JPH09263959A - Method for color-developing titanium - Google Patents

Method for color-developing titanium

Info

Publication number
JPH09263959A
JPH09263959A JP9928096A JP9928096A JPH09263959A JP H09263959 A JPH09263959 A JP H09263959A JP 9928096 A JP9928096 A JP 9928096A JP 9928096 A JP9928096 A JP 9928096A JP H09263959 A JPH09263959 A JP H09263959A
Authority
JP
Japan
Prior art keywords
titanium
color
black
temp
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9928096A
Other languages
Japanese (ja)
Other versions
JP3128556B2 (en
Inventor
Munetoshi Watanabe
宗敏 渡辺
Goji Sakaguchi
剛司 阪口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Sitix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Sitix Corp filed Critical Sumitomo Sitix Corp
Priority to JP08099280A priority Critical patent/JP3128556B2/en
Priority to PCT/JP1997/000798 priority patent/WO1997036019A1/en
Priority to EP97907305A priority patent/EP0846783A4/en
Priority to US08/952,513 priority patent/US6093259A/en
Priority to TW086103935A priority patent/TW415973B/en
Publication of JPH09263959A publication Critical patent/JPH09263959A/en
Application granted granted Critical
Publication of JP3128556B2 publication Critical patent/JP3128556B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily develop titanium from black of low brightness to various hues by treating the surface of a metallic titanium by an alkali soln. SOLUTION: A metallic titanium is immersed in an alkali soln. in a reaction vessel, and the inside of the vessel is heated to a prescribed temp. by an outside heater or the like. The alkali soln. is, e.g. composed of individual KOH, NaOH, LiOH or the like, or a mixed soln. thereamong. The heating temp. is preferably regulated to the range of 40 to 200 deg.C. In this temp. range, in accordance with the increase of the temp., its hue changes to gray, brown, black, sky blue or the like in order. Thus, by selecting the heating temp. in accordance with the desired color and holding the same, the color can be developed. The metallic titanium subjected to the treatment by the alkali soln. is furthermore subjected to nitriding treatment. In this way, the controllability and reproducibility are made good, and moreover, excellent film adhesion can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は黒色チタンおよび種
々の色調の着色チタンの製造に用いられるチタン発色方
法に関する。
TECHNICAL FIELD The present invention relates to a titanium coloring method used for producing black titanium and colored titanium having various tones.

【0002】[0002]

【従来の技術】金属チタンの表面を覆う酸化膜の厚みを
変化させたり、その表面に窒化膜を生成することによ
り、チタン表面は黒色や様々な有彩色に発色する。この
ような発色処理を受けた例えば粉状の金属チタンは塗料
用顔料、印刷用顔料、繊維用着色材、装飾品用着色材、
化粧品用材料、焼結材料等に用いられている。
2. Description of the Related Art The titanium surface develops black or various chromatic colors by changing the thickness of an oxide film covering the surface of metallic titanium or forming a nitride film on the surface. For example, powdery metallic titanium that has been subjected to such a color development treatment is used for coating pigments, printing pigments, coloring materials for fibers, coloring materials for ornaments,
It is used as a cosmetic material, a sintering material, etc.

【0003】金属チタンの黒色化処理方法としては、そ
の金属チタンをフッ酸の希薄水溶液中に浸漬してチタン
表面に黒色皮膜を形成する方法(日本特許第11902
52号)、チタン表面に析出させた銅を黒色化する方法
(特公昭58−23469号公報)、硫酸およびフッ酸
を用いた2段階の処理方法(第77回金属表面技術協会
講演大会要旨集第184頁)などがある。
As a method for blackening metallic titanium, the metallic titanium is immersed in a dilute aqueous solution of hydrofluoric acid to form a black film on the titanium surface (Japanese Patent No. 11902).
No. 52), a method of blackening copper deposited on the titanium surface (Japanese Patent Publication No. 58-23469), a two-step treatment method using sulfuric acid and hydrofluoric acid (Summary of the 77th Metal Surface Technology Association Conference) 184).

【0004】また、黒色以外の色を出すための着色方法
としては、大気酸化法、陽極酸化法、化学酸化法、イオ
ン注入法などがある。
Further, as a coloring method for producing a color other than black, there are an atmospheric oxidation method, an anodic oxidation method, a chemical oxidation method, an ion implantation method and the like.

【0005】[0005]

【発明が解決しようとする課題】これらのチタン発色方
法のうち、黒色化処理方法については黒色皮膜が剥離す
るとか、明度を下げるために加熱処理を施さなければな
らないといった問題がある。また、黒色以外の色を出す
ための着色方法については、それぞれ次のような問題が
ある。
Among these titanium coloring methods, the blackening treatment method has a problem that the black film is peeled off or a heat treatment is required to reduce the brightness. Further, each of the coloring methods for producing a color other than black has the following problems.

【0006】大気酸化法は、電気炉等を用いて大気中あ
るいは酸素中で金属チタンを加熱する方法である。加熱
により成長したチタン表面酸化膜の光干渉作用により表
面が着色されるので、酸化膜の厚さによって色調を変え
ることができるが、カラーバリエーションが少なく、ま
た均一性、再現性が良くない。
The atmospheric oxidation method is a method of heating titanium metal in the atmosphere or oxygen using an electric furnace or the like. Since the surface is colored by the light interference effect of the titanium surface oxide film grown by heating, the color tone can be changed depending on the thickness of the oxide film, but the color variation is small, and the uniformity and reproducibility are not good.

【0007】陽極酸化法は、電解槽中の陽極に金属チタ
ンを用いて、定電流で直流電流を流すとチタン表面に酸
化皮膜が生成する現象を利用するものである。一定の膜
厚になると電流が流れなくなり、また電圧と膜厚は比例
するので、色調が豊富で各色の再現性が良く、制御も容
易であるが、黒色は得られない。また指紋によって色調
が変化したり耐摩耗性が劣るので、皮膜の耐用品質は低
い。
The anodic oxidation method utilizes a phenomenon in which metallic titanium is used for the anode in the electrolytic cell and an oxide film is formed on the titanium surface when a direct current is passed at a constant current. When the film thickness is constant, no current flows, and since the voltage and film thickness are proportional, the color tone is rich, the reproducibility of each color is good, and control is easy, but black is not obtained. In addition, since the color tone changes due to fingerprints and the abrasion resistance is poor, the durability of the coating is low.

【0008】化学酸化法は無機酸中で金属チタンを煮沸
処理することで酸化膜を生成させ、その光干渉作用によ
って発色させる方法である。この方法は簡単であるが、
膜成長に長時間を要し、低能率である。また、カラーバ
リエーションが少ない。
The chemical oxidation method is a method in which metallic titanium is boiled in an inorganic acid to form an oxide film and the color is developed by the light interference effect. This method is simple,
It takes a long time to grow the film and is low in efficiency. Also, there are few color variations.

【0009】イオン注入法については、例えば窒素中の
加熱によりチタン窒化物を生成させる方法がある。この
窒化皮膜は黄金色を呈するが、色調にバリエーションが
ないなどの欠点がある。
As the ion implantation method, there is a method of producing titanium nitride by heating in nitrogen, for example. Although this nitrided film has a golden color, it has drawbacks such as no variation in color tone.

【0010】本発明の目的は、明度が低く皮膜密着性の
良い黒色チタンおよび色調が豊富で皮膜密着性の良い着
色チタンを、常温に近い低温で簡単に製造することがで
きるチタン発色方法を提供することにある。
An object of the present invention is to provide a titanium coloring method capable of easily producing black titanium having low lightness and good film adhesion and colored titanium having a wide variety of colors and having good film adhesion at a low temperature close to room temperature. To do.

【0011】[0011]

【課題を解決するための手段】本発明のチタン発色方法
は、上記目的を達成するために、金属チタンの表面をア
ルカリ溶液により処理するものである。
In order to achieve the above object, the titanium coloring method of the present invention is to treat the surface of metallic titanium with an alkaline solution.

【0012】アルカリ溶液としてはKOH、NaOH、
LiOHなどのアルカリ金属の水溶液やアンモニア水溶
液などを単独あるいは混合して用いることができる。
As the alkaline solution, KOH, NaOH,
An aqueous solution of an alkali metal such as LiOH or an aqueous ammonia solution can be used alone or in combination.

【0013】本発明のチタン発色方法においては、例え
ば40℃から200℃の処理温度範囲内において、処理
温度が上がるにつれて色調が灰色、茶色、黒色、空色等
へと順に変化する。これは、金属チタンの表面をアルカ
リ溶液で処理することにより、チタン表面に光の吸収が
容易な微細な凹凸が形成され、その凹凸形状が処理温度
により変化して種々の色を呈することが原因であると考
えられる。また、反応を更に進めることで、表面層のア
モルファスチタン化合物が成長することにより、空色の
着色がなされると考えられる。
In the titanium coloring method of the present invention, for example, within the processing temperature range of 40 ° C. to 200 ° C., the color tone changes in order to gray, brown, black, sky blue, etc. as the processing temperature rises. This is because when the surface of metallic titanium is treated with an alkaline solution, fine irregularities that easily absorb light are formed on the titanium surface, and the irregularity shape changes depending on the treatment temperature and exhibits various colors. Is considered to be. Further, it is considered that, by further advancing the reaction, the amorphous titanium compound in the surface layer grows to give a sky-blue coloring.

【0014】アルカリ溶液処理によって金属チタン表面
に形成される微細な凹凸は、SEM観察によると、金属
表面を覆うように成長した繊維状構造の皮膜によること
が判明した。この皮膜は金属チタンがアルカリにより溶
けて表面上に析出すると共にアルカリ・チタンの酸化物
ができるため、繊維の如く組織が錯綜した多孔質の構造
を呈するものと考えられる。この皮膜は表面の凹凸が発
色に好適なだけでなく、従来の皮膜より密着性が優れ
る。これも又、皮膜の繊維状構造に原因があると考えら
れる。
The fine irregularities formed on the metallic titanium surface by the alkaline solution treatment were found by SEM observation to be a film of a fibrous structure grown so as to cover the metallic surface. It is considered that this film has a porous structure in which the structure is complex like fibers, because metallic titanium is dissolved by alkali and deposited on the surface and oxides of alkali titanium are formed. This film is not only suitable for color development on the surface irregularities, but also has better adhesion than conventional films. Again, this is believed to be due to the fibrous structure of the coating.

【0015】また、アルカリ溶液処理によって表面を黒
色に発色させた金属チタンを窒化処理すると、その黒色
の明度がさらに下がる。これは表面の繊維状構造の皮膜
が褐色の窒化チタンに変化し、その組織が微細なために
黒色化が進行したことが原因であると考えられる。アル
カリ溶液処理で表面を空色に発色させた金属チタンを窒
化処理した場合はその空色が灰白色に変化する。
Further, when the metallic titanium whose surface is colored black by the alkaline solution treatment is subjected to the nitriding treatment, the brightness of the black is further lowered. It is considered that this is because the film of the fibrous structure on the surface changed to brown titanium nitride and the blackening progressed due to the fine structure. When metallic titanium whose surface is colored sky blue by alkaline solution treatment is subjected to nitriding treatment, the sky blue color changes to grayish white.

【0016】このように、金属チタンをアルカリ溶液で
処理し、その後、必要に応じて窒化処理を行うことによ
り、明度が低く皮膜密着性のよい黒色チタンが常温に近
い低温操業で簡単に製造される。また、色調が豊富で皮
膜密着性の高い皮膜が常温に近い低温操業で簡単に製造
される。これらの皮膜はその微細な繊維状構造のため耐
摩耗性等に優れ、耐用品質も高い。更に温度により色調
がコントロールされるので、皮膜形成での制御性、再現
性も良好である。
Thus, by treating metallic titanium with an alkaline solution and then nitriding it if necessary, black titanium having low lightness and good film adhesion can be easily produced by low temperature operation close to room temperature. It In addition, a film with rich color tone and high film adhesion can be easily manufactured by low temperature operation close to room temperature. Due to their fine fibrous structure, these films have excellent wear resistance and the like, and have high durability. Furthermore, since the color tone is controlled by the temperature, the controllability and reproducibility in film formation are also good.

【0017】[0017]

【発明の実施の形態】以下に本発明の望ましい実施の形
態を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below.

【0018】第1工程として、反応容器内のアルカリ溶
液に金属チタンを浸漬し、容器内を外部ヒータ等により
所定温度に加熱する。
In the first step, metallic titanium is immersed in the alkaline solution in the reaction vessel, and the vessel is heated to a predetermined temperature by an external heater or the like.

【0019】アルカリ溶液は例えばKOH、NaOH、
LiOHなどのアルカリ金属の水溶液、アンモニア水溶
液などの単独液あるいは混合液である。
The alkaline solution is, for example, KOH, NaOH,
It is a single solution or a mixed solution of an aqueous solution of an alkali metal such as LiOH and an aqueous solution of ammonia.

【0020】アルカリ溶液の濃度は特に制限はないが、
低ければ反応に長時間を要し、高ければ反応が早く制御
が困難となる。KOH、NaOH、LiOHなどのアル
カリ金属の水溶液の場合は1〜10mol/リットル、アンモニ
ア水溶液の場合は1〜15mol/リットルの範囲が望ましい。
The concentration of the alkaline solution is not particularly limited,
If it is low, the reaction takes a long time, and if it is high, the reaction is quick and control becomes difficult. In the case of an aqueous solution of an alkali metal such as KOH, NaOH or LiOH, the range is preferably 1 to 10 mol / liter, and in the case of an aqueous ammonia solution, the range is preferably 1 to 15 mol / liter.

【0021】金属チタンは純チタン、チタン合金を問わ
ない。その形状はスポンジ状、板状、塊状、粉末状(球
状、鱗片状)などのいずれでもよく、その形状に制限は
ない。
The metallic titanium may be pure titanium or titanium alloy. The shape thereof may be any of sponge-like, plate-like, lump-like, powder-like (spherical, scale-like), and the shape thereof is not limited.

【0022】アルカリ溶液と金属チタンの割合について
は、溶液中に金属チタンが浸漬すればよく、特に制限し
ない。
The ratio of the alkali solution and metallic titanium is not particularly limited as long as metallic titanium is immersed in the solution.

【0023】反応容器は耐アルカリ性という観点から、
ステンレス鋼製やテフロン製が望ましい。また、容器内
の温度に一定に保つために攪拌機付きのものが望まし
い。更に加熱中に、蒸気が飛散し水分が減少するのを防
止するために密閉容器が望ましい。
From the viewpoint of alkali resistance, the reaction vessel is
Stainless steel or Teflon is preferable. Further, in order to keep the temperature in the container constant, it is desirable to have a stirrer. Further, a closed container is desirable in order to prevent the vapor from scattering and reducing the water content during heating.

【0024】加熱温度は、金属チタンの発色に最も大き
な影響を及ぼす因子である。加熱温度が低いと反応に長
時間を要し、高ければ反応が早く制御が困難となるとい
う操業上の理由から、この加熱温度は40〜200℃の
範囲が望ましい。そして、この温度範囲内において温度
を高くするに従って色調が灰色、茶色、黒色、空色等へ
順に変化する。従って、希望する色に応じた加熱温度を
選択し維持することにより、その色を発色させることが
できる。特に黒色を希望する場合は、60〜90℃の温
度範囲が望ましい。
The heating temperature is the factor that most affects the color development of titanium metal. It is desirable that the heating temperature is in the range of 40 to 200 ° C. for the reason of operation that if the heating temperature is low, the reaction takes a long time, and if it is high, the reaction is quick and control becomes difficult. Then, within this temperature range, the color tone changes in order to gray, brown, black, sky blue, etc. as the temperature is increased. Therefore, by selecting and maintaining the heating temperature according to the desired color, the color can be developed. Especially when black is desired, the temperature range of 60 to 90 ° C. is desirable.

【0025】発色が加熱温度に支配されるのは、チタン
の溶解度とその後の反応速度に影響を及ぼすからであ
る。反応によって皮膜が生成し、その皮膜の形状や厚さ
により、色調が変化する。
The reason why the color development is controlled by the heating temperature is that it affects the solubility of titanium and the reaction rate thereafter. A film is formed by the reaction, and the color tone changes depending on the shape and thickness of the film.

【0026】加熱時間は、加熱温度と同様に皮膜の生成
に影響を及ぼす。温度が一定で加熱時間を変化させた場
合、短時間では皮膜の生成が不十分で不均一となり、そ
の後均一になるまで色調は大きく変化する。さらに加熱
時間を長くするとわずかに色調の変化が見られる。この
観点から、加熱温度は2〜5時間の範囲内で設定するこ
とが望まれる。すなわち、加熱時間が2時間までは皮膜
の生成が不十分で不均一となりやすく、しかも色調の変
化が著しいため、色の制御が困難である。2時間以降は
色調の変化が緩やかなため色の制御が容易である。しか
し5時間を越えると、色調はそれ以上変化しない。
The heating time affects the formation of the film as well as the heating temperature. When the temperature is constant and the heating time is changed, the film formation is insufficient for a short time and becomes non-uniform, and the color tone changes greatly until it becomes uniform. When the heating time is further extended, a slight change in color tone is observed. From this viewpoint, it is desired that the heating temperature be set within the range of 2 to 5 hours. That is, when the heating time is up to 2 hours, the formation of the film is insufficient and the film is likely to be non-uniform, and the color tone is significantly changed, so that the color control is difficult. It is easy to control the color after 2 hours because the change in color tone is gradual. However, after 5 hours, the color tone does not change any more.

【0027】第1工程を終了すると、第2工程として、
アルカリ溶液による処理を終えた金属チタンからアルカ
リ溶液を除去し、乾燥を行う。アルカリ除去の方法とし
ては濾過、超音波洗浄、デカンテーションなどがある。
乾燥は金属チタンの酸化を防ぐために100〜150℃
の低温で行うのがよく、水分完全除去のために5時間以
上続けるのが望ましい。
When the first step is completed, as the second step,
The alkaline solution is removed from the titanium metal that has been treated with the alkaline solution and dried. Examples of methods for removing alkali include filtration, ultrasonic cleaning, decantation and the like.
Drying is 100 ~ 150 ℃ to prevent oxidation of titanium metal.
It is preferable to carry out at a low temperature, and it is desirable to continue for 5 hours or more to completely remove water.

【0028】窒化処理を希望する場合は、これを第3工
程として行う。この処理では、金属チタンを窒素ガス雰
囲気下で800〜1200℃に1〜5時間保持するのが
望ましい。処理温度が低いと窒化が進行せず、高いと反
応が速すぎ制御が困難となる。特に望ましい処理温度は
1000〜1100℃である。処理時間については、こ
れが短いと窒化が進行せず、長いと生産性が悪化する。
If nitriding is desired, this is performed as the third step. In this treatment, it is desirable to hold titanium metal at 800 to 1200 ° C. for 1 to 5 hours in a nitrogen gas atmosphere. When the treatment temperature is low, nitriding does not proceed, and when it is high, the reaction is too fast and control becomes difficult. A particularly desirable processing temperature is 1000 to 1100 ° C. Regarding the processing time, if this is short, nitriding does not proceed, and if it is long, productivity deteriorates.

【0029】[0029]

【実施例】次に、本発明の実施例を説明する。Next, embodiments of the present invention will be described.

【0030】実施例1 内容量1リットルのSUS製反応器にKOH112gと水5
00gを入れ攪拌し、KOH水溶液を作製した。これに
チタン板1枚(20mm×20mm×1mmt)を入れ
100℃で2時間反応させた。反応終了後に水でKOH
水溶液を洗い流し、100℃で20時間乾燥した。得ら
れたチタン板の表面は黒色を呈した。このチタン板を窒
素流通下で1000℃に1時間保持したところ、より黒
いチタン板が得られた。
Example 1 112 g of KOH and 5 parts of water were placed in a reactor made of SUS having an internal volume of 1 liter.
00 g was put and stirred to prepare a KOH aqueous solution. A titanium plate (20 mm × 20 mm × 1 mmt) was placed in this and reacted at 100 ° C. for 2 hours. KOH with water after the reaction
The aqueous solution was washed off and dried at 100 ° C. for 20 hours. The surface of the obtained titanium plate was black. When this titanium plate was kept at 1000 ° C. for 1 hour under nitrogen flow, a darker titanium plate was obtained.

【0031】実施例2 内容量1リットルのSUS製反応器にNaOH120gと水
500gを入れ攪拌し、NaOH水溶液を作製した。こ
れにスポンジ状チタン50g(平均粒径約10mm)を
入れ80℃で4時間反応させた。反応終了後に水でNa
OH水溶液を洗い流し、100℃で20時間乾燥した。
得られたチタン粉末は黒色を呈した。このチタン粉末を
窒素流通下で1100℃に2時間保持したところ、より
黒いチタン粉末が得られた。
Example 2 120 g of NaOH and 500 g of water were placed in a SUS reactor having an internal volume of 1 liter and stirred to prepare an aqueous NaOH solution. 50 g of spongy titanium (average particle size of about 10 mm) was put into this and reacted at 80 ° C. for 4 hours. After completion of the reaction, add Na with water
The aqueous OH solution was washed off and dried at 100 ° C. for 20 hours.
The obtained titanium powder had a black color. When this titanium powder was kept at 1100 ° C. for 2 hours under nitrogen flow, a darker titanium powder was obtained.

【0032】実施例3 内容量1リットルのSUS製反応器に10mol/リットルアンモニ
ア水溶液とチタン粉末50g(球状、平均粒径70μ
m)を入れ150℃で5時間反応させた。反応終了後に
水でアンモニア水溶液を洗い流し、100℃で20時間
乾燥した。得られたチタン粉末は黒色を呈した。このチ
タン粉末を窒素流通下で900℃に5時間保持したとこ
ろ、より黒いチタン粉末が得られた。
Example 3 In a SUS reactor having an internal capacity of 1 liter, 10 mol / liter aqueous ammonia solution and 50 g of titanium powder (spherical, average particle size 70 μm
m) was added and reacted at 150 ° C. for 5 hours. After the reaction was completed, the aqueous ammonia solution was washed off with water and dried at 100 ° C. for 20 hours. The obtained titanium powder had a black color. When this titanium powder was kept at 900 ° C. for 5 hours under nitrogen flow, a darker titanium powder was obtained.

【0033】実施例4 内容量1リットルのSUS製反応器にKOH112gと水5
00gを入れ攪拌し、KOH水溶液を作製した。これに
チタン板1枚(20mm×20mm×1mmt)を入れ
40℃で5時間反応させた。反応終了後に水でKOH水
溶液を洗い流し、100℃で20時間乾燥した。得られ
たチタン板の表面は灰色を呈した。このチタン板を窒素
流通下で1000℃に1時間保持したところ、茶色のチ
タン板が得られた。
Example 4 112 g of KOH and 5 parts of water were placed in a SUS reactor having an internal volume of 1 liter.
00 g was put and stirred to prepare a KOH aqueous solution. A titanium plate (20 mm × 20 mm × 1 mmt) was placed in this and reacted at 40 ° C. for 5 hours. After the reaction was completed, the KOH aqueous solution was washed off with water and dried at 100 ° C. for 20 hours. The surface of the obtained titanium plate was gray. When this titanium plate was kept at 1000 ° C. for 1 hour under nitrogen flow, a brown titanium plate was obtained.

【0034】実施例5 内容量1リットルのSUS製反応器にNaOH120gと水
500gを入れ攪拌し、NaOH水溶液を作製した。こ
れにスポンジ状チタン50g(平均粒径約10mm)を
入れ220℃で3時間反応させた。反応終了後に水でN
aOH水溶液を洗い流し、100℃で20時間乾燥し
た。得られたチタン粉末は空色を呈した。このチタン粉
末を窒素流通下で1100℃に2時間保持したところ、
灰白色のチタン粉末が得られた。
Example 5 120 g of NaOH and 500 g of water were placed in a SUS reactor having an internal volume of 1 liter and stirred to prepare an aqueous NaOH solution. 50 g of spongy titanium (average particle diameter of about 10 mm) was put into this and reacted at 220 ° C. for 3 hours. After completion of the reaction, N with water
The aOH aqueous solution was washed off and dried at 100 ° C. for 20 hours. The titanium powder obtained had a light blue color. When this titanium powder was kept at 1100 ° C. for 2 hours under nitrogen flow,
An off-white titanium powder was obtained.

【0035】実施例6 内容量1リットルのSUS製反応器に0.1mol/リットルアンモニ
ア水溶液とチタン粉末50g(球状、平均粒径70μ
m)を入れ150℃で2時間反応させた。反応終了後に
水でアンモニア水溶液を洗い流し、100℃で20時間
乾燥した。得られたチタン粉末は灰色を呈した。このチ
タン粉末を窒素流通下で900℃に5時間保持したとこ
ろ、淡青色のチタン粉末が得られた。
Example 6 A 0.1 mol / liter aqueous ammonia solution and 50 g of titanium powder (spherical, average particle size 70 μm) were placed in a SUS reactor having an internal volume of 1 liter.
m) was added and reacted at 150 ° C. for 2 hours. After the reaction was completed, the aqueous ammonia solution was washed off with water and dried at 100 ° C. for 20 hours. The titanium powder obtained had a gray color. When this titanium powder was kept at 900 ° C. for 5 hours under nitrogen flow, a pale blue titanium powder was obtained.

【0036】比較例1 内容量1リットルのSUS製反応器にKOH112gと水5
00gを入れ攪拌し、KOH水溶液を作製した。これに
チタン粉末50g(球状、平均粒径70μm)を入れ2
5℃で8時間反応させた。反応終了後に水でKOH水溶
液を洗い流し、100℃で20時間乾燥した。得られた
チタン粉末は、反応前後で変化はなかった。
Comparative Example 1 112 g of KOH and 5 parts of water were placed in a SUS reactor having an internal volume of 1 liter.
00 g was put and stirred to prepare a KOH aqueous solution. Add 50 g of titanium powder (spherical, average particle size 70 μm) to this 2
The reaction was performed at 5 ° C. for 8 hours. After the reaction was completed, the KOH aqueous solution was washed off with water and dried at 100 ° C. for 20 hours. The obtained titanium powder did not change before and after the reaction.

【0037】内容量1リットルのSUS製反応器にKOH1
12gと水500gを入れ攪拌し、KOH水溶液を作製
した。これにチタン粉末50g(球状、平均粒径70μ
m)を入れ250℃2時間で反応させた。反応終了後に
水でKOH水溶液を洗い流し、100℃で20時間乾燥
した。得られたチタン粉末は、白色で二酸化チタンが生
成していた。
KOH1 was added to a SUS reactor having an internal capacity of 1 liter.
12 g and 500 g of water were added and stirred to prepare a KOH aqueous solution. 50g of titanium powder (spherical, average particle size 70μ
m) was added and reacted at 250 ° C. for 2 hours. After the reaction was completed, the KOH aqueous solution was washed off with water and dried at 100 ° C. for 20 hours. The obtained titanium powder was white and titanium dioxide was produced.

【0038】実施例1から3は黒色チタンに関するもの
である。実施例1から3の黒色チタンの明度を評価する
ため、分光測色計(ミノルタCM−3500d)による
調査を行った。その結果を表1に示す。黒色が良好と認
められるのは、L*<30である。実施例1から3にお
いては、アルカリ処理のみでL*が30以下となり、明
度の低い黒色チタンが得られた。さらにチッ化処理する
ことで、L*は10程度まで低下する。
Examples 1 to 3 relate to black titanium. In order to evaluate the brightness of the black titanium of Examples 1 to 3, a spectrocolorimeter (Minolta CM-3500d) was used for investigation. Table 1 shows the results. It is L * <30 that the black color is recognized as good. In Examples 1 to 3, L * was 30 or less only by the alkali treatment, and black titanium having low brightness was obtained. By further performing the nitriding treatment, L * is reduced to about 10.

【0039】実施例4から6は着色チタンに関するもの
である。これらの実施例では、色調が茶系、灰系、青系
の着色チタンが得られた。結果を表2に示す。
Examples 4 to 6 relate to pigmented titanium. In these examples, colored titanium having a brown color, a gray color, or a blue color was obtained. Table 2 shows the results.

【0040】比較例1および2の結果を表3に示すが、
比較例1では、反応温度が低いため反応が進行しなかっ
た。また比較例2では、反応温度が高すぎ金属チタンが
溶解した状態で反応したため、二酸化チタンが生成し
た。
The results of Comparative Examples 1 and 2 are shown in Table 3.
In Comparative Example 1, the reaction did not proceed because the reaction temperature was low. Further, in Comparative Example 2, since the reaction temperature was too high and the reaction was performed in a state in which metallic titanium was dissolved, titanium dioxide was produced.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【表3】 [Table 3]

【0044】[0044]

【発明の効果】以上の説明から明らかなように、本発明
のチタン発色方法はアルカリ溶液による比較的低温での
処理により、低明度の黒色から種々の色調の色まで簡単
に発色させることができる。また、その色が処理温度に
支配されるので、制御性および再現性が良好であり、更
には優れた皮膜密着性も得ることができる。
As is apparent from the above description, the titanium coloring method of the present invention can easily develop from black of low lightness to colors of various tones by treatment with an alkaline solution at a relatively low temperature. . In addition, since the color is controlled by the processing temperature, controllability and reproducibility are good, and further excellent film adhesion can be obtained.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金属チタンの表面をアルカリ溶液により
処理することを特徴とするチタン発色方法。
1. A titanium coloring method, characterized in that the surface of metallic titanium is treated with an alkaline solution.
【請求項2】 40〜200℃の範囲内で処理温度を設
定することにより、設定温度に対応した色にチタン表面
を発色させることを特徴とする請求項1に記載のチタン
発色方法。
2. The titanium coloring method according to claim 1, wherein the titanium surface is colored in a color corresponding to the set temperature by setting the treatment temperature in the range of 40 to 200 ° C.
【請求項3】 アルカリ溶液による処理を終えた後の金
属チタンに、更に窒化処理を施すことを特徴とする請求
項1または2に記載のチタン発色方法。
3. The titanium coloring method according to claim 1, wherein the titanium metal after the treatment with the alkaline solution is further subjected to a nitriding treatment.
JP08099280A 1996-03-27 1996-03-27 Titanium coloring method Expired - Fee Related JP3128556B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP08099280A JP3128556B2 (en) 1996-03-27 1996-03-27 Titanium coloring method
PCT/JP1997/000798 WO1997036019A1 (en) 1996-03-27 1997-03-13 Method for color development of metallic titanium, and black titanium and colored titanium prepared by said method
EP97907305A EP0846783A4 (en) 1996-03-27 1997-03-13 Method for color development of metallic titanium, and black titanium and colored titanium prepared by said method
US08/952,513 US6093259A (en) 1996-03-27 1997-03-13 Color development method of metallic titanium and black and colored titanium manufactured by this method
TW086103935A TW415973B (en) 1996-03-27 1997-03-27 A coloring method of the metal titanium and preparing a black titanium or coloring titanium by these methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08099280A JP3128556B2 (en) 1996-03-27 1996-03-27 Titanium coloring method

Publications (2)

Publication Number Publication Date
JPH09263959A true JPH09263959A (en) 1997-10-07
JP3128556B2 JP3128556B2 (en) 2001-01-29

Family

ID=14243256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08099280A Expired - Fee Related JP3128556B2 (en) 1996-03-27 1996-03-27 Titanium coloring method

Country Status (1)

Country Link
JP (1) JP3128556B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261098A (en) * 2009-05-07 2010-11-18 Gyoseiin Genshino Iinkai Kakuno Kenkyusho New metal nitrogen oxide process
JP2012184458A (en) * 2011-03-03 2012-09-27 Chube Univ Electrode member, and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261098A (en) * 2009-05-07 2010-11-18 Gyoseiin Genshino Iinkai Kakuno Kenkyusho New metal nitrogen oxide process
JP2012184458A (en) * 2011-03-03 2012-09-27 Chube Univ Electrode member, and method for manufacturing the same

Also Published As

Publication number Publication date
JP3128556B2 (en) 2001-01-29

Similar Documents

Publication Publication Date Title
CN106928752A (en) A kind of preparation method of zirconium silicate parcel ceramic pigment with zirconium carbonate ammonium as zirconium source and its obtained product
CN111261851A (en) Ternary cathode material of lithium ion battery and preparation method thereof
CN105670347A (en) Preparation method of high-coating-ratio zirconium silicate coated ceramic pigment and product prepared therethrough
CN116936782B (en) Multilayer coated positive electrode material, preparation method thereof, positive electrode and sodium ion battery
CN109244366A (en) A kind of richness surface recombination modified method of the lithium material and its rich lithium material of preparation
CN110713206A (en) Preparation method of indium oxide-copper oxide composite material
JPH09263959A (en) Method for color-developing titanium
US6093259A (en) Color development method of metallic titanium and black and colored titanium manufactured by this method
CN109797420A (en) A kind of ceramic coating resistant to high temperature and its processing technology
CN108306011A (en) A kind of nickel cobalt manganese hydroxide precursor and preparation method thereof
CN112939076A (en) Preparation method of yttrium-stabilized nano zirconia
US5770173A (en) Method of producing cathode active material for non-aqueous electrolyte secondary battery
GB2096644A (en) Colour anodizing aluminium or aluminium alloys
US2987417A (en) Pigmenting aluminum oxide coating
JP3035576B2 (en) How to color titanium metal
CN102943231A (en) Surface three-step nitridation method of aluminium and aluminium alloy
DE19916403C1 (en) Process for the production of thin, poorly soluble coatings
JPH06264054A (en) Production of phosphor for cathode ray tube
JP4048462B2 (en) Surface treatment method of aluminum material
CN112301379B (en) Method for preparing metal zirconium by using zirconium dioxide as raw material
CN108166043B (en) A kind of preparation method of titanium alloy surface radiative thermal protection coating
JPH09278422A (en) Production of silicon sulfide
US292753A (en) Johaknt kael kesslee
CN104692428A (en) Method for producing alumina by virtue of spontaneous electric electrochemical process
JPH01225793A (en) Anodic oxide film composition on titanium and titanium alloy and production thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20091117

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20091117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees