度の深さおよび幅
で形設することが困難で、特に低靭性の硬質材料では、
チッピングおよびマイクロクラックの発生を伴うので、
結果的に、使用中において形設した曲線環状溝の端部を
起点とした破壊・損傷を生じる場合がある。
In order to solve the above problems, by forming a curved annular groove extending from the outer peripheral end to the inner peripheral end on the mechanical seal surface, suction, seizure, galling, and abnormal noise are ensured while ensuring liquid-tight sealing of the fluid. A means for preventing such occurrence has been proposed (Japanese Patent Publication No. 2-5949 and Japanese Patent Publication No. 25951). However, it is difficult to form the curved annular groove with the same depth and width, and particularly in a hard material having low toughness,
As it involves chipping and microcracks,
As a result, breakage or damage may occur from the end of the curved annular groove formed during use as a starting point.

【0009】.その他の摺動材料 第1のケースとして、耐熱性,耐酸化性,耐摩耗性を有
する炭化ケイ素質母材に、窒化ホウ素を添加・分散させ
て潤滑性を付与する一方、熱伝導率の大きいホウ化ジル
コニウム(Zr B2 )もしくはホウ化ハフニウム(Hf
B2 )を添加・分散させ、熱伝導性を向上させた複合系
焼結材料が提案されている(特開平 3−150267号公
報)。また、同じく炭化ケイ素質母材に、遊離炭素を添
加・分散させて潤滑性を付与する一方、熱膨張係数の小
さいホウ化ニオビウム(Nb B2 )もしくはホウ化クロム
(Cr B2 )を添加・分散させ、破壊靭性を向上させた複
合系焼結材料も提案されている(特開平 3−174362号公
報)。しかしながら、上記ホウ化物を母材中に添加・分
散させた複合系焼結材料は、硬度が低下し、結果的に耐
摩耗性が劣るので、耐久性の点で問題がある。
[0009] Other sliding materials The first case is to add and disperse boron nitride to a silicon carbide based material that has heat resistance, oxidation resistance, and wear resistance to provide lubricity, while having high thermal conductivity. Zirconium boride (Zr B 2 ) or hafnium boride (Hf
A composite sintered material in which B 2 ) is added and dispersed to improve the thermal conductivity has been proposed (Japanese Patent Laid-Open No. 3-150267). Similarly, free carbon is added to and dispersed in the silicon carbide base material to provide lubricity, while niobium boride (Nb B 2 ) or chromium boride (Cr B 2 ) having a small coefficient of thermal expansion is added. A composite sintered material which is dispersed to improve fracture toughness has also been proposed (Japanese Patent Laid-Open No. 3-174362). However, the composite sintered material in which the above boride is added and dispersed in the base material has a reduced hardness, resulting in poor wear resistance, which is problematic in terms of durability.

【0010】さらに、炭化ケイ素−金属ケイ素系マトリ
ックス中に、高温での熱伝導率が大きいホウ化チタン
(Ti B2 )を 5〜40体積%分散させることにより、マト
リックス複合体の特性を損なわずに、熱伝導性を高めた
複合系焼結材料も提案されている(特開平 4−97950 号
公報)。しかし、この複合系焼結材料の場合は、金属ケ
イ素とホウ化チタンとが相互反応を行い易く、脆いケイ
素ホウ化物を生成するので、破壊靭性の低下が見られ、
耐摩耗性も低下して耐久性などの点で問題がある。 本
発明は上記事情に対処してなされたもので、摩擦係数が
低く、かつ高耐摩耗性など、すぐれた摺動特性を長期間
に亘って保持する耐久性の高い摺動部材の提供を目的と
する。
Further, by dispersing 5 to 40% by volume of titanium boride (Ti B 2 ) having a high thermal conductivity at a high temperature in the silicon carbide-metal silicon matrix, the characteristics of the matrix composite are not impaired. In addition, a composite sintered material having improved thermal conductivity has also been proposed (Japanese Patent Laid-Open No. 4-97950). However, in the case of this composite-type sintered material, since metal silicon and titanium boride are likely to interact with each other and brittle silicon boride is generated, a reduction in fracture toughness is observed,
Abrasion resistance is also reduced and there is a problem in terms of durability. The present invention has been made in consideration of the above circumstances, and an object thereof is to provide a highly durable sliding member having a low friction coefficient and having excellent sliding characteristics such as high wear resistance for a long period of time. And

【0011】[0011]

【課題を解決するための手段】請求項1の発明は、少な
くとも80質量%が二ホウ化チタンから成る気孔率 5%以
下の焼結体であって、かつ前記焼結体中の二ホウ化チタ
ンが平均粒径25μm 以下の微粒子を素材として形成され
ていることを特徴とする摺動部材である。
The invention according to claim 1 is a sintered body having a porosity of 5% or less, wherein at least 80 mass% is titanium diboride, and the diboride in the sintered body is The sliding member is characterized in that titanium is formed by using fine particles having an average particle diameter of 25 μm or less as a raw material.

【0012】ここで、二ホウ化チタンの成分比が少なく
とも80質量%に選ばれるのは、摺動用部材として望まれ
る吸着など起こさずに、高硬度,高耐熱性,高耐食性,
高熱伝導性および耐摩耗性を確保するためである。すな
わち、二ホウ化チタンは、たとえばマイクロビッカース
硬さが3300程度と硬く、焼結体全体としての高硬度化,
耐摩耗性の向上に寄与する一方、二ホウ化チタンの潤滑
性によって摩擦係数を低減化し、結果的に摩擦熱発生の
抑制に作用するが、上記範囲未満では、上記のような作
用・効果が得られないからである。なお、二ホウ化チタ
ン(主成分)に対し、要すれば添加する成分(20質量%
未満)としては、たとえば炭化ホウ素,炭化ケイ素,炭
化チタン,炭窒化チタン,酸化アルミニウム,酸化ジル
コニウム,酸化チタン,ホウ化クロムなどから選ばれた
少なくとも1種が挙げられる。
Here, the component ratio of titanium diboride is selected to be at least 80% by mass because it has high hardness, high heat resistance, high corrosion resistance, and the like, which does not cause adsorption, which is desired as a sliding member.
This is to ensure high thermal conductivity and wear resistance. That is, titanium diboride has a micro Vickers hardness of, for example, about 3300, which increases the hardness of the sintered body as a whole.
While contributing to the improvement of wear resistance, it reduces the friction coefficient due to the lubricity of titanium diboride, and consequently acts to suppress the generation of frictional heat. Because you cannot get it. In addition, with respect to titanium diboride (main component), if necessary, a component to be added (20% by mass)
(Less than) includes, for example, at least one selected from boron carbide, silicon carbide, titanium carbide, titanium carbonitride, aluminum oxide, zirconium oxide, titanium oxide, chromium boride and the like.

【0013】また、上記二ホウ化チタンを主成分とした
焼結体は、気孔率が 5%を超えると機械的強度が低下し
て二ホウ化チタン粒子がシール面など摺動面から脱落し
易いだけでなく、熱的特性(主に熱伝導率)が低下する
傾向が認められる。なお、前記二ホウ化チタン粒子の摺
動面からの脱落は、異常摩耗の原因ともなる。
In the sintered body containing titanium diboride as a main component, when the porosity exceeds 5%, the mechanical strength is lowered and the titanium diboride particles fall off from the sliding surface such as the sealing surface. Not only is it easy, but the thermal characteristics (mainly the thermal conductivity) tend to deteriorate. In addition, the dropping of the titanium diboride particles from the sliding surface also causes abnormal wear.

【0014】さらに、焼結体の主成分を成す二ホウ化チ
タン素材の平均粒径を25μm 以下としたのは、平均粒径
が25μm を超えた場合、対応する摺動部材を損傷した
り、あるいは二ホウ化チタン粒子が脱落し易くなって、
異常摩耗を起こす傾向が認められるからである。
Further, the average particle size of the titanium diboride material, which is the main component of the sintered body, is set to 25 μm or less, because when the average particle size exceeds 25 μm, the corresponding sliding member is damaged, Or the titanium diboride particles are more likely to fall off,
This is because there is a tendency to cause abnormal wear.

【0015】請求項2の発明は、80〜95質量%の二ホウ
化チタン, 2.5〜 17.5 質量%のホウ化クロムおよび
2.5〜 17.5 質量%の炭化チタン成分から成る気孔率 5
%以下の焼結体であって、かつ前記焼結体中の二ホウ化
チタンが平均粒径25μm 以下の微粒子を素材として形成
されていることを特徴とする摺動部材である。
According to the second aspect of the present invention, 80 to 95% by mass of titanium diboride, 2.5 to 17.5% by mass of chromium boride and
Porosity consisting of 2.5 to 17.5 mass% titanium carbide component 5
% Of the sintered body, and the titanium diboride in the sintered body is formed of fine particles having an average particle diameter of 25 μm or less as a raw material.

【0016】ここで、二ホウ化チタンが80〜95質量%、
ホウ化クロムが 2.5〜 17.5 質量%、炭化チタンが 2.5
〜 17.5 質量%にそれぞれ選択されるのは、次のような
理由による。すなわち、二ホウ化チタンが95質量%を超
えると、ホウ化クロムと炭化チタンとの合計組成比が 5
質量%未満となる。そして、ホウ化クロムの組成分が2.
5質量%未満では、ホウ化クロムの高潤滑性,高硬度,
高耐食性などが生かされないし、逆に、 17.5 質量%を
超えると高耐熱性が損なわれる。一方、炭化チタンの組
成分が 2.5質量%未満では、炭化チタンの高硬度,高耐
熱性,高耐食性などが生かされないし、逆に、 17.5 質
量%を超えると焼結体の曲げ強さおよび耐破壊靭性が損
なわれる。
Here, 80 to 95% by mass of titanium diboride,
Chromium boride is 2.5-17.5% by mass, titanium carbide is 2.5
The reason why each is selected to be 17.5% by mass is as follows. That is, when the content of titanium diboride exceeds 95% by mass, the total composition ratio of chromium boride and titanium carbide is 5%.
It becomes less than mass%. And the composition of chromium boride is 2.
If it is less than 5% by mass, chromium boride has high lubricity, high hardness,
High corrosion resistance is not utilized, and conversely, if it exceeds 17.5% by mass, high heat resistance will be impaired. On the other hand, if the composition of titanium carbide is less than 2.5% by mass, the high hardness, high heat resistance and high corrosion resistance of titanium carbide will not be utilized, and conversely, if it exceeds 17.5% by mass, the bending strength and resistance of the sintered body will increase. Fracture toughness is impaired.

【0017】本発明に係る摺動部材は、たとえばメカニ
カルシールのシール面(摺動面)を構成する少なくとも
一方の部材として使用すると、ホウ化チタンの高潤滑性
による摩擦係数の低減に伴って、摺動・摩擦熱の発生が
抑制されるなどすぐれた耐久性を呈する。流体が、たと
えばアブレッシブ流体の場合、前記ホウ化チタン系焼結
体が有する高潤滑性および高耐摩耗性によって、シール
面の荒れ発生も抑制され、密封流体の漏洩も大幅に低減
・回避され、長期間に亘って安定したメカニカルシール
摺動特性が確保される。ここで、ホウ化チタン,ホウ化
クロムが良好な潤滑性を呈する理由は、シール面(摺動
面)を構成するホウ化チタン,ホウ化クロムが摩擦熱に
よって酸化され、明確でないが酸化ホウ素( B2 O 3
などの酸化物,チタンやクロムの酸化物を生成し、これ
らが潤滑性に寄与しているものと考えられる。
When the sliding member according to the present invention is used, for example, as at least one member constituting the sealing surface (sliding surface) of a mechanical seal, the friction coefficient is reduced due to the high lubricity of titanium boride. It has excellent durability such as the generation of sliding and frictional heat is suppressed. When the fluid is an abrasive fluid, for example, due to the high lubricity and high wear resistance of the titanium boride-based sintered body, the occurrence of roughening of the sealing surface is suppressed, and leakage of the sealing fluid is greatly reduced / avoided. Stable mechanical seal sliding characteristics are secured over a long period of time. Here, the reason why titanium boride and chromium boride exhibit good lubricity is that it is not clear that titanium boride and chromium boride forming the seal surface (sliding surface) are oxidized by frictional heat. B 2 O 3 )
It is considered that oxides such as, and oxides of titanium and chromium are generated, and these contribute to lubricity.

【0018】また、腐食性環境下(酸,アルカリの存在
下)では、ホウ化チタンの良好な耐酸性(硝酸,フッ酸
以外の)、耐アルカリ性によって、腐食性溶液に対して
も長期間安定したメカニカルシール摺動などを確保でき
る。
In a corrosive environment (in the presence of acid and alkali), titanium boride has good acid resistance (other than nitric acid and hydrofluoric acid) and alkali resistance, and is stable for a long time even in corrosive solutions. The mechanical seal sliding can be secured.

【0019】さらに、高速高圧力条件下あるいは高温状
態での使用においては、ホウ化チタンの高温での熱伝導
性が大きいため(室温:64.5 W/ m・K,1000℃:70.0
W/m・K)、摺動面に発生した摩擦熱を速やかに除去
することができる。つまり、ヒートクラックの発生を抑
制できるので、この点でも耐久性に寄与する。なお、ホ
ウ化チタン系焼結体は、金属材料,超硬合金類に比べて
低密度(鋼の約 1/2,超硬合金の約 1/3)であるため、
回転トルクの低減や、高速回転時の遠心力低減にも寄与
する。
Further, when used under high-speed and high-pressure conditions or under high temperature conditions, titanium boride has high thermal conductivity at high temperatures (room temperature: 64.5 W / m · K, 1000 ° C .: 70.0).
(W / mK), friction heat generated on the sliding surface can be quickly removed. In other words, the occurrence of heat cracks can be suppressed, which also contributes to durability. Note that titanium boride-based sintered bodies have a lower density (about 1/2 that of steel and about 1/3 that of cemented carbide) compared to metallic materials and cemented carbides.
It also contributes to reduction of rotational torque and reduction of centrifugal force during high-speed rotation.

【0020】[0020]

【発明の実施の形態】次に実施例を説明する。BEST MODE FOR CARRYING OUT THE INVENTION Next, examples will be described.

【0021】実施例1〜5,比較例1〜12 先ず、レーザ回折散乱方式によって測定した平均粒径
2.0μm ,10.0μm もしくは18.5μm で純度98.5%以上
のホウ化チタン粉末に、焼結助剤として平均粒径7μm
で純度99.0%以上のアトマイズ鉄粉を 2質量%の割合で
それぞれ添加し、直径 5mmのホウ化チタン製ボールを用
いエチルアルコールを媒体として、24時間湿式粉砕混合
処理を行った。その後、前記混合処理体に、それぞれ所
定量のバインダー,分散剤,滑剤を添加配合し、スプレ
ードライヤーを用いて造粒粉を得た。 次いで、前記造
粒粉を 150 MPaの成形圧力にて金型成形し、約 100× 1
00×25mmの成形体をそれぞれ作製して脱脂処理した後、
無加圧状態のアルゴンガス雰囲気中において、1800〜20
00℃で 5時間焼結して比較例1〜9を含めて14種の焼結
体を得た。また、これら14種の焼結体の一部について
は、さらに、アルゴンガス雰囲気中、 150 MPaの圧力に
て、1950℃で 2時間 HIP処理を施して、摺動部材とし
た。
Examples 1-5, Comparative Examples 1-12 First, the average particle size measured by the laser diffraction scattering method.
Titanium boride powder with a purity of 98.5% or more at 2.0 μm, 10.0 μm or 18.5 μm, with an average particle size of 7 μm as a sintering aid
Atomized iron powder having a purity of 99.0% or more was added at a rate of 2% by mass, and a titanium boride ball having a diameter of 5 mm was used to perform wet pulverization and mixing treatment for 24 hours using ethyl alcohol as a medium. Then, a predetermined amount of a binder, a dispersant, and a lubricant were added to and mixed with the mixture-treated product, and a granulated powder was obtained using a spray dryer. Next, mold the granulated powder with a molding pressure of 150 MPa,
After making each 00 × 25 mm molded body and degreasing treatment,
1800 to 20 in unpressurized argon gas atmosphere
Sintering was carried out at 00 ° C. for 5 hours to obtain 14 kinds of sintered bodies including Comparative Examples 1-9. Further, some of these 14 kinds of sintered bodies were further subjected to HIP treatment at 1950 ° C. for 2 hours at a pressure of 150 MPa in an argon gas atmosphere to obtain sliding members.

【0022】一方、他の比較例として,高純度アルミナ
焼結体(比較例10)、緻密質炭化ケイ素焼結体(比較例
11)、イットリア添加の部分安定化ジルコニア焼結体
(比較例12)を用意した。
On the other hand, as other comparative examples, a high-purity alumina sintered body (Comparative Example 10) and a dense silicon carbide sintered body (Comparative Example)
11), a partially stabilized zirconia sintered body containing yttria (Comparative Example 12) was prepared.

【0023】上記各焼結体について、アルキメデス法に
よりカサ密度を測定する一方、焼結体の一部を粉砕し J
IS R1620(ピクノメーター法)に準拠して真密度を測定
し、次式により気孔率を算出した。また、各焼結体から
試験片を切り出し、ダイヤモンドペーストを用いて鏡面
仕上げした後、硝酸を用いたエッチング処理を行い、SE
M観察により焼結体を構成しているホウ化チタンの平均
粒径を測定した(測定数: 100の平均で長さが最大にな
るように測定)。
The bulk density of each of the above sintered bodies was measured by the Archimedes method, while a part of the sintered body was crushed.
The true density was measured according to IS R1620 (Pycnometer method), and the porosity was calculated by the following formula. Also, test pieces were cut out from each sintered body, mirror-finished with diamond paste, and then subjected to etching treatment using nitric acid, and SE
The average particle size of the titanium boride constituting the sintered body was measured by M observation (measurement number: 100 was measured so that the average length would be the maximum).

【0024】[0024]

【数1】 さらに、前記各焼結体から直径80mm,厚さ 5mmのディス
ク形状片、直径20mm,長さ20mmのピン形状片をそれぞれ
切り出し、摺動面を鏡面仕上げして、同一の焼結体から
切り出した試験片同士を組み合わせた。次に、密封圧力
(P): 0.5 kgf/cm2 ,回転速度 (V): 1.0 m/s ,PV
値: 0.5( kgf/cm2 )・( m/s ),潤滑条件:無潤
滑,試験距離:2000 km の条件で、比摩耗量(摩耗減
量:mm2 /kgf),摩擦係数,摩耗面の状況などを試験
評価した。なお、摩耗面の状況は:(良)◎>○>△>
×(悪)で表示している。
[Equation 1] Further, a disk-shaped piece having a diameter of 80 mm and a thickness of 5 mm and a pin-shaped piece having a diameter of 20 mm and a length of 20 mm were cut out from each of the sintered bodies, and the sliding surface was mirror-finished, and cut out from the same sintered body. The test pieces were combined together. Then the sealing pressure
(P): 0.5 kgf / cm 2 , rotation speed (V): 1.0 m / s, PV
Value: 0.5 (kgf / cm 2 ) ・ (m / s), lubrication condition: no lubrication, test distance: 2000 km, specific wear amount (wear reduction: mm 2 / kgf), friction coefficient, wear surface The situation was tested and evaluated. The condition of the worn surface is: (Good) ◎ > ○ > △ >
Displayed as × (bad).

【0025】上記試験評価の結果を焼結体の組成,焼結
条件,焼結体の気孔率,焼結体を構成しているホウ化チ
タンの平均粒径などの関係を表1に示す。
The results of the above test evaluation are shown in Table 1 in relation to the composition of the sintered body, the sintering conditions, the porosity of the sintered body, the average particle size of titanium boride constituting the sintered body, and the like.

【0026】[0026]

【表1】 表1から分かるように、本発明に係る焼結体(摺動部
材)は、比摩耗量および摩擦係数が小さく、高い耐久性
を呈するだけでなく、摩耗面も良好な状態を保持してお
り、メカニカルシール用としてすぐれた摺動性を有す
る。
[Table 1] As can be seen from Table 1, the sintered body (sliding member) according to the present invention has a small specific wear amount and a low friction coefficient, exhibits not only high durability, but also has a good wear surface. Has excellent slidability for mechanical seals.

【0027】実施例6〜14、比較例13〜20 平均粒径10μm もしくは18.5μm で純度98.5%以上のホ
ウ化チタン粉末、平均粒径 8.5μm ,最大粒径25μm で
純度98.8%以上のクロム粉末、および平均粒径80nm で
純度99.0%以上のカーボン粉末を、次式に示す反応式で
の反応後に、ホウ化チタン80〜95質量%,ホウ化クロム
2.5〜17.5質量%,炭化チタン 2.5〜17.5質量%となる
ように配合した。
Examples 6 to 14 and Comparative Examples 13 to 20 Titanium boride powder having an average particle size of 10 μm or 18.5 μm and a purity of 98.5% or more, and chromium powder having an average particle size of 8.5 μm and a maximum particle size of 25 μm and a purity of 98.8% or more. , And a carbon powder with an average particle size of 80 nm and a purity of 99.0% or more, after reaction in the reaction formula shown below, titanium boride 80 to 95 mass%, chromium boride
2.5 to 17.5 mass% and titanium carbide 2.5 to 17.5 mass% were compounded.

【0028】TiB2 +Cr+C → TiB2 +CrB +TiC なお、この反応式において生成するホウ化クロム,炭化
チタンが化学量論組成から外れる場合は成分調整のた
め、前記 TiB2 ,Cr,C に平均粒径 8μm のホウ化クロ
ム,平均粒径 6μm の炭化チタンの所定量をさらに加え
た(実施例10,11,13,14,比較例15〜20)。
TiB 2 + Cr + C → TiB 2 + CrB + TiC When the chromium boride and titanium carbide formed in this reaction formula deviate from the stoichiometric composition, the average particle diameters of TiB 2 , Cr and C are adjusted to adjust the composition. A predetermined amount of 8 μm chromium boride and titanium carbide having an average particle size of 6 μm was further added (Examples 10, 11, 13, 14 and Comparative Examples 15 to 20).

【0029】実施例12,13,比較例14,18については、
平均粒径18.5μm の TiB2 を、それ以外の例では平均粒
径10μm の TiB2 をそれぞれ使用した。
Regarding Examples 12 and 13 and Comparative Examples 14 and 18,
The TiB 2 having an average particle size of 18.5, was used TiB 2 having an average particle size of 10μm, respectively in the other examples.

【0030】次に、ボールミル装置(直径 5mmのホウ化
チタン製ボール)を用いエチルアルコールを媒体とし
て、24時間湿式粉砕混合処理を行った。その後、前記混
合処理体に、それぞれ所定量のバインダー,分散剤,滑
剤を添加配合し、スプレードライヤーを用いて平均粒径
80μm 前後の造粒粉を得た。
Next, wet milling and mixing treatment was performed for 24 hours using ethyl alcohol as a medium using a ball mill device (titanium boride balls having a diameter of 5 mm). After that, a predetermined amount of a binder, a dispersant, and a lubricant are added to the above-mentioned mixed treatment product and blended, and an average particle diameter is obtained by using a spray dryer.
Granulated powder of about 80 μm was obtained.

【0031】次いで、前記造粒粉を 150 MPaの成形圧力
にて金型成形し、約 100× 100×25mmの成形体をそれぞ
れ作製して脱脂処理した後、無加圧状態のアルゴンガス
雰囲気中において、1800〜2000℃で 5時間焼結して焼結
体を得た。
Next, the granulated powder was molded by a molding pressure of 150 MPa to prepare molded bodies of about 100 × 100 × 25 mm and degreased, and then, in an unpressurized argon gas atmosphere. In the above, a sintered body was obtained by sintering at 1800 to 2000 ° C for 5 hours.

【0032】粉末X線回折法によって、上記焼結体の結
晶相の同定を行ったところ、ホウ化チタン,ホウ化クロ
ム,炭化チタンのみであり、金属クロムおよび遊離カー
ボンは認められなかった。さらに、アルゴンプラズマ発
光分析法 (ICP)および原子吸光分析法によって元素の定
量分析を行い構成成分の割合を算出した。
When the crystal phase of the above-mentioned sintered body was identified by the powder X-ray diffraction method, only titanium boride, chromium boride and titanium carbide were found, and metallic chromium and free carbon were not observed. Further, quantitative analysis of elements was performed by argon plasma emission spectrometry (ICP) and atomic absorption spectrometry to calculate the ratio of constituent components.

【0033】上記のメカニカルシール用焼結体につい
て、前記実施例1などの場合と同様の条件で、気孔率,
ホウ化チタンの平均粒径,耐摩耗性,摩擦係数,摩耗面
の状況など試験評価した結果を、構成成分の割合,焼結
温度とともに表2に示す。
With respect to the above-mentioned sintered body for mechanical seal, porosity was measured under the same conditions as in the case of Example 1 and the like.
Table 2 shows the results of test evaluations such as the average particle size of titanium boride, wear resistance, friction coefficient, and the state of the worn surface, together with the proportions of the constituents and the sintering temperature.

【0034】[0034]

【表2】 表2から分かるように、本発明に係る焼結体(摺動部
材)は、比摩耗量および摩擦係数が小さく、高い耐久性
を呈するだけでなく、摩耗面も良好な状態を保持してお
り、メカニカルシール用としてすぐれた摺動性を有す
る。
[Table 2] As can be seen from Table 2, the sintered body (sliding member) according to the present invention has a small specific wear amount and a low friction coefficient, exhibits not only high durability, but also has a good wear surface. Has excellent slidability for mechanical seals.

【0035】本発明は上記実施例に限定されるものでな
く、発明の趣旨を逸脱しない範囲でいろいろの変形を採
ることができる。
The present invention is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the invention.

【0036】なお、上記例示から明らかのように、本発
明に係る摺動部材は、すぐれた摺動特性を有するため、
メカニカルシール用部材としての用途だけでなく、耐摩
耗性および耐食性を要求される軸受け,ローラ類,ケミ
カルポンプ部材などとしても適する。
As is clear from the above example, the sliding member according to the present invention has excellent sliding characteristics,
It is suitable not only for mechanical seal members, but also for bearings, rollers, chemical pump members, etc. that require wear resistance and corrosion resistance.

【0037】[0037]

【発明の効果】請求項1の発明によれば、たとえば一般
的な水,油類を始め、アブレッシブ流体および高腐食性
流体などの流体に対するメカニカルシール用摺動機構の
構成において、低速低圧力値(低PV値)から高速高圧力
値(高PV値)の範囲で、吸着や焼き付きなど起こさず
に、低摩擦・摩耗の状態のまま長期間安定した摺動特性
を呈する摺動部材が提供される。この摺動特性の高耐久
性によって、メカニカルシール型の摺動機構の長寿命
化,高信頼性化などに大きく寄与することになる。
According to the invention of claim 1, in a structure of a sliding mechanism for a mechanical seal against fluids such as general water, oils, abrasive fluids and highly corrosive fluids, a low speed and low pressure value can be obtained. Provided is a sliding member that exhibits stable sliding characteristics for a long period of time in a low friction and wear state in the range of (low PV value) to high-speed high pressure value (high PV value) without causing adsorption or seizure. It Due to the high durability of the sliding characteristics, the mechanical seal type sliding mechanism will contribute to a long service life and high reliability.

【0038】請求項2の発明によれば、さらなる低摩擦
係数化(潤滑性向上)が図られているため、上記請求項
1の効果が高められる。
According to the invention of claim 2, since the coefficient of friction is further reduced (the lubricity is improved), the effect of claim 1 is enhanced.

【0039】[0039]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 沖山 泰治 愛知県刈谷市小垣江町南藤1番地 東芝セ ラミックス株式会社刈谷製造所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Taiji Okiyama 1 Nanto, Ogakie-cho, Kariya city, Aichi Toshiba Ceramics Co., Ltd. Kariya factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも80質量%が二ホウ化チタンか
ら成る気孔率 5%以下の焼結体であって、かつ前記焼結
体中の二ホウ化チタンが平均粒径25μm 以下の微粒子を
素材として形成されていることを特徴とする摺動部材。
1. A sintered body having a porosity of 5% or less, wherein at least 80% by mass is titanium diboride, and titanium diboride in the sintered body is a fine particle having an average particle size of 25 μm or less. A sliding member characterized by being formed as.
【請求項2】 80〜95質量%の二ホウ化チタン, 2.5〜
17.5 質量%のホウ化クロムおよび 2.5〜 17.5 質量%
の炭化チタン成分から成る気孔率 5%以下の焼結体であ
って、かつ前記焼結体中の二ホウ化チタンが平均粒径25
μm 以下の微粒子を素材として形成されていることを特
徴とする摺動部材。
2. Titanium diboride of 80 to 95% by mass, 2.5 to
17.5 wt% chromium boride and 2.5 to 17.5 wt%
Of a titanium carbide component having a porosity of 5% or less, and the titanium diboride in the sintered body has an average particle size of 25
A sliding member characterized by being formed from fine particles of less than μm.
JP7669096A 1996-03-29 1996-03-29 Sliding member Withdrawn JPH09264325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7669096A JPH09264325A (en) 1996-03-29 1996-03-29 Sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7669096A JPH09264325A (en) 1996-03-29 1996-03-29 Sliding member

Publications (1)

Publication Number Publication Date
JPH09264325A true JPH09264325A (en) 1997-10-07

Family

ID=13612472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7669096A Withdrawn JPH09264325A (en) 1996-03-29 1996-03-29 Sliding member

Country Status (1)

Country Link
JP (1) JPH09264325A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006256955A (en) * 2006-03-16 2006-09-28 Toshiba Corp Instrument having wear-resistant member
JP2014503627A (en) * 2010-12-07 2014-02-13 アクツィエブーラゲート エスケイエフ Paint for increasing friction and machine parts coated with the paint

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006256955A (en) * 2006-03-16 2006-09-28 Toshiba Corp Instrument having wear-resistant member
JP4551878B2 (en) * 2006-03-16 2010-09-29 株式会社東芝 diesel engine
JP2014503627A (en) * 2010-12-07 2014-02-13 アクツィエブーラゲート エスケイエフ Paint for increasing friction and machine parts coated with the paint
US9291202B2 (en) 2010-12-07 2016-03-22 Aktiebolaget Skf Friction-enhancing lacquer and machine part coated therewith

Similar Documents

Publication Publication Date Title
CA2571470C (en) Cbn sintered body for high surface integrity machining, cbn sintered body cutting tool, and cutting method using the same
JP4188440B2 (en) Copper-based sintered sliding material with excellent sliding characteristics and machinability
US20110312860A1 (en) Wear-resistant and low-friction coatings and articles coated therewith
JPWO2003061885A1 (en) Surface coated cutting tool
US6702473B2 (en) Rolling bearing
WO1993020023A1 (en) Sliding member and production thereof
JP4022865B2 (en) Coated cutting tool
Bi et al. High temperature self-lubricating materials
JP2007039752A (en) Tool or die material having hard film deposited on hard alloy for forming high hardness film, and manufacturing method of the same
Ren et al. High-temperature wear behavior of cobalt matrix composites reinforced by LaF 3 and CeO 2
CN110241412A (en) A kind of laminated coating self-lubricating bearing and preparation method thereof
JPH09264325A (en) Sliding member
Gautam et al. Evaluation of tribological characteristics for HVOF deposited Ni based self-lubricating coatings with different h-BN composition
JP2005212025A (en) Surface-coated tool
Schulz et al. Nano Si3N4 composites with improved tribological properties
Kong et al. Friction and wear properties of (WAl) C–Co ceramic composites under sea water environment
Mazumder et al. Tribomechanical behaviour of non-oxide ceramic matrix composites in dry sliding
Bilecik et al. Effect of TiN particle size on wear behavior of SiAlON-TiN composites
JPH07309662A (en) Sliding member
JP2001220606A (en) Composite material for sliding member and sliding member
JP2004339587A (en) Self-lubricating hard material
JP2641257B2 (en) Method for producing ceramic-BN composite material
WO1991014795A1 (en) Self-lubricating hard material
Prakash Friction and wear characteristics of advanced ceramic composite materials
JP4928997B2 (en) Wear-resistant member and wear-resistant device using the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030603