JPH09262959A - Thermosensitively perforative film - Google Patents

Thermosensitively perforative film

Info

Publication number
JPH09262959A
JPH09262959A JP7214096A JP7214096A JPH09262959A JP H09262959 A JPH09262959 A JP H09262959A JP 7214096 A JP7214096 A JP 7214096A JP 7214096 A JP7214096 A JP 7214096A JP H09262959 A JPH09262959 A JP H09262959A
Authority
JP
Japan
Prior art keywords
film
polyester
experiment
heat
sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7214096A
Other languages
Japanese (ja)
Inventor
Kazuaki Sakurai
和明 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP7214096A priority Critical patent/JPH09262959A/en
Publication of JPH09262959A publication Critical patent/JPH09262959A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a thermosensitively pereforative film which is highly sensitive to perforation, excellent in dimensional stability over time free from the generation of creases during storage and is capable of forming a high quality print image on a printed matter without a peculiar vein of Japanese paper, if the film alone is used as a thermosensitive stencil. SOLUTION: This thermosensitively perforative film is a 5-15μm thick biaxially stretched film consisting of a thermoplastic resin composition of 80-98wt.% polyester resin and 2-20wt.% vinyl alcohol. In this case, the polyester resin is a mixture of a substantially amorphous polyester, a polyester with a melting point of 150-200 deg.C and a crystal fusion energy of 5-9cal/g, and a polyester with a melting point of 210-265 deg.C and a melt flow rate of 30-100g/10min.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えばサーマルヘ
ッドによるデジタル製版を施して穿孔製版し、感熱孔版
印刷の原版として用いる感熱穿孔性フィルムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-sensitive perforating film which is used as an original plate for heat-sensitive stencil printing by performing digital plate making with a thermal head, for example.

【0002】[0002]

【従来の技術】近年では熱可塑性樹脂フィルム単体を感
熱孔版印刷用原紙(以下単に原紙と略記する)として使
用する為の研究が盛んになってきた。これらの研究の狙
いは、現在市販されている原紙、すなわち厚み2μm以
下の極薄い熱可塑性樹脂フィルムと和紙等の多孔質支持
体を接着剤を介してラミネートした原紙の欠点を克服す
ることであり、接着された支持体が製版時にフィルム穿
孔の障害となることや接着剤固形分が印刷時にインキ透
過を阻害することが原因で生じる印刷物の和紙目や白抜
け等の画像性悪化への対策である。
2. Description of the Related Art In recent years, much research has been conducted to use a thermoplastic resin film alone as a base paper for heat-sensitive stencil printing (hereinafter simply referred to as base paper). The purpose of these studies is to overcome the drawbacks of the base paper currently on the market, that is, the base paper in which an ultrathin thermoplastic resin film having a thickness of 2 μm or less and a porous support such as Japanese paper are laminated with an adhesive agent. As a measure against deterioration of image quality such as Japanese paper grain or white spots of printed matter caused by the adhered support hindering film perforation during plate making and the solid adhesive agent obstructing ink permeation during printing is there.

【0003】フィルム単体型原紙の開発において最も重
要な課題は、感熱穿孔性フィルムの穿孔感度と経時安定
性を両立することにある。該フィルム単体型原紙の開発
における問題点は、印刷機内の搬送時に破れやジャム等
が発生しないようにフィルム厚みを厚くして機械的強度
や腰の強さ等の剛性を付与する必要があるが、フィルム
厚みが厚くなるほど穿孔に要する熱エネルギーが増大し
て穿孔され難くなることである。一方、厚みを厚くした
感熱穿孔性フィルムの穿孔感度を高める為にはガラス転
移点及び融点の低い樹脂をフィルム基材に用いることが
一般に知られているが、この様な樹脂を基材に用いたフ
ィルムは経時劣化、例えば保存中に穿孔の駆動力である
配向構造が緩和して穿孔感度が低下したりフィルムの収
縮によるシワの発生が著しかった。したがって、原紙の
穿孔感度を高めるにはフィルムの熱感応性を高めること
が必須であるが、この熱感応性の高まりがフィルムの経
時劣化を引き起こす故に、相反する特性の穿孔感度と経
時安定性を両立することは困難であった。
The most important issue in the development of a film-type base paper is to satisfy both the perforation sensitivity and the temporal stability of the heat-sensitive perforation film. A problem in the development of the film-only base paper is that it is necessary to increase the film thickness to impart rigidity such as mechanical strength and waist strength so that tearing or jamming does not occur during transportation in the printing machine. The thicker the film, the greater the thermal energy required for perforation and the less likely it is to perforate. On the other hand, it is generally known that a resin having a low glass transition point and a low melting point is used as a film base material in order to enhance the perforation sensitivity of a heat-sensitive perforated film having a large thickness. The film was deteriorated with time, for example, the orientation structure, which is a driving force for perforation, was relaxed during storage, the perforation sensitivity was lowered, and wrinkles due to shrinkage of the film were remarkable. Therefore, in order to increase the perforation sensitivity of the base paper, it is essential to increase the heat sensitivity of the film, but since this increase in heat sensitivity causes deterioration of the film over time, the perforation sensitivity and stability over time of contradictory properties are It was difficult to be compatible.

【0004】これに対し、例えば特願平6−21457
5号には、実質的に非晶質の熱可塑性ポリエステル系樹
脂と融点が150〜200℃の結晶性熱可塑性ポリエス
テル系樹脂とからなる組成物で構成され、70℃及び1
40℃における加熱収縮応力の最大値と応力保持率の値
が特定の範囲にある配向構造の感熱穿孔性フィルムが記
載されている。該公報には、穿孔時にフィルムのサーマ
ルヘッド接触部分が中心部の樹脂溶融温度から周辺部の
比較的低温度まで広い温度分布をもって加熱されること
から、穿孔感度を高めるには、穿ち始めの穿孔核を所望
の孔径まで拡大させる熱収縮力が広い温度範囲で発現す
る配向構造を有する場合に限り可能であると記載してい
る。
On the other hand, for example, Japanese Patent Application No. 6-21457.
No. 5 is composed of a composition comprising a substantially amorphous thermoplastic polyester resin and a crystalline thermoplastic polyester resin having a melting point of 150 to 200 ° C.
A heat-sensitive pierceable film having an oriented structure in which the maximum value of the heat shrinkage stress at 40 ° C. and the value of the stress retention rate are within a specific range is described. In this publication, since the thermal head contact portion of the film is heated with a wide temperature distribution from the resin melting temperature in the central portion to a relatively low temperature in the peripheral portion during perforation, in order to enhance the perforation sensitivity, perforation at the beginning of perforation is required. It is described that it is possible only when it has an oriented structure in which a heat shrinkage force for expanding a nucleus to a desired pore size is developed in a wide temperature range.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記特
願平6−214575号に記載の感熱穿孔性フィルム
は、保存中の配向緩和を防止することに重点が置かれ、
穿孔感度の低下は問題にならない程小さかったが、経時
寸法安定性は依然として不十分でありフィルムの収縮に
よりシワが発生して実用上困難な点を含んでいた。
However, the heat-sensitive perforable film described in the above-mentioned Japanese Patent Application No. 6-214575 focuses on preventing orientation relaxation during storage,
Although the reduction in perforation sensitivity was so small that it did not pose a problem, the dimensional stability over time was still insufficient, and wrinkles were generated due to the shrinkage of the film, which was a problem in practical use.

【0006】また、感熱孔版印刷用原紙の製品は、通常
長さ約200版分がロール状に巻かれた状態で流通して
おり、メーカーからユーザーへの輸送中、若しくはメー
カーやユーザーでの保存中に雰囲気温度が55℃程度ま
で上昇する過酷な状況下に置かれる場合もある。したが
って、支持体とラミネートしないフィルム単体型原紙に
おいては、保存中に収縮を起こし易く、2%以上寸法収
縮したフィルムでは、ロール状製品でシワが発生し、原
紙の平面性が損なわれて製版時にサーマルヘッドとの接
触が悪く穿孔され難くなったり、印刷物にシワ模様が転
写する等の問題点がある。
[0006] Further, the heat-sensitive stencil printing base paper products are usually distributed in a state in which a length of about 200 plates is wound in a roll shape, and they are transported from the manufacturer to the user or stored by the manufacturer or the user. In some cases, the ambient temperature may be raised to about 55 ° C. under severe conditions. Therefore, in a film-type base paper that is not laminated with a support, shrinkage is likely to occur during storage, and in a film that has a size shrinkage of 2% or more, wrinkles occur in the roll-shaped product, and the flatness of the base paper is impaired during plate making. There are problems such as poor contact with the thermal head, making it difficult to perforate, and transferring a wrinkle pattern to a printed matter.

【0007】したがって、本発明の課題は、感熱穿孔性
フィルム単体を感熱孔版印刷用原紙として用いる場合
に、印刷機内の搬送時に破れやジャム等の発生が無く、
穿孔感度が優れ、かつ経時寸法安定性が優れ、製品保存
中にシワ等が発生せず、更に印刷物は和紙目や白抜け等
の無い高品質な印刷画像を得ることができる感熱穿孔性
フィルムを提供することにある。
Therefore, an object of the present invention is to prevent the occurrence of tears or jams during transportation in a printing machine when a heat-sensitive perforated film alone is used as a base paper for heat-sensitive stencil printing.
A heat-sensitive perforating film that has excellent perforation sensitivity, excellent dimensional stability over time, does not cause wrinkles during product storage, and that allows printed matter to have high quality printed images with no grain or white spots. To provide.

【0008】[0008]

【課題を解決するための手段】本発明者は、上記課題を
達成する為に鋭意検討した結果、ビニルアルコール系重
合体と特定のポリエステルを混合し用いることにより、
経時寸法安定性及び収縮性が改良されることを見いだ
し、本発明に到達した。すなわち、本発明は、ポリエス
テル系樹脂80〜98重量%とビニルアルコール系重合
体2〜20重量%で構成される熱可塑性樹脂組成物より
なる厚みが5〜15μmの二軸延伸フィルムであって、
該ポリエステル系樹脂が実質的に非晶質のポリエステル
(A)、融点が150〜200℃で、かつ結晶融解エネ
ルギーが5〜9cal/gのポリエステル(B)及び融
点が210〜265℃で、かつメルトフローレートが3
0〜100g/10分のポリエステル(C)の混合物で
あることを特徴とする感熱穿孔性フィルムである。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies to achieve the above object, and as a result, by mixing and using a vinyl alcohol polymer and a specific polyester,
The inventors have found that the dimensional stability with time and the shrinkability are improved, and arrived at the present invention. That is, the present invention is a biaxially stretched film having a thickness of 5 to 15 μm, which is composed of a thermoplastic resin composition composed of 80 to 98% by weight of a polyester resin and 2 to 20% by weight of a vinyl alcohol polymer,
The polyester resin is a substantially amorphous polyester (A), the melting point is 150 to 200 ° C., the crystalline melting energy is 5 to 9 cal / g, and the melting point is 210 to 265 ° C. Melt flow rate is 3
It is a heat-sensitive perforating film which is a mixture of polyester (C) of 0 to 100 g / 10 min.

【0009】以下、本発明を詳細に説明する。本発明の
感熱穿孔性フィルムが従来技術と相違するところは、特
定の熱可塑性樹脂組成物、すなわち実質的に非晶質のポ
リエステル(A)、低結晶性のポリエステル(B)及び
融点と溶融流動性が高いポリエステル(C)の混合物で
あるポリエステル系樹脂とビニルアルコール系重合体で
構成される熱可塑性樹脂組成物を基材樹脂として用いる
ことにある。かかる相違点の重要性は、熱感応性が高く
ても経時的な寸法収縮が少ない感熱穿孔性フィルムを提
供することにより、従来は困難であったフィルム単体型
原紙の穿孔感度と経時安定性の両立を可能にすることに
ある。
Hereinafter, the present invention will be described in detail. The heat-sensitive perforable film of the present invention is different from the prior art in that it has a specific thermoplastic resin composition, that is, a substantially amorphous polyester (A), a low crystalline polyester (B), a melting point and a melt flow. A thermoplastic resin composition composed of a polyester resin, which is a mixture of polyester (C) having high properties, and a vinyl alcohol polymer is used as a base resin. The importance of such a difference is to provide a heat-sensitive perforating film which has high thermal sensitivity and has little dimensional shrinkage over time, thereby making it possible to improve the perforation sensitivity and the temporal stability of a film-type base paper, which has been difficult in the past. It is to enable both.

【0010】図1は、本発明の感熱穿孔性フィルムの経
時寸法安定性と穿孔感度の高さを示す実験図である。す
なわち、下方横軸に経過時間(時間)、左方縦軸に寸法
収縮率(%)、上方横軸にフィルム厚み(μm)、右方
縦軸に印刷濃度(OD値)を各々目盛っている。経時寸
法安定性は図1中に丸印(○及び●)で示した経過時間
(下方横軸)と寸法収縮率(左方縦軸)の関係から、穿
孔感度は図1中に星印(☆及び★)で示したフィルム厚
み(上方横軸)と印刷濃度(右方縦軸)の関係から各々
読み取ることができる。ただし、図1中の白塗印(○及
び☆)は本発明の感熱穿孔性フィルムの場合(後述の実
験No.1に対応)を、黒塗印(●及び★)は従来の感
熱穿孔性フィルムの場合を各々示している。尚、寸法収
縮率はフィルムを55℃雰囲気下で自由に収縮し得る状
態において測定した。
FIG. 1 is an experimental view showing the dimensional stability with time and the perforation sensitivity of the heat-sensitive perforable film of the present invention. That is, the elapsed time (hours) is plotted on the lower horizontal axis, the dimensional shrinkage ratio (%) is plotted on the left vertical axis, the film thickness (μm) is plotted on the upper horizontal axis, and the print density (OD value) is plotted on the right vertical axis. There is. The dimensional stability with time is indicated by circles (○ and ●) in FIG. 1 from the relationship between the elapsed time (lower horizontal axis) and the dimensional shrinkage ratio (left vertical axis). It can be read from the relationship between the film thickness (upper horizontal axis) and the print density (right vertical axis) indicated by ☆ and ★). However, the white marks (○ and ☆) in FIG. 1 indicate the case of the heat-sensitive perforating film of the present invention (corresponding to the experiment No. 1 described later), and the black marks (● and ★) indicate the conventional heat-sensitive perforating property. The case of a film is shown respectively. The dimensional shrinkage was measured in a state where the film could freely shrink in an atmosphere of 55 ° C.

【0011】感熱穿孔性フィルムの経時寸法安定性は、
前述のとおりフィルム単体型原紙では、55℃雰囲気下
で2%以上寸法収縮するとロール状製品でシワが発生す
る等の問題点が有る。したがって、製品保存中に晒され
る可能性がある55℃雰囲気下でもシワを発生させない
為に寸法収縮率は2%未満が好ましい。一方、穿孔感度
は、黒べた印刷濃度(OD値)は0.8以上が好まし
く、これより低いと黒ベタ印刷物はかなりの白抜けが見
られ、文字印刷した場合には掠れて判読し難くなる。
The dimensional stability of the heat-sensitive perforable film over time is
As described above, the film-type base paper has a problem that wrinkles are generated in the roll-shaped product when the size shrinks by 2% or more in the atmosphere of 55 ° C. Therefore, the dimensional shrinkage ratio is preferably less than 2% so that wrinkles do not occur even in a 55 ° C. atmosphere that may be exposed during product storage. On the other hand, the perforation sensitivity is preferably such that the black solid print density (OD value) is 0.8 or more, and if it is lower than this, a considerable amount of white spots will be seen on a black solid print, and when printed, it will be blurred and difficult to read. .

【0012】上記の観点から図1の結果を考察すると、
従来技術の感熱穿孔性フィルムは、55℃雰囲気下6時
間後で寸法収縮率が2%を超え、その後も経過時間に伴
って寸法収縮率は増大し24時間後には4.5%に達し
た。したがって、従来技術の感熱穿孔性フィルムでは、
フィルム単体型原紙として使用する場合に寸法収縮が著
しく、シワが多数発生して実用は不可能である。
Considering the result of FIG. 1 from the above viewpoint,
The heat-sensitive perforable film of the prior art has a dimensional shrinkage ratio of more than 2% after 6 hours in a 55 ° C. atmosphere, and thereafter, the dimensional shrinkage ratio increases with the elapse of time, reaching 4.5% after 24 hours. . Therefore, in the heat-sensitive perforable film of the prior art,
When used as a single film type base paper, dimensional shrinkage is remarkable and many wrinkles are generated, which is not practical.

【0013】これに対して、本発明の感熱穿孔性フィル
ムは、55℃雰囲気下6時間後には寸法収縮率が0.8
%で飽和し、経時寸法安定性が大幅に向上した事が判
る。一方、本発明の感熱穿孔性フィルム、及び従来技術
の感熱穿孔性フィルムともに、フィルム厚みを12μm
にしても、印刷濃度はOD=1.0を上回り鮮明な黒ベ
タ印刷が得られ、15μmの厚さでも黒ベタ印刷に若干
の白抜けが見られる程度であり、両者とも穿孔感度が十
分高い事が判る。すなわち、本発明の感熱穿孔性フィル
ムは、従来技術の感熱穿孔性フィルムと同等の穿孔感度
を保ちながら経時寸法安定性が大幅に向上しており、穿
孔感度と経時寸法安定性を両立している事が判る。
On the other hand, the heat-sensitive perforable film of the present invention has a dimensional shrinkage of 0.8 after 6 hours in an atmosphere of 55 ° C.
It can be seen that it is saturated at%, and the dimensional stability over time is greatly improved. On the other hand, both the heat-sensitive perforated film of the present invention and the heat-sensitive perforated film of the prior art have a film thickness of 12 μm.
Even so, the print density exceeded OD = 1.0, and clear solid black prints were obtained. Even with a thickness of 15 μm, slight white spots were observed in the solid black prints, and both have sufficiently high perforation sensitivity. I understand. That is, the heat-sensitive perforable film of the present invention has significantly improved dimensional stability with time while maintaining the same perforation sensitivity as the heat-sensitive perforated film of the prior art, and has both perforation sensitivity and time-dependent dimensional stability. I understand.

【0014】以下、本発明が感熱穿孔性フィルムの基材
樹脂として上記特定の熱可塑性樹脂組成物を用いること
の技術的意義を説明する。本発明者は、穿孔感度が高く
かつ前記特願平6−214575号では解決できなかっ
た経時寸法安定性を高める為に、高融点の高結晶性樹脂
がフィルムの急激な配向緩和を抑制できることに注目し
た。すなわち、感熱穿孔性フィルムは、一般に高融点の
高結晶性樹脂をフィルム基材樹脂として使用すると熱感
応性が低下して穿孔感度も低下すると認識されている
が、該樹脂が溶融時に特定の流動性を示す場合に限って
穿孔感度を高めることが可能になることを見出した。こ
れは、フィルムが穿孔される過程はフィルムが加熱され
て穿ち始める「穿孔核形成過程」と熱収縮により該穿孔
核が所望の孔径まで拡大する「孔拡大過程」に大別する
ことができ、高融点の高結晶性樹脂でも溶融時の流動性
が特定範囲内にあれば穿孔核が形成し易くなるためであ
る。
The technical significance of using the above-mentioned specific thermoplastic resin composition as the base resin of the heat-sensitive perforable film in the present invention will be described below. The present inventor has found that the high crystalline resin having a high melting point can suppress the rapid orientation relaxation of the film in order to improve the dimensional stability with time, which has a high perforation sensitivity and cannot be solved in the above-mentioned Japanese Patent Application No. 6-214575. noticed. That is, a heat-sensitive perforable film is generally recognized that when a highly crystalline resin having a high melting point is used as a film base resin, thermal sensitivity is lowered and perforation sensitivity is also lowered. It has been found that the perforation sensitivity can be increased only when it exhibits the property. This, the process of perforating the film can be roughly divided into a "hole nucleation process" in which the film begins to be heated and starts to perforate, and a "hole expansion process" in which the perforation nuclei expand to a desired pore diameter by thermal contraction, This is because even if the high-melting-point highly crystalline resin has a fluidity at the time of melting within a specific range, perforation nuclei are easily formed.

【0015】次に、上記特定の熱可塑性樹脂組成物を構
成する樹脂の各々について個別に説明する。ポリエステ
ル(A)の役割は、フィルムのサーマルヘッド接触周辺
部における比較的低温度で熱収縮力を発現させることに
ある。したがって、フィルムの熱応答性を鋭敏にするた
めに、ポリエステル(A)は実質的に非晶質であること
が肝要である。ここでいう実質的に非晶質とは、DSC
曲線(昇降温速度10℃/分、JIS K7121準
拠)において結晶融解ピークが見られないことをいう。
また、ポリエステル(A)は、感熱穿孔性フィルムを構
成するポリエステル系樹脂のうち組成割合が50〜80
重量%の範囲で使用することが好ましく、厳選すると5
5〜70重量%の範囲が更に好ましい。該組成割合が5
0重量%より少ない場合はフィルムの熱応答性が鈍感に
なり穿孔感度が低下し、80重量%より多い場合は急激
な配向緩和が起こりサーマルヘッド接触中心部付近にお
ける比較的高温度で熱収縮力が発現できなくなる。
Next, each of the resins constituting the above specific thermoplastic resin composition will be individually described. The role of the polyester (A) is to develop a heat shrinkage force at a relatively low temperature in the peripheral portion of the film contacting the thermal head. Therefore, it is important that the polyester (A) is substantially amorphous in order to make the thermal response of the film sharp. As used herein, “substantially amorphous” means DSC.
It means that no crystal melting peak is observed in the curve (rate of temperature rise / fall of 10 ° C./min, conforming to JIS K7121).
Further, the polyester (A) has a composition ratio of 50 to 80 in the polyester resin forming the heat-sensitive perforation film.
It is preferable to use in the range of wt%, and if carefully selected, it is 5
The range of 5 to 70% by weight is more preferable. The composition ratio is 5
When it is less than 0% by weight, the thermal response of the film becomes insensitive and the perforation sensitivity is lowered, and when it is more than 80% by weight, a sharp orientation relaxation occurs and the heat shrinkage force at a relatively high temperature near the contact center of the thermal head. Cannot be expressed.

【0016】ポリエステル(B)の役割は、フィルムの
急激な配向緩和を抑制してサーマルヘッド接触中心部付
近における比較的高温度で熱収縮力を発現させること、
及びポリエステル(A)とポリエステル(C)の混合が
均一になされるようにすることにある。したがって、ポ
リエステル(B)は、フィルムの配向構造を保持する為
に結晶性を有することは必須であるが、非晶質ポリエス
テル(A)と高融点ポリエステル(C)の相溶化剤とし
ての役割の為に融点や結晶融解エネルギーが低いことが
肝要である。該樹脂は融点が150〜200℃で、かつ
結晶融解エネルギーが5〜9cal/gの範囲にあるこ
とが好ましく、厳選すると融点が160〜195℃で、
かつ結晶融解エネルギーが6〜8cal/gの範囲にあ
ることが更に好ましい。該樹脂の融点が150℃より低
い場合や結晶融解エネルギーが5cal/gより低い場
合は、フィルムの配向構造を保持できずに保存時に穿孔
感度が低下したり、穿孔時に配向が急激に緩和して熱収
縮力が不足し穿孔できなくなる。
The role of the polyester (B) is to suppress rapid orientation relaxation of the film and to develop a heat shrinkage force at a relatively high temperature near the contact center of the thermal head.
And to uniformly mix the polyester (A) and the polyester (C). Therefore, it is essential that the polyester (B) has crystallinity in order to maintain the oriented structure of the film, but it has a role as a compatibilizing agent for the amorphous polyester (A) and the high melting point polyester (C). Therefore, it is important that the melting point and crystal melting energy are low. The resin preferably has a melting point of 150 to 200 ° C. and a crystal melting energy of 5 to 9 cal / g, and when selected carefully, the melting point is 160 to 195 ° C.
And it is more preferable that the crystal melting energy is in the range of 6 to 8 cal / g. When the melting point of the resin is lower than 150 ° C. or when the crystal melting energy is lower than 5 cal / g, the orientation structure of the film cannot be maintained and the perforation sensitivity is lowered during storage, or the orientation is sharply relaxed during perforation. The heat shrinkage is insufficient and it becomes impossible to perforate.

【0017】一方、該樹脂の融点が200℃より高い場
合や結晶融解エネルギーが9cal/gより高い場合
は、フィルムの熱応答性が鈍感になり穿孔感度が低下す
る。また、ポリエステル(B)は、感熱穿孔性フィルム
を構成するポリエステル系樹脂のうち組成割合が10〜
45重量%の範囲で使用することが好ましく、厳選する
と15〜35重量%の範囲が更に好ましい。該組成割合
が10重量%より少ない場合は急激な配向緩和が起こ
り、或いはポリエステル(A)とポリエステル(C)が
均一に混合できず、45重量%より多い場合はフィルム
の熱応答性が鈍感になり穿孔感度が低下する。
On the other hand, when the melting point of the resin is higher than 200 ° C. or the crystal melting energy is higher than 9 cal / g, the thermal response of the film becomes insensitive and the perforation sensitivity is lowered. Further, the polyester (B) has a composition ratio of 10 to 10 in the polyester resin constituting the heat-sensitive perforable film.
It is preferably used in the range of 45% by weight, more preferably in the range of 15 to 35% by weight when carefully selected. When the composition ratio is less than 10% by weight, a rapid orientation relaxation occurs, or the polyester (A) and the polyester (C) cannot be uniformly mixed, and when it exceeds 45% by weight, the thermal response of the film becomes insensitive. The perforation sensitivity decreases.

【0018】ポリエステル(C)の役割は、保存時に配
向構造を保持してフィルムの寸法収縮を抑制すること、
及びフィルムのサーマルヘッド接触中心部における樹脂
溶融温度で穿孔核を形成し易くすることにある。したが
って、ポリエステル(C)は、融点が高く、かつ溶融状
態での流動性も高いことが肝要である。該樹脂は融点が
210〜265℃で、かつメルトフローレートが30〜
100g/10分の範囲にあることが好ましく、厳選す
ると融点が220〜255℃で、かつメルトフローレー
トが50〜90g/10分の範囲にあることが更に好ま
しい。該樹脂の融点が、210℃より低い場合はフィル
ムの配向構造を保持できず保存時に寸法収縮が起こり、
265℃より高い場合はフィルムの熱応答性が鈍感にな
り穿孔感度が低下する。
The role of the polyester (C) is to maintain the orientation structure during storage and suppress the dimensional shrinkage of the film,
And to facilitate formation of perforation nuclei at the resin melting temperature at the center of the film contacting the thermal head. Therefore, it is important that the polyester (C) has a high melting point and high fluidity in the molten state. The resin has a melting point of 210 to 265 ° C. and a melt flow rate of 30 to
It is preferably in the range of 100 g / 10 minutes, more preferably a melting point of 220 to 255 ° C. and a melt flow rate of 50 to 90 g / 10 minutes when carefully selected. When the melting point of the resin is lower than 210 ° C., the oriented structure of the film cannot be retained and dimensional shrinkage occurs during storage,
If it is higher than 265 ° C, the thermal response of the film becomes insensitive and the perforation sensitivity is lowered.

【0019】一方、該樹脂のメルトフローレートが、3
0g/10分より低い場合は溶融流動性が低くて穿孔核
が形成し難くなり、100g/10分より高い場合は熱
可塑性樹脂組成物が均一に混合できなくなる。また、ポ
リエステル(C)は、感熱穿孔性フィルムを構成するポ
リエステル系樹脂のうち組成割合が5〜40重量%の範
囲で使用することが好ましく、厳選すると15〜35重
量%の範囲が更に好ましい。該組成割合が5重量%より
少ない場合は保存時に寸法収縮が起こり、40重量%よ
り多い場合はフィルムの熱応答性が鈍感になり穿孔感度
が低下する。
On the other hand, the melt flow rate of the resin is 3
When it is lower than 0 g / 10 minutes, melt flowability is low and it becomes difficult to form perforation nuclei, and when it is higher than 100 g / 10 minutes, the thermoplastic resin composition cannot be uniformly mixed. Further, the polyester (C) is preferably used in a composition ratio of 5 to 40% by weight in the polyester resin constituting the heat-sensitive perforable film, and more preferably 15 to 35% by weight when selected carefully. When the composition ratio is less than 5% by weight, dimensional shrinkage occurs during storage, and when it is more than 40% by weight, the thermal response of the film becomes insensitive and the perforation sensitivity decreases.

【0020】次に、上記特定の熱可塑性樹脂組成物を構
成する樹脂のうちビニルアルコール系重合体の役割を説
明する。尚、ここでいうビニルアルコール系重合体と
は、詳しくは後述するが、例えばオレフィン−ビニルア
ルコール共重合体やポリ酢酸ビニルの部分ケン化物等を
いう。ポリエステル系樹脂80〜98重量%とビニルア
ルコール系重合体2〜20重量%で構成される樹脂組成
物を感熱穿孔性フィルムの基材樹脂として使用すること
は、既に特開平5−185763号公報で公知である。
該公報によると、ビニルアルコール系重合体を使用する
効果は、支持体をラミネートする従来型原紙において、
トルエンや酢酸エチル等の溶剤に対して耐溶剤性の良い
樹脂を混合することによりフィルムの軟化を防ぎ支持体
の凹凸を転写させないことにあるとしている。
Next, the role of the vinyl alcohol polymer among the resins constituting the above-mentioned specific thermoplastic resin composition will be described. The vinyl alcohol-based polymer here is, for example, an olefin-vinyl alcohol copolymer or a partially saponified product of polyvinyl acetate, which will be described in detail later. The use of a resin composition composed of 80 to 98% by weight of a polyester resin and 2 to 20% by weight of a vinyl alcohol polymer as a base resin for a heat-sensitive perforable film has already been disclosed in JP-A-5-185763. It is known.
According to the publication, the effect of using a vinyl alcohol-based polymer is that in a conventional base paper for laminating a support,
It is stated that by mixing a resin having good solvent resistance with a solvent such as toluene or ethyl acetate, softening of the film is prevented and unevenness of the support is not transferred.

【0021】しかし、本発明者は、ビニルアルコール系
重合体をフィルム基材の構成樹脂として使用する場合の
従来には無い新規な効果を幾つか見出した。すなわち、
支持体をラミネートしないフィルム単体型原紙において
経時寸法安定性を高める効果があることを新規に見出し
た。これは、ビニルアルコール系重合体は結晶性が高
く、フィルムの配向構造を保持することが可能になるか
らである。更に、ポリエステル系樹脂との組合せにより
フィルム表面を粗面化する効果があることを新規に見出
した。これは、ビニルアルコール系重合体がポリエステ
ル系樹脂と適度な親和性を有する為に粒径1〜5μm程
度に粒状分散し、フィルム表面が粗面化するからであ
る。
However, the inventor of the present invention has found some novel effects which have not been obtained in the past when a vinyl alcohol polymer is used as a constituent resin of a film substrate. That is,
It was newly found that there is an effect of increasing the dimensional stability with time in a film-type base paper on which a support is not laminated. This is because the vinyl alcohol polymer has high crystallinity and can maintain the oriented structure of the film. Furthermore, it was newly found that the combination with a polyester resin has the effect of roughening the film surface. This is because the vinyl alcohol-based polymer has a suitable affinity for the polyester-based resin and thus is dispersed in a granular form with a particle size of about 1 to 5 μm, and the film surface is roughened.

【0022】通常、原紙に使用するフィルムは、フィル
ム製造時の巻上げ工程で作業性を向上させる為、或いは
製版時にサーマルヘッドとの滑り性を付与する為に不活
性無機微粒子を添加して表面粗面化していた。この場
合、フィルム基材樹脂に不活性無機微粒子を均一分散さ
せる為に、フィルム製造工程前に予備的に溶融混合する
コンパウンド加工が必要であった。ところが、ポリエス
テル系樹脂とビニルアルコール系重合体よりなる熱可塑
性樹脂組成物では、不活性無機微粒子を添加する必要が
なく、したがってコンパウンド加工を行う必要がなく、
フィルム製造コストを下げることが可能になった。
Usually, a film used as a base paper has a surface roughened by adding inert inorganic fine particles in order to improve workability in a winding step during film production or to impart slipperiness with a thermal head during plate making. It was a face. In this case, in order to uniformly disperse the inert inorganic fine particles in the film base resin, it was necessary to perform a compounding process in which the particles were preliminarily melt-mixed before the film production process. However, in a thermoplastic resin composition comprising a polyester resin and a vinyl alcohol polymer, it is not necessary to add inert inorganic fine particles, and therefore, it is not necessary to perform compounding,
It has become possible to reduce film manufacturing costs.

【0023】ビニルアルコール系重合体は、上記効果を
発現させる為に、感熱穿孔性フィルムを構成する熱可塑
性樹脂組成物のうち組成割合は2〜20重量%の範囲で
使用することが好ましく、厳選すると2〜15重量%の
範囲が更に好ましい。該組成割合が2重量%より少ない
場合はフィルムの配向構造を保持する効果が小さくな
り、20重量%より多い場合は均一な粒状分散が得られ
ず、或いは結晶性が高くなり過ぎて穿孔感度が低下す
る。また、ビニルアルコール系重合体は、穿孔感度を低
下させない程度でフィルム配向構造を保持する為に結晶
融解エネルギーが10〜20cal/gの範囲にあるこ
とが好ましく、ポリエステル系樹脂との適度な親和性を
持たせる為に分子構造中のビニルアルコール単位割合が
50〜90mol%の範囲にあることが好ましく、フィ
ルム製造時の溶融混練で適度な分散粒径を得る為にメル
トフローレートが0.5〜15g/10分の範囲にある
ことが好ましい。
In order to exhibit the above effects, the vinyl alcohol polymer is preferably used in a composition ratio of 2 to 20% by weight in the thermoplastic resin composition constituting the heat-sensitive piercing film, and is selected carefully. Then, the range of 2 to 15% by weight is more preferable. When the composition ratio is less than 2% by weight, the effect of retaining the oriented structure of the film becomes small, and when it is more than 20% by weight, uniform grain dispersion cannot be obtained, or the crystallinity becomes too high and the perforation sensitivity is increased. descend. In addition, the vinyl alcohol polymer preferably has a crystal melting energy in the range of 10 to 20 cal / g in order to maintain the film orientation structure to the extent that the perforation sensitivity is not deteriorated, and has a suitable affinity with the polyester resin. It is preferable that the proportion of vinyl alcohol units in the molecular structure is in the range of 50 to 90 mol% in order to provide the polymer with a melt flow rate of 0.5 to 0.5 in order to obtain an appropriate dispersed particle diameter in melt kneading during film production. It is preferably in the range of 15 g / 10 minutes.

【0024】本発明で使用する熱可塑性樹脂組成物はポ
リエステル系樹脂とビニルアルコール系重合体で構成さ
れており、以下にポリエステル系樹脂の好ましい単量体
成分とビニルアルコール系重合体の好ましい繰返し単位
を各々示す。ポリエステル系樹脂の単量体成分は、酸成
分には、テレフタル酸成分やイソフタル酸成分等の芳香
族ジカルボン酸成分、アジピン酸成分等の脂肪族ジカル
ボン酸成分、1,4−シクロヘキサンジカルボン酸成分
等の脂環式ジカルボン酸成分等から1つ或いは2つ以上
選ぶことができ、アルコール成分には、エチレングリコ
ール成分やジエチレングリコール成分等のエチレングリ
コール誘導体成分、1,4−ブタンジオール成分等のア
ルキレンジオール成分、1,4−シクロヘキサンジメタ
ノール成分等の脂環式ジオール成分等から1つ或いは2
つ以上選ぶことができる。尚、ここでいう単量体成分と
はポリエステル系樹脂の分子構造中における繰返し単位
の酸成分及びアルコール成分を示している。また、酸成
分とアルコール成分共に1つの単量体成分を選ぶ場合は
該ポリエステル樹脂が単重合体であることを示し、酸成
分或いはアルコール成分に2つ以上の単量体成分を選ぶ
場合は該ポリエステル系樹脂が共重合体であることを示
している。
The thermoplastic resin composition used in the present invention is composed of a polyester resin and a vinyl alcohol polymer, and the preferred monomer component of the polyester resin and the preferred repeating unit of the vinyl alcohol polymer are as follows. Are shown respectively. The monomer component of the polyester resin includes an acid component such as an aromatic dicarboxylic acid component such as a terephthalic acid component and an isophthalic acid component, an aliphatic dicarboxylic acid component such as an adipic acid component, and a 1,4-cyclohexanedicarboxylic acid component. 1 or 2 or more can be selected from the alicyclic dicarboxylic acid components, etc., and the alcohol component is an ethylene glycol derivative component such as an ethylene glycol component or a diethylene glycol component, or an alkylenediol component such as a 1,4-butanediol component. 1 or 2 from alicyclic diol components such as 1,4-cyclohexanedimethanol components
You can choose more than one. The term "monomer component" as used herein refers to the acid component and alcohol component of the repeating unit in the molecular structure of the polyester resin. Further, when one monomer component is selected for both the acid component and the alcohol component, the polyester resin is a homopolymer, and when two or more monomer components are selected for the acid component or the alcohol component, It shows that the polyester resin is a copolymer.

【0025】更に好ましくは、ポリエステル(A)とし
ては、酸成分はテレフタル酸成分、アルコール成分はエ
チレングリコール成分が60〜80mol%と1,4−
シクロヘキサンジメタノール成分が20〜40mol%
からなる共重合樹脂を選び、ポリエステル(B)として
は、酸成分はテレフタル酸成分が50〜85mol%と
イソフタル酸成分が15〜50mol%、アルコール成
分は1,4−ブタンジオール成分からなる共重合樹脂を
選び、ポリエステル(C)としては、酸成分はテレフタ
ル酸成分、アルコール成分はエチレングリコール成分、
または1,4−ブタンジオール成分からなる単重合体、
或いは該単重合体の酸成分をイソフタル酸成分で10m
ol%以下変性した共重合樹脂を選ぶことになる。
More preferably, as the polyester (A), the acid component is a terephthalic acid component, and the alcohol component is an ethylene glycol component of 60 to 80 mol% and 1,4-
Cyclohexanedimethanol component is 20-40 mol%
As a polyester (B), a terephthalic acid component is 50 to 85 mol%, an isophthalic acid component is 15 to 50 mol%, and an alcohol component is a 1,4-butanediol component. A resin is selected, and as the polyester (C), the acid component is a terephthalic acid component, the alcohol component is an ethylene glycol component,
Or a homopolymer composed of 1,4-butanediol component,
Alternatively, the acid component of the homopolymer is an isophthalic acid component of 10 m
A copolymer resin modified by not more than ol% will be selected.

【0026】一方、ビニルアルコール系重合体の繰返し
単位は、前述したが、フィルムの経時寸法安定性と表面
粗面化の効果を発現する為に分子構造中のビニルアルコ
ール単位割合が50〜90mol%の範囲にあることが
好ましい。分子構造中の他の繰返し単位としては、エチ
レン単位やプロピレン単位等のオレフィン単位、その他
酢酸ビニルと共重合し得る単量体に由来する繰返し単位
等が選ばれる。また、ビニルアルコール単位は重合体分
子構造中の酢酸ビニル単位をケン化することにより得ら
れるものであり、ケン化されなかった酢酸ビニル単位が
含まれても良い。更に好ましくは、エチレン−ビニルア
ルコール共重合体やポリ酢酸ビニルの部分ケン化物を選
ぶことになる。
On the other hand, the repeating unit of the vinyl alcohol-based polymer is, as described above, the proportion of the vinyl alcohol unit in the molecular structure is 50 to 90 mol% in order to exert the effects of dimensional stability of the film over time and surface roughening. It is preferably in the range of. As other repeating units in the molecular structure, olefin units such as ethylene units and propylene units, and other repeating units derived from monomers copolymerizable with vinyl acetate are selected. The vinyl alcohol unit is obtained by saponifying a vinyl acetate unit in the polymer molecular structure, and may include a non-saponified vinyl acetate unit. More preferably, an ethylene-vinyl alcohol copolymer or a partially saponified product of polyvinyl acetate will be selected.

【0027】本発明の感熱穿孔性フィルムに使用する上
記熱可塑性樹脂組成物は、これらポリエステル系樹脂と
ビニルアルコール系重合体とを溶融混合して得られる組
成物である。溶融混合の方法としては、予め一軸または
二軸押出機やバンバリーミキサー、ミキシングロール等
で予備的に溶融混合を行っても良いし、ブレンダー等で
ペレット状態或いは粉体状態で予備混合してフィルム製
造の際に押出機中で溶融混合させても良い。但し、予備
的に溶融混合するコンパウンド加工は、フィルムの製造
コストを高めるので行わないのが望ましい。
The thermoplastic resin composition used in the heat-sensitive perforable film of the present invention is a composition obtained by melt-mixing these polyester resins and vinyl alcohol polymers. As a method of melt mixing, it may be preliminarily melt-mixed with a single-screw or twin-screw extruder, a Banbury mixer, a mixing roll, or the like, or may be premixed in a pellet state or a powder state with a blender or the like to produce a film. At this time, they may be melt-mixed in an extruder. However, it is desirable that the compounding process of preliminary melt mixing is not performed because it increases the manufacturing cost of the film.

【0028】本発明の感熱穿孔性フィルムを原紙として
使用して、レーザー光、赤外線、LED光等の電磁波で
穿孔製版する場合には、電磁波を吸収し発熱する電磁波
吸収性物質を分散させることが望ましい。電磁波吸収性
物質としては、例えばカーボン、黒鉛、金属酸化物、光
吸収性金属、有機染料、電磁波吸収性ポリマー等が挙げ
られる。この内、特にカーボン、黒鉛、黒系ないし暗色
系の色素や金属酸化物は波長依存性が少ないので更に望
ましい。一方、フタロシアニン系色素、アゾ系色素、キ
ノン系色素等の特定波長領域で大きい吸収を示す物質も
場合により有効に使用することができる。これらの電磁
波吸収性物質は、単独で用いても良いし、2種以上混合
して用いても良く、穿孔製版に使用する電磁波の波長に
対応した吸収領域を有する物質が選ばれる。
When the heat-sensitive perforated film of the present invention is used as a base paper for perforation plate making with electromagnetic waves such as laser light, infrared rays and LED light, it is possible to disperse an electromagnetic wave absorbing substance which absorbs electromagnetic waves and generates heat. desirable. Examples of the electromagnetic wave absorbing substance include carbon, graphite, metal oxides, light absorbing metals, organic dyes, electromagnetic wave absorbing polymers and the like. Among these, carbon, graphite, black or dark pigments and metal oxides are more desirable because they have little wavelength dependence. On the other hand, phthalocyanine dyes, azo dyes, quinone dyes, and other substances that exhibit large absorption in a specific wavelength region can also be used effectively in some cases. These electromagnetic wave absorbing substances may be used alone or as a mixture of two or more kinds, and a substance having an absorption region corresponding to the wavelength of the electromagnetic wave used for perforation plate making is selected.

【0029】本発明の感熱穿孔性フィルムは、上記特定
の熱可塑性樹脂組成物を基材樹脂として使用し、二軸延
伸して製造することができる。フィルムの製造方法は、
逐次二軸延伸法や同時二軸延伸法(チューブラー法、テ
ンター法)等により行い、その際の延伸条件は、フィル
ムの熱収縮力を大きくする為にできるだけ低い温度で高
倍率に延伸するのが望ましい。具体的には、フィルムの
熱収縮力は70℃における加熱収縮応力の最大値が50
0〜1000g/mm2 の範囲にある値を示すように、
延伸温度は(Tg+25)〜(Tg+45)℃、延伸倍
率は面積倍率15〜35倍の範囲で二軸延伸する場合で
ある。尚、ここでいうTgはフィルム基材樹脂のガラス
転移温度(DSC法、JIS K7121準拠)を表し
ている。更に望ましくは、連続的な延伸を安定した状態
で行う為に、感熱穿孔性フィルムを単層で延伸するより
も、延伸をサポートする延伸補強層を設けて多層上で延
伸する場合である。この場合の層構成は、感熱穿孔性フ
ィルム層をM、延伸補強層をSで示すと、M/S、M/
S/M、S/M/S、M/S/M/S/M、S/M/S
/M/Sが望ましく、M/S/Mの層構成が更に望まし
い。
The heat-sensitive perforable film of the present invention can be produced by biaxially stretching the above-mentioned specific thermoplastic resin composition as a base resin. The manufacturing method of the film is
Sequential biaxial stretching method or simultaneous biaxial stretching method (tubular method, tenter method) or the like is performed. The stretching condition at that time is to stretch the film at a low temperature as much as possible in order to increase the heat shrinkage force of the film. Is desirable. Specifically, the heat shrinkage force of the film is such that the maximum value of the heat shrinkage stress at 70 ° C. is 50.
As shown in the range of 0 to 1000 g / mm 2 ,
The stretching temperature is (Tg + 25) to (Tg + 45) ° C., and the stretching ratio is biaxial stretching in the area ratio of 15 to 35 times. In addition, Tg here represents the glass transition temperature (DSC method, JIS K7121 conformity) of a film base resin. More preferably, in order to carry out continuous stretching in a stable state, the heat-sensitive perforable film is stretched in multiple layers by providing a stretch-reinforcing layer that supports the stretching, rather than stretching it in a single layer. In this case, the layer structure is M / S, M / S, where M is the heat-sensitive perforation film layer and S is the stretch reinforcing layer.
S / M, S / M / S, M / S / M / S / M, S / M / S
/ M / S is preferable, and a layer structure of M / S / M is more preferable.

【0030】上記多層延伸方法において、延伸補強層
は、ビカット軟化点(VSP;ASTM D−1525
準拠、荷重1Kg、昇温速度2℃/分)が110℃以下
の熱可塑性樹脂を主体とし、隣接する感熱穿孔性フィル
ム層との剥離性を良好に保つ為の剥離剤(ポリオキシエ
チレンアルキルエーテルやグリセリン脂肪酸エステル等
の界面活性剤、ジメチルシリコーンオイル、アミノ変性
やエーテル変性等の変性シリコーンオイル、脂肪酸アミ
ド等)を含有させるのが望ましい。
In the above-mentioned multi-layer stretching method, the stretching reinforcement layer has a Vicat softening point (VSP; ASTM D-1525).
Compliant, load 1 kg, heating rate 2 ° C / min) is mainly a thermoplastic resin having a temperature of 110 ° C or less, and a release agent (polyoxyethylene alkyl ether) for keeping good releasability from an adjacent heat-sensitive perforable film layer. And glycerin fatty acid ester or the like surfactant, dimethyl silicone oil, amino-modified or ether-modified modified silicone oil, fatty acid amide, etc.) are preferably contained.

【0031】上記の方法で製造した多層フィルムは、熱
処理やエージング処理を行うことにより、更に経時安定
性を高めることができる。熱処理の方法は、加熱ロール
でプレスする方法(同時にエンボス加工を行っても良
い)、温風恒温槽中でフィルムを拘束或いは弛緩させな
がら行う方法等が有り、いずれの方法を用いても良い。
熱処理温度は(Tg−10)℃から延伸温度までの範囲
で行うことが望ましく、弛緩率は縦横両方向に1〜10
%の範囲で行うのが望ましい。一方、エージング処理の
方法は、40〜60℃に設定した温風恒温槽中に1〜1
4日間保管するのが望ましい。
The multilayer film produced by the above method can be further improved in stability over time by heat treatment or aging treatment. As the method of heat treatment, there are a method of pressing with a heating roll (embossing may be performed at the same time), a method of restraining or relaxing the film in a constant temperature oven, and any method may be used.
The heat treatment temperature is preferably in the range of (Tg-10) ° C to the stretching temperature, and the relaxation rate is 1 to 10 in both longitudinal and transverse directions.
It is desirable to carry out in the range of%. On the other hand, the aging method is 1 to 1 in a warm air thermostat set at 40 to 60 ° C.
It is desirable to store for 4 days.

【0032】得られた多層フィルムは、そのまま二次加
工(例えば、コーティング、表面処理、ラミネート等)
に用いても良いし、剥離して感熱穿孔性フィルム単層で
二次加工に用いても良い。本発明の感熱穿孔性フィルム
は、厚みが5〜15μmの範囲が好ましく、厳選すると
6〜12μmの範囲が更に好ましい。厚みが5μm未満
の場合は、フィルムの機械的強度が弱い為に、印刷機内
で搬送中に破れやジャム等が発生したり、着版シワが発
生する等の不都合が生じる。一方、厚みが15μmを超
える場合は著しく穿孔感度が低下する。
The obtained multilayer film is directly subjected to secondary processing (eg, coating, surface treatment, laminating, etc.)
Or a single layer of the heat-sensitive perforated film that has been peeled off and used for secondary processing. The heat-sensitive perforable film of the present invention preferably has a thickness in the range of 5 to 15 μm, and more preferably 6 to 12 μm when carefully selected. When the thickness is less than 5 μm, the mechanical strength of the film is weak, which causes inconveniences such as tearing or jamming during conveyance in the printing machine, and wrinkles on the plate. On the other hand, when the thickness exceeds 15 μm, the perforation sensitivity is remarkably reduced.

【0033】本発明の感熱穿孔性フィルムを原紙として
使用して、フラッシュ閃光やサーマルヘッドにより穿孔
する場合は、印刷原稿やサーマルヘッドと接触するフィ
ルム面に、印刷原稿との融着やサーマルヘッドとのステ
ィック現象を防止する為の界面活性剤(グリセリン脂肪
酸エステル、ポリオキシエチレンアルキルエーテル、ア
ルキルアルキロールアミン等)、脂肪酸アミド、フッ素
樹脂、シリコーンオイル(望ましくはアルキル変性、ア
ミノ変性、アルコール変性等)等を薄層状に形成させる
のが望ましい。その方法は、特に限定されないが、塗布
したり、前述のフィルム製造方法において延伸補強層用
樹脂に上記物質を練り込んでおき転写させる等がある。
When the heat-sensitive perforating film of the present invention is used as a base paper and perforated by a flash flash or a thermal head, the film surface in contact with the print original or the thermal head is fused with the print original or the thermal head. Surfactants (glycerin fatty acid ester, polyoxyethylene alkyl ether, alkylalkylolamine, etc.), fatty acid amide, fluororesin, silicone oil (desirably alkyl modified, amino modified, alcohol modified, etc.) to prevent sticking phenomenon It is desirable to form the layers in a thin layer. The method is not particularly limited, but may be coating, or by kneading and transferring the above substance into the resin for stretch-strengthening layer in the above-mentioned film manufacturing method.

【0034】また、本発明の感熱穿孔性フィルムを使用
した原紙を穿孔製版する方法は、キセノン・フラッシュ
ランプ等による閃光照射、サーマルヘッド等による加
熱、レーザー光(望ましくは半導体レーザー、YAGレ
ーザー等)、赤外線、LED光を照射するアレイ等によ
る電磁波照射で行われ、特にサーマルヘッドやレーザー
光でデジタル式穿孔製版すると印刷物がより鮮明にな
る。
The method of perforating a base paper using the heat-sensitive perforating film of the present invention is as follows: flash irradiation with a xenon flash lamp or the like, heating with a thermal head or the like, laser light (preferably semiconductor laser, YAG laser, etc.). Electromagnetic waves are radiated by an array that radiates infrared rays or LED light, and especially when a thermal head or laser light is used for digital perforation plate making, the printed matter becomes clearer.

【0035】[0035]

【発明の実施の形態】以下、実施例により本発明をさら
に詳細に説明する。また、本発明で用いる樹脂、フィル
ムの物性の測定方法、評価方法・評価尺度、使用熱可塑
性樹脂組成物の成分割合、及びフィルムの押出成形装置
・方法を以下に示す。 [物性の測定方法] (1)フィルム厚み フィルム厚みt(μm)は、フィルムを幅W(cm)、
長さL(cm)に切り出し、該フィルムサンプルの重量
m(g)、密度ρ(g/cm3 )を測定して次式により
計算し求めた。尚、密度はJIS K7112に準拠し
て密度勾配管法により23℃で測定した。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail with reference to Examples. Further, the resin used in the present invention, the method for measuring the physical properties of the film, the evaluation method / evaluation scale, the component ratio of the thermoplastic resin composition used, and the film extrusion molding apparatus / method are shown below. [Measurement Method of Physical Properties] (1) Film Thickness The film thickness t (μm) is the width W (cm) of the film,
The film was cut into a length L (cm), and the weight m (g) and the density ρ (g / cm 3 ) of the film sample were measured and calculated by the following formula. The density was measured at 23 ° C. by a density gradient tube method according to JIS K7112.

【0036】t=(m/(W・L・ρ))×104 (2)DSC(示差走査熱量計)測定 融点Tm(℃)、結晶融解エネルギーΔHm(cal/
g)、ガラス転移温度Tg(℃)は、DSC(示差走査
熱量計)でJIS K7121に準拠して測定した。測
定装置にはPERKIN−ELMER社製DSC−7
(サンプル量5mg、インジウムを標準物質として熱量
を計算)を用いて、0℃で5分間保持した後、昇温速度
10℃/分で300℃まで昇温し測定を行った。但し、
樹脂サンプルは、結晶融解ピークの終了温度より約30
℃高い温度で10分間保持した後、0℃まで降温速度1
0℃/分で冷却してから測定に供した。
T = (m / (W · L · ρ)) × 10 4 (2) DSC (differential scanning calorimeter) measurement melting point Tm (° C.), crystal melting energy ΔHm (cal /
g) and the glass transition temperature Tg (° C.) were measured by DSC (differential scanning calorimeter) according to JIS K7121. The measuring device is DSC-7 manufactured by PERKIN-ELMER.
Using (sample amount of 5 mg, calorific value calculated using indium as a standard substance), the temperature was held at 0 ° C. for 5 minutes, and then the temperature was raised to 300 ° C. at a heating rate of 10 ° C./minute for measurement. However,
The resin sample has a temperature of about 30 from the end temperature of the crystal melting peak.
After holding at ℃ high temperature for 10 minutes, temperature decrease rate 1 to 0 ℃
The sample was cooled at 0 ° C./minute and then used for measurement.

【0037】(3)メルトフローレート メルトフローレートMFR(g/10分)は、JIS
K7210に準拠して測定した。測定条件は、試験荷重
が2160g、試験温度がDSC測定における融点より
10℃高い温度(Tm+10)℃とした。 (4)加熱収縮応力 フィルム縦方向と横方向の各々について、幅20mm、
長さ100mmに切り出し作成したフィルムサンプル
を、ストレインゲージを片方のチャックに装備した一対
のチャックにチャック間50mm、初期荷重2gとなる
ようセットした。それを所定の温度に加熱したシリコー
ンオイル恒温槽中に浸漬して、発生した収縮力をストレ
ージ式記録計(日置電機社製メモリーハイコーダー88
15)で記録した。
(3) Melt flow rate Melt flow rate MFR (g / 10 minutes) is defined by JIS
It measured based on K7210. The measurement conditions were as follows: the test load was 2160 g, and the test temperature was 10 ° C. higher than the melting point in DSC measurement (Tm + 10) ° C. (4) Heat shrinkage stress Width 20 mm in each of the longitudinal direction and the lateral direction of the film,
A film sample cut into a length of 100 mm was set on a pair of chucks equipped with a strain gauge on one chuck so that the chuck distance was 50 mm and the initial load was 2 g. It is immersed in a silicone oil thermostat heated to a predetermined temperature, and the generated contraction force is measured by a storage recorder (Memory Hicoder 88 manufactured by Hioki Electric Co., Ltd.).
15).

【0038】加熱収縮応力の最大値は、得られた時間−
収縮力のグラフから浸積後10秒以内の最大値をフィル
ム断面積(厚み×幅)で除して求め、フィルム縦方向と
横方向の平均値で示した。ここで、時間ー収縮力のグラ
フが浸積後10秒以内で収縮力の極大を示す場合はその
極大値を、浸積後10秒まで極大を示さず増加し続ける
場合は浸積10秒後の値を収縮力の最大値として採り計
算に用いた。尚、ストレージ式記録計の時間軸は、収縮
力の極大値が浸積後1〜5DIVの範囲内で現れるよう
に20m秒/DIV〜2秒/DIVの範囲で設定した。
The maximum value of the heat shrinkage stress is determined by the obtained time-
The maximum value within 10 seconds after dipping was divided by the film cross-sectional area (thickness × width) from the graph of shrinkage force, and the value was obtained and shown as the average value in the machine direction and the transverse direction of the film. Here, if the graph of time-contraction force shows the maximum of the contraction force within 10 seconds after the immersion, the maximum value is obtained, and if it does not show the maximum until 10 seconds after the immersion and continues to increase, the immersion time is 10 seconds later. The value of was taken as the maximum value of the contraction force and used in the calculation. The time axis of the storage recorder was set in the range of 20 msec / DIV to 2 sec / DIV so that the maximum value of the contraction force appears in the range of 1 to 5 DIV after immersion.

【0039】[評価方法・評価尺度] (1)経時寸法安定性 一辺100mmの正方形に切り出したフィルムサンプル
を、55℃に設定した温風恒温槽中に自由に収縮する状
態で放置した。24時間後のサンプル収縮量を測定して
元の寸法で除し、百分率を求めた。得られた寸法収縮率
の値を経時寸法安定性の指標とした。尚、寸法収縮率は
フィルム縦方向と横方向の平均値で示した。
[Evaluation Method / Evaluation Scale] (1) Dimensional stability over time A film sample cut into a square with a side of 100 mm was left in a warm air thermostat set at 55 ° C. in a freely shrinkable state. The amount of shrinkage of the sample after 24 hours was measured and divided by the original size to obtain a percentage. The obtained value of dimensional shrinkage was used as an index of dimensional stability over time. The dimensional shrinkage ratio is shown as an average value in the machine direction and the transverse direction of the film.

【0040】 <評価尺度> 寸法収縮率(%) 判定 備 考 1%未満 ◎ 寸法収縮が小さくシワは発生しない 1%以上2%未満 ○ 寸法収縮が若干あるがシワは殆ど発生しない 2%以上4%未満 △ 寸法収縮が大きくシワがかなり発生する 4%以上 × 寸法収縮がかなり大きくシワの発生が著しい (2)穿孔感度 所定厚みのサンプルフィルムと、線径40μmのポリエ
ステル繊維を織密度270メッシュで織った厚さ64μ
mのメッシュ状織布とを、四辺のみ貼り合わせて(貼り
合わせが全面でなく製版部分はフィルムとメッシュ状織
布が重なっているだけである)、更にフィルムのメッシ
ュ状織布と接していない面にアミノ変性シリコーンオイ
ル(信越化学社製KF864)を10mg/mm2 塗布
し感熱孔版印刷用原紙を作製した。製版装置として大倉
電機社製印字装置TH−PDMに東芝社製ライン型サー
マルヘッドTPH293R9(発熱体密度16dot/
mm)を装着したものを用い、製版パターンを全ベタ、
製版エネルギーを80μJ/dotとして上記原紙を穿
孔製版した。
<Evaluation Scale> Dimensional shrinkage (%) Judgment Remarks Less than 1% ◎ Small dimensional shrinkage and no wrinkles 1% or more and less than 2% ○ Slight dimensional shrinkage but almost no wrinkles 2% or more 4 Less than% △ Dimensional shrinkage is large and wrinkles are considerably generated 4% or more × Dimensional shrinkage is considerably large and wrinkles are significantly generated (2) Perforation sensitivity A sample film with a predetermined thickness and a polyester fiber having a wire diameter of 40 μm with a woven density of 270 mesh are used. Woven thickness 64μ
M woven cloth is bonded to only four sides (the bonding is not on the entire surface but the film and mesh woven cloth are overlapped at the plate making part), and is not in contact with the mesh cloth of the film Amino-modified silicone oil (KF864 manufactured by Shin-Etsu Chemical Co., Ltd.) was coated on the surface at 10 mg / mm 2 to prepare a heat-sensitive stencil printing base paper. As a plate-making device, a printing device TH-PDM manufactured by Okura Electric Co., Ltd., and a line-type thermal head TPH293R9 manufactured by Toshiba (heating element density 16 dot /
mm) is used, and the plate-making pattern is all solid,
The base paper was perforated for plate making with a plate making energy of 80 μJ / dot.

【0041】原紙の製版部分だけを切り取りメッシュ状
織布を剥がした製版済みフィルムを、市販マスターRC
M56Wのくり抜いた部分に四辺のみ貼り合わせて固定
し原版とした。この原版を理想科学社製リソグラフRC
335の印刷ドラムに装着し、通常印刷条件で印刷操作
のみ行い30枚印刷した。25枚目の印刷物の印刷濃度
(OD値)を、大日本スクリーン製造社製ハンディタイ
プ反射濃度計DM−800で測定した。得られた印刷濃
度の値を穿孔感度の指標とした。
Only the plate-making portion of the base paper is cut off and the mesh-like woven cloth is peeled off to prepare a plate-made film, which is a commercially available master RC.
Only the four sides were attached to the hollowed-out portion of M56W and fixed to obtain an original plate. This original plate is a lithograph RC manufactured by Ideal Science Co.
It was mounted on a printing drum No. 335, and only printing operation was performed under normal printing conditions to print 30 sheets. The print density (OD value) of the 25th print was measured with a handy type reflection densitometer DM-800 manufactured by Dainippon Screen Mfg. Co., Ltd. The obtained print density value was used as an index of perforation sensitivity.

【0042】 <評価尺度> 印刷濃度(OD値) 判定 備 考 1.00以上 ◎ 印刷物の黒べたは鮮明 0.85以上1.00未満 ○ 印刷物の黒べたは白抜けが殆ど無い 0.70以上0.85未満 △ 印刷物の黒べたは白抜けが多い 0.70未満 × 印刷物の黒べたは白抜けが著しい (3)配向保持度 140℃における加熱収縮応力の浸積5秒後値(α)と
140℃における加熱収縮応力の最大値(β)を前記加
熱収縮応力の測定方法にしたがって測定し、両者の比
(α/β)を求めた。得られた応力保持率の値を配向保
持度の指標とした。
<Evaluation Scale> Print Density (OD Value) Judgment Remark 1.00 or more ◎ Black solid of printed matter is clear 0.85 or more and less than 1.00 ○ Black solid of printed matter has almost no white spot 0.70 or more Less than 0.85 △ Black solid of printed matter has many white spots <0.70 × Black solid of printed matter is remarkable (3) Orientation retention value Heat shrinkage stress immersion at 140 ° C Value after 5 seconds (α) The maximum value of the heat shrinkage stress (β) at 140 ° C. and 140 ° C. was measured according to the method for measuring the heat shrinkage stress, and the ratio (α / β) between them was determined. The value of the obtained stress retention rate was used as an index of orientation retention.

【0043】 <評価尺度> 応力保持率 判定 備考 0.20以上 ◎ 穿孔感度に及ぼす影響は無い 0.15以上0.20未満 ○ 穿孔感度に及ぼす影響は殆ど無い 0.10以上0.15未満 △ 穿孔感度に及ぼす影響が有る 0.10未満 × 穿孔感度に及ぼす影響が著しく大きい (4)押出均一性 後述する実施例のフィルム製造方法にしたがって、押出
成形装置を用いて延伸加工前の原反を得た。得られた原
反の表面状態、流れムラや厚みムラの有無等を観察評価
し、押出均一性の指標とした。尚、感熱穿孔性フィルム
の基材樹脂は、ブレンダーによりペレット状態で予備混
合した後、押出成形装置の押出機中で溶融混合した。
<Evaluation scale> Stress retention rate Judgment Remark 0.20 or more ◎ No effect on perforation sensitivity 0.15 or more and less than 0.20 ○ Almost no effect on perforation sensitivity 0.10 or more and less than 0.15 △ There is an influence on perforation sensitivity less than 0.10 × remarkably large influence on perforation sensitivity (4) Extrusion uniformity According to the film manufacturing method of the example described later, an extruding apparatus is used to produce a raw material before stretching. Obtained. The surface condition of the obtained raw fabric, the presence or absence of flow unevenness and thickness unevenness, etc. were observed and evaluated, and used as an index of extrusion uniformity. The base resin of the heat-sensitive perforable film was premixed in a pellet state by a blender and then melt-mixed in an extruder of an extrusion molding device.

【0044】 <評価尺度> 観察評価 判定 備 考 表面は滑らかで厚みムラも無い ◎ 安定した延伸加工が可能 表面は滑らかで厚みムラは殆ど無い ○ 延伸加工は可能 流れムラが有り表面が荒れる △ 安定した延伸加工ができない 流れムラが酷く表面が著しく荒れる × 延伸加工が不可能 (5)搬送着版性 片面にアミノ変性シリコーンオイル(信越化学社製KF
864)を10mg/mm2 塗布した幅320mmのロ
ール状サンプルフィルムを、理想科学社製リソグラフR
C335の原紙収納部に、シリコーンオイル塗布面が製
版ユニットのライン型サーマルヘッドに接触するように
セットした。画像電子学会ファクシミリテストチャート
No.1WPを原稿として、通常製版条件の写真モード
で製版操作を行った。この場合のフィルム切れの発生、
搬送経路におけるジャム等の発生、着版時のシワの発
生、排版の可否等を観察評価し搬送着版性の指標とし
た。
<Evaluation Scale> Observation Evaluation Judgment Remarks The surface is smooth and has no thickness unevenness. ◎ Stable stretching is possible. The surface is smooth and there is almost no thickness unevenness. ○ Stretching is possible. Flow is uneven and the surface is rough. △ Stable Cannot be stretched. Flow unevenness is severe and the surface is extremely rough. X Stretching is not possible. (5) Transport and plateability Amino-modified silicone oil on one side (KF manufactured by Shin-Etsu Chemical Co., Ltd.
864) 10 mg / mm 2 coated roll-shaped sample film with a width of 320 mm is used as a lithograph R manufactured by Ideal Science Co.
The C335 base paper storage unit was set so that the surface coated with silicone oil was in contact with the line type thermal head of the plate making unit. Facsimile test chart No. A plate-making operation was performed in a photo mode under normal plate-making conditions using 1WP as a document. Occurrence of film breakage in this case,
The occurrence of jams and the like in the transport path, the occurrence of wrinkles at the time of plate deposition, the possibility of plate ejection, etc. were observed and evaluated, and used as an index of transport plateability.

【0045】 <評価尺度> 観察評価 判定 全く問題のないもの ◎ 着版時に若干シワが入るが印刷には問題が無いもの ○ 着版時にシワが入り印刷物に影響を与えるもの △ 切れやジャム等の発生で着版ができないもの × [使用熱可塑性樹脂組成物の成分割合]本発明の実施例
及び比較例では、感熱穿孔性フィルムの基材として使用
する熱可塑性樹脂組成物は、複数の構成樹脂をブレンダ
ーを用いてペレット状態で予備混合した後フィルム製造
時に押出機中で溶融混合し用いた。
<Evaluation Scale> Observation Evaluation Judgment: No problem at all ◎ Wrinkles are slightly generated at the time of printing, but there is no problem in printing ○ Wrinkles are included at the time of printing, which affects the printed product △ Cuts, jams, etc. Inability to plate on x [Component ratio of thermoplastic resin composition used] In the examples and comparative examples of the present invention, the thermoplastic resin composition used as the base material of the heat-sensitive perforation film has a plurality of constituent resins. Was pre-mixed in the form of pellets using a blender and then melt-mixed in an extruder at the time of film production.

【0046】先ず、本発明の実施例及び比較例で使用す
る熱可塑性樹脂組成物の構成樹脂であるポリエステル系
樹脂の内容を表1に示す。表1には、ポリエステル
(A)、ポリエステル(B)及びポリエステル(C)の
単量体成分とその成分割合、それら樹脂の物性値を示し
てある。なお、ここで、TPAはテレフタル酸成分、I
PAはイソフタル酸成分、NDAは2,6−ナフタレン
ジカルボン酸成分、EGはエチレングリコール成分、B
Dは1,4−ブタンジオール成分、HMDは1,6−ヘ
キサメチレンジオール成分、CDMは1,4−シクロヘ
キサンジメタノール成分、Tg(℃)はガラス転移温
度、Tm(℃)は融点、ΔHm(cal/g)は結晶融
解エネルギー、MFR(g/10)はメルトフローレー
トの略号である。
First, Table 1 shows the contents of the polyester resin which is a constituent resin of the thermoplastic resin composition used in Examples and Comparative Examples of the present invention. Table 1 shows the monomer components of polyester (A), polyester (B) and polyester (C), their component ratios, and the physical property values of these resins. Here, TPA is a terephthalic acid component, I
PA is an isophthalic acid component, NDA is a 2,6-naphthalenedicarboxylic acid component, EG is an ethylene glycol component, B
D is a 1,4-butanediol component, HMD is a 1,6-hexamethylenediol component, CDM is a 1,4-cyclohexanedimethanol component, Tg (° C) is a glass transition temperature, Tm (° C) is a melting point, and ΔHm ( cal / g) is a crystal melting energy, and MFR (g / 10) is an abbreviation for melt flow rate.

【0047】[0047]

【表1】 [Table 1]

【0048】[フィルムの押出成形装置・方法]次に、
予備混合した構成樹脂を溶融混合するフィルム製造時の
押出成形装置の概要と押出成形方法を示す。口径40m
m、L/D=38の押出機(I)、口径32mm、L/
D=40の押出機(II)及び押出機(III)の三台
の押出機の先端に、溶融樹脂を三層状態に共押出しせし
めるサーキュラーダイを押出機(II)から最外層、押
出機(I)から中間層、押出機(III)から最内層へ
溶融樹脂が流れるように接続した装置を用いた。延伸補
強層用樹脂組成物(S)は押出機(I)に、予備混合し
た感熱穿孔性フィルム用基材樹脂(M)は、水分率50
ppm以下になるまで充分乾燥した後、押出機(II)
及び押出機(III)に供給し、M/S/Mの3層状態
に共押出して水冷後折り畳みながら引き取り原反を得
た。
[Film Extrusion Equipment / Method] Next,
An outline of an extrusion molding apparatus and an extrusion molding method at the time of manufacturing a film for melt-mixing premixed constituent resins will be shown. Caliber 40m
m, L / D = 38 extruder (I), caliber 32 mm, L /
A circular die for co-extruding the molten resin in a three-layer state is provided at the tips of the three extruders of the extruder (II) and the extruder (III) in which D = 40, from the extruder (II) to the outermost layer, the extruder ( A device was used in which the molten resin was connected so as to flow from I) to the intermediate layer and from the extruder (III) to the innermost layer. The resin composition (S) for stretch-strengthening layer was premixed in the extruder (I), and the base resin (M) for heat-sensitive perforable film premixed had a water content of 50.
Extruder (II) after sufficiently drying to below ppm
And an extruder (III), and coextruded into a three-layer state of M / S / M, cooled with water, and folded to obtain a take-up raw material.

【0049】ここで、上記延伸補強層用樹脂組成物
(S)は、ミキシング部に液状物質を加圧注入できる注
入ポンプを備え、直径5mmの押出口を3個有するスト
ランドダイを先端に取り付けた口径45mm、L/D=
44の押出機を用いて、表2に示す3種類の樹脂をペレ
ット状態でブレンダーを用いて予備混合した後に該押出
機に供給し、表2に示す2種類の油状物質を混合した添
加剤を注入しながら溶融混合してストランドダイより押
出造粒したものを用いた。
Here, the above-mentioned resin composition (S) for stretch-reinforcing layer was equipped with an injection pump capable of injecting a liquid substance into the mixing portion under pressure, and a strand die having three extrusion openings with a diameter of 5 mm was attached to the tip. Caliber 45mm, L / D =
Using the extruder of No. 44, the three kinds of resins shown in Table 2 were pre-mixed in a pellet state by using a blender and then fed to the extruder to obtain the additive obtained by mixing the two kinds of oily substances shown in Table 2. What was melt-mixed while injecting and extrusion-granulated from a strand die was used.

【0050】なお、表2における、MI(g/10分)
は測定温度190℃、荷重2160gにおけるMFRで
ある。
In Table 2, MI (g / 10 minutes)
Is the MFR at a measurement temperature of 190 ° C. and a load of 2160 g.

【0051】[0051]

【表2】 [Table 2]

【0052】[0052]

【実施例1及び比較例1】この実験は、ポリエステル
(B)の融点と結晶融解エネルギーの値に着目した実験
である。したがって、熱可塑性樹脂組成物を構成する樹
脂は、ポリエステル(B)以外の樹脂には同一のものを
使用し、それらの組成割合は一定とした。また、フィル
ム製造時には、延伸条件は延伸後のフィルムが70℃に
おける加熱収縮応力の最大値を580〜630g/mm
2 の範囲になるよう努めてあり、熱処理条件やエージン
グ処理条件は一定、感熱穿孔性フィルムの厚みは8μm
とした。
Example 1 and Comparative Example 1 This experiment is an experiment focusing on the values of the melting point and the crystal melting energy of the polyester (B). Therefore, as the resin constituting the thermoplastic resin composition, the same resin was used as the resin other than the polyester (B), and the composition ratio thereof was constant. Further, at the time of producing the film, the stretching condition is that the stretched film has a maximum value of heat shrinkage stress at 70 ° C. of 580 to 630 g / mm.
We are trying to keep it within the range of 2 , heat treatment conditions and aging treatment conditions are constant, and the thickness of the heat-sensitive perforation film is 8 μm.
And

【0053】感熱穿孔性フィルム用基材樹脂(M)に
は、ポリエステル(A)としてA1樹脂を60重量%、
ポリエステル(B)としてB1樹脂を20重量%、ポリ
エステル(C)としてC1樹脂を20重量%からなるポ
リエステル系樹脂95重量%と、ビニルアルコール系重
合体として分子構造中のビニルアルコール単位割合が5
6mol%、結晶融解エネルギーが12.5cal/
g、メルトフローレートが3.5g/10分のエチレン
−ビニルアルコール共重合体5重量%を使用して、前述
の押出成形方法にしたがってM/S/Mの3層状態の原
反を得た。該原反を延伸機の加熱炉により再び加熱し、
87℃の雰囲気温度で縦方向5.0倍、横方向5.5倍
にチューブラー二軸延伸したのち冷風で冷却し折り畳ん
で引き取った。折り畳んだフィルムは、そのまま加熱ロ
ールを用いて熱処理温度50℃、弛緩率2%(縦方向と
横方向の平均値)、熱処理時間5秒の条件で熱処理を行
いながら巻き取った。巻き取ったフィルムロールは、4
5℃に設定した温風恒温槽中に5日間保管しエージング
処理を行った。その後、3層状態のフィルムを各層に剥
離して厚み8μmの感熱穿孔性フィルムを得た。得られ
たフィルムを実験No.1とする。
The base resin (M) for heat-sensitive perforating film contains 60% by weight of A1 resin as polyester (A),
95% by weight of a polyester resin comprising 20% by weight of a B1 resin as a polyester (B) and 20% by weight of a C1 resin as a polyester (C), and a vinyl alcohol polymer having a vinyl alcohol unit ratio of 5 in the molecular structure.
6mol%, crystal melting energy 12.5cal /
g, 5% by weight of ethylene-vinyl alcohol copolymer having a melt flow rate of 3.5 g / 10 min was used to obtain an M / S / M three-layer stock according to the above-mentioned extrusion molding method. . The original fabric is heated again by the heating furnace of the stretching machine,
The film was biaxially stretched 5.0 times in the longitudinal direction and 5.5 times in the lateral direction at an ambient temperature of 87 ° C., then cooled with cold air, folded, and taken up. The folded film was wound using a heating roll as it was while heat-treating at a heat treatment temperature of 50 ° C., a relaxation rate of 2% (average value in the machine direction and the transverse direction), and a heat treatment time of 5 seconds. The rolled film roll is 4
The sample was stored in a warm air constant temperature bath set at 5 ° C. for 5 days for aging treatment. Thereafter, the film in a three-layer state was peeled into each layer to obtain a heat-sensitive perforated film having a thickness of 8 μm. The obtained film was subjected to Experiment No. Let it be 1.

【0054】次いで、ポリエステル(B)としてB2樹
脂を使用し、延伸雰囲気温度を85℃に変更することの
他は上記実験No.1と同じ実験を繰り返し、得られた
フィルムを実験No.2とする。ポリエステル(B)と
してB3樹脂を使用し、延伸雰囲気温度を90℃に変更
することの他は上記実験No.1と同じ実験を繰り返
し、得られたフィルムを実験No.3とする。ポリエス
テル(B)としてB4樹脂を使用し、延伸雰囲気温度を
83℃に変更することの他は上記実験No.1と同じ実
験を繰り返し、得られたフィルムを実験No.4とす
る。ポリエステル(B)としてB5樹脂を使用し、延伸
雰囲気温度を91℃に変更することの他は上記実験N
o.1と同じ実験を繰り返し、得られたフィルムを実験
No.5とする。ポリエステル(B)としてB6樹脂を
使用し、延伸雰囲気温度を80℃に変更することの他は
上記実験No.1と同じ実験を繰り返し、得られたフィ
ルムを実験No.6とする。ポリエステル(B)として
B7樹脂を使用し、延伸雰囲気温度を96℃に変更する
ことの他は上記実験No.1と同じ実験を繰り返し、得
られたフィルムを実験No.7とする。
Then, B2 resin was used as the polyester (B), and the stretching atmosphere temperature was changed to 85 ° C. except that the above experiment No. The same experiment as in No. 1 was repeated, and the obtained film was tested as Experiment No. 1. Let it be 2. The above Experiment No. was used except that B3 resin was used as the polyester (B) and the drawing atmosphere temperature was changed to 90 ° C. The same experiment as in No. 1 was repeated, and the obtained film was tested as Experiment No. 1. 3 is assumed. In the above Experiment No. except that B4 resin was used as the polyester (B) and the stretching atmosphere temperature was changed to 83 ° C. The same experiment as in No. 1 was repeated, and the obtained film was tested as Experiment No. 1. 4 is assumed. The above experiment N except that B5 resin was used as the polyester (B) and the stretching atmosphere temperature was changed to 91 ° C.
o. The same experiment as in No. 1 was repeated, and the obtained film was tested as Experiment No. 1. 5 is assumed. B6 resin was used as the polyester (B) and the stretching atmosphere temperature was changed to 80 ° C. The same experiment as in No. 1 was repeated, and the obtained film was tested as Experiment No. 1. 6 is assumed. B7 resin was used as the polyester (B), and the stretching atmosphere temperature was changed to 96 ° C. The same experiment as in No. 1 was repeated, and the obtained film was tested as Experiment No. 1. 7 is assumed.

【0055】この実験No.1〜7の感熱穿孔性フィル
ムをサンプルフィルムとして、前述した配向保持度及び
穿孔感度について評価を行った。それらをまとめて表3
に示す。表3の結果によると、ポリエステル(B)の融
点が150〜200℃かつ結晶融解エネルギーが5〜9
cal/gの範囲にあるものは、140℃における加熱
収縮応力の応力保持率が高く、穿孔時にフィルムの配向
構造が急激に緩和することなく穿孔感度が高いことが判
る(実験No.1、2、3、4参照)。これに対して、
ポリエステル(B)の融点が200℃を超え、かつ結晶
融解エネルギーが9cal/gを超えるものは、黒べた
印刷物は白抜けが著しく穿孔感度は低いことが判る(実
験No.5参照)。また、ポリエステル(B)の融点及
び結晶融解エネルギーが何れか一方でも上記範囲に満た
ないものは、応力保持率が低く、穿孔時にフィルムの配
向構造が急激に緩和して熱収縮力が不足して穿孔感度は
低いことが判る(実験No.6、7参照)。
In this experiment no. Using the heat-sensitive perforable films 1 to 7 as sample films, the above-mentioned orientation retention and perforation sensitivity were evaluated. They are summarized in Table 3
Shown in According to the results of Table 3, the melting point of the polyester (B) is 150 to 200 ° C. and the crystal melting energy is 5 to 9
Those having a cal / g range have a high stress retention rate of heat shrinkage stress at 140 ° C. and have a high perforation sensitivity without abruptly relaxing the oriented structure of the film at the time of perforation (Experiment Nos. 1 and 2). 3, 4). On the contrary,
It is understood that the polyester (B) having a melting point of more than 200 ° C. and a crystal melting energy of more than 9 cal / g has a marked black spot in the black solid print and has a low perforation sensitivity (see Experiment No. 5). If the melting point and / or crystal melting energy of the polyester (B) is less than the above range, the stress retention rate is low, the oriented structure of the film is suddenly relaxed during perforation, and the heat shrinkage force is insufficient. It can be seen that the perforation sensitivity is low (see Experiment Nos. 6 and 7).

【0056】[0056]

【表3】 [Table 3]

【0057】[0057]

【実施例2及び比較例2】この実験は、ポリエステル
(C)の融点の値に着目した実験である。したがって、
熱可塑性樹脂組成物を構成する樹脂は、ポリエステル
(C)以外の樹脂には同一のものを使用して組成割合は
一定とし、ポリエステル(C)にはメルトフローレート
が85〜90g/10分の範囲にあるものを使用した。
また、フィルム製造時には、延伸条件は延伸後のフィル
ムが70℃における加熱収縮の最大値を580〜630
g/mm2 の範囲になるよう努めてあり、熱処理条件や
エージング処理条件は一定、感熱穿孔性フィルムの厚み
は8μmとした。
Example 2 and Comparative Example 2 This experiment focuses on the melting point value of the polyester (C). Therefore,
The resin constituting the thermoplastic resin composition is the same as the resin other than the polyester (C) and the composition ratio is constant, and the melt flow rate of the polyester (C) is 85 to 90 g / 10 min. I used the one in the range.
Further, at the time of producing the film, the stretching condition is that the stretched film has a maximum value of heat shrinkage at 70 ° C. of 580 to 630.
Yes strive to be in the range of g / mm 2, heat treatment conditions and aging treatment conditions constant, the thickness of the heat-sensitive perforating film was 8 [mu] m.

【0058】ポリエステル(C)としてC2樹脂を使用
し、延伸雰囲気温度を95℃に変更することの他は、上
記実験No.1と同じ実験を繰り返し、得られたフィル
ムを実験No.8とする。ポリエステル(C)としてC
3樹脂を使用し、延伸雰囲気温度を86℃に変更するこ
との他は、上記実験No.1と同じ実験を繰り返し、得
られたフィルムを実験No.9とする。ポリエステル
(C)としてC4樹脂を使用し、延伸雰囲気温度を10
0℃に変更することの他は、上記実験No.1と同じ実
験を繰り返し、得られたフィルムを実験No.10とす
る。ポリエステル(C)としてC5樹脂を使用し、延伸
雰囲気温度を85℃に変更することの他は、上記実験N
o.1と同じ実験を繰り返し、得られたフィルムを実験
No.11とする。
In addition to using the C2 resin as the polyester (C) and changing the stretching atmosphere temperature to 95.degree. The same experiment as in No. 1 was repeated, and the obtained film was tested as Experiment No. 1. 8 is assumed. C as polyester (C)
Experiment No. 3 except that the stretching atmosphere temperature was changed to 86 ° C. by using 3 resin. The same experiment as in No. 1 was repeated, and the obtained film was tested as Experiment No. 1. 9 is assumed. C4 resin is used as polyester (C), and the drawing atmosphere temperature is 10
Other than changing to 0 ° C., the above experiment No. The same experiment as in No. 1 was repeated, and the obtained film was tested as Experiment No. 1. It is assumed to be 10. C5 resin was used as the polyester (C), and the stretching atmosphere temperature was changed to 85 ° C.
o. The same experiment as in No. 1 was repeated, and the obtained film was tested as Experiment No. 1. 11

【0059】この実験No.1、実験No.8〜11の
感熱穿孔性フィルムをサンプルフィルムとして、前述し
た経時寸法安定性及び穿孔感度について評価を行った。
それらをまとめて表4に示す。表4の結果によると、ポ
リエステル(C)の融点が210〜265℃の範囲にあ
るものは、印刷濃度が実用性のあるレベル(OD値0.
85以上)を示して穿孔感度が高く、更に経時寸法安定
性に優れていることが判る(実験No.1、8、9参
照)。これに対して、ポリエステル(C)の融点が26
5℃を超えるものは穿孔感度が低く(実験No.10参
照)、ポリエステル(C)の融点が210℃に満たない
ものは寸法収縮がかなり大きく経時寸法安定性に劣るこ
とが判る(実験No.11参照)。
This experiment No. 1, Experiment No. Using the heat-sensitive perforable films of Nos. 8 to 11 as sample films, the above-described dimensional stability with time and perforation sensitivity were evaluated.
They are collectively shown in Table 4. According to the results of Table 4, when the melting point of the polyester (C) is in the range of 210 to 265 ° C., the printing density is at a practical level (OD value of 0.
It shows that the perforation sensitivity is high and the dimensional stability with time is excellent (see Experiment Nos. 1, 8 and 9). On the other hand, the melting point of polyester (C) is 26
It is found that those having a melting point of more than 5 ° C have low perforation sensitivity (see Experiment No. 10), and those having a melting point of polyester (C) less than 210 ° C have considerably large dimensional shrinkage and poor dimensional stability with time (Experiment No. 10). 11).

【0060】[0060]

【表4】 [Table 4]

【0061】[0061]

【実施例3及び比較例3】この実験は、ポリエステル
(C)のメルトフローレート(MFR)の値に着目した
実験である。したがって、熱可塑性樹脂組成物を構成す
る樹脂は、ポリエステル(C)以外の樹脂には同一のも
のを使用して組成割合は一定とし、ポリエステル(C)
には融点が225℃のものを使用した。また、フィルム
製造時には、延伸条件は延伸後のフィルムが70℃にお
ける加熱収縮の最大値を580〜630g/mm2 の範
囲になるよう努めてあり、熱処理条件やエージング処理
条件は一定、感熱穿孔性フィルムの厚みは8μmとし
た。
Example 3 and Comparative Example 3 This experiment is an experiment focusing on the value of the melt flow rate (MFR) of the polyester (C). Therefore, the resin constituting the thermoplastic resin composition is the same as the resin other than the polyester (C), and the composition ratio is kept constant.
Has a melting point of 225 ° C. At the time of manufacturing the film, the stretching conditions are such that the stretched film has a maximum value of heat shrinkage at 70 ° C. within a range of 580 to 630 g / mm 2 , and the heat treatment condition and the aging treatment condition are constant, and the heat-sensitive piercing property is high. The thickness of the film was 8 μm.

【0062】ポリエステル(C)としてC7樹脂を使用
し、延伸雰囲気温度を88℃に変更することの他は、上
記実験No.1と同じ実験を繰り返し、得られたフィル
ムを実験No.12とする。ポリエステル(C)として
C8樹脂を使用し、延伸雰囲気温度を88℃に変更する
ことの他は、上記実験No.1と同じ実験を繰り返し、
得られたフィルムを実験No.13とする。ポリエステ
ル(C)としてC6樹脂を使用して上記実験No.1と
同様に押出成形を行ったところ、原反は流れムラが酷く
延伸加工は不可能であった。この実験を実験No.14
とする。ポリエステル(C)としてC9樹脂を使用し、
延伸雰囲気温度を90℃に変更することの他は上記実験
No.1と同じ実験を繰り返し、得られたフィルムを実
験No.15とする。
In addition to using the C7 resin as the polyester (C) and changing the stretching atmosphere temperature to 88 ° C., the above experiment No. The same experiment as in No. 1 was repeated, and the obtained film was tested as Experiment No. 1. It is assumed to be 12. In addition to using the C8 resin as the polyester (C) and changing the stretching atmosphere temperature to 88 ° C., the above experiment No. Repeat the same experiment as 1.
The obtained film was subjected to Experiment No. It is assumed to be 13. Using the C6 resin as the polyester (C), the above experiment No. When extrusion molding was performed in the same manner as in No. 1, the raw fabric had severe flow unevenness, and stretching was impossible. This experiment is referred to as Experiment No. 14
And C9 resin is used as polyester (C),
Other than changing the drawing atmosphere temperature to 90 ° C., the above experiment No. The same experiment as in No. 1 was repeated, and the obtained film was tested as Experiment No. 1. Set to 15.

【0063】この実験No.1、実験No.12〜15
の原反をサンプルとして、前述した押出均一性について
評価を行った。また、これら実験で得られた感熱穿孔性
フィルムをサンプルフィルムとして、前述した穿孔感度
について評価を行った。それらをまとめて表5に示す。
尚、実験No.14では感熱穿孔性フィルムが得られな
かったので、穿孔感度の評価を行わず判定は「−」とし
た。表5の結果によると、ポリエステル(C)のメルト
フローレートが30〜100g/10分の範囲にあるも
のは、印刷濃度が実用性のあるレベル(OD値0.85
以上)を示し穿孔感度が高いことが判る(実験No.
1、12、13参照)。これに対して、ポリエステル
(C)のメルトフローレートが100g/10分を超え
るものは原反の流れムラが酷く均一な溶融混合ができず
(実験No.14参照)、ポリエステル(C)のメルト
フローレートが30g/10分に満たないものは黒べた
印刷物は白抜けが著しく穿孔感度は低いことが判る(実
験No.15参照)。
This experiment No. 1, Experiment No. 12-15
The above-mentioned extrusion uniformity was evaluated by using the original fabric as a sample. In addition, the heat-sensitive perforation film obtained in these experiments was used as a sample film to evaluate the perforation sensitivity described above. They are collectively shown in Table 5.
In addition, experiment No. In No. 14, since a heat-sensitive perforation film was not obtained, the perforation sensitivity was not evaluated and the judgment was "-". According to the results shown in Table 5, when the melt flow rate of the polyester (C) is in the range of 30 to 100 g / 10 min, the printing density is at a practical level (OD value 0.85).
The above shows that the perforation sensitivity is high (Experiment No.
1, 12, 13). On the other hand, when the melt flow rate of the polyester (C) exceeds 100 g / 10 min, the flow unevenness of the raw fabric is so severe that uniform melt mixing cannot be performed (see Experiment No. 14), and the melt of the polyester (C) is It can be seen that when the flow rate is less than 30 g / 10 minutes, the black solid printed matter has a marked white spot and the perforation sensitivity is low (see Experiment No. 15).

【0064】[0064]

【表5】 [Table 5]

【0065】[0065]

【実施例4及び比較例4】この実験は、ポリエステル
(A)、ポリエステル(B)及びポリエステル(C)の
組成割合に着目した実験である。したがって、熱可塑性
樹脂組成物を構成する樹脂は、これらポリエステル系樹
脂の組成割合を変更する以外は、ポリエステル系樹脂の
種類、及びビニルアルコール系重合体の種類と組成割合
は同一とした。また、フィルム製造時には、延伸条件は
延伸後のフィルムが70℃における加熱収縮応力の最大
値を580〜630g/mm2 の範囲になるよう努めて
あり、熱処理条件やエージング処理条件は一定、感熱穿
孔性フィルムの厚みは8μmとした。
Example 4 and Comparative Example 4 This experiment is an experiment focusing on the composition ratio of polyester (A), polyester (B) and polyester (C). Therefore, the resin constituting the thermoplastic resin composition has the same composition ratio as that of the polyester resin and vinyl alcohol polymer except that the composition ratio of these polyester resins is changed. At the time of producing the film, the stretching conditions are such that the maximum value of the heat shrinkage stress of the stretched film at 70 ° C. is in the range of 580 to 630 g / mm 2 , and the heat treatment conditions and the aging treatment conditions are constant, and the heat-sensitive perforation is performed. The thickness of the flexible film was 8 μm.

【0066】実施例4及び比較例4で用いる熱可塑性樹
脂組成物の内容を表6に示す。尚、表6の組成物番号1
は上記実験No.1で用いた熱可塑性樹脂組成物を示し
ている。熱可塑性樹脂組成物として組成物番号2を使用
し、延伸雰囲気温度を91℃に変更することの他は上記
実験No.1と同じ実験を繰り返し、得られたフィルム
を実験No.16とする。熱可塑性樹脂組成物として組
成物番号3を使用することの他は上記実験No.1と同
じ実験を繰り返し、得られたフィルムを実験No.17
とする。熱可塑性樹脂組成物として組成物番号4を使用
し、延伸雰囲気温度を86℃に変更することの他は上記
実験No.1と同じ実験を繰り返し、得られたフィルム
を実験No.18とする。熱可塑性樹脂組成物として組
成物番号5を使用し、延伸雰囲気温度を99℃に変更す
ることの他は上記実験No.1と同じ実験を繰り返し、
得られたフィルムを実験No.19とする。熱可塑性樹
脂組成物として組成物番号6を使用し、延伸雰囲気温度
を86℃に変更することの他は上記実験No.1と同じ
実験を繰り返し、得られたフィルムを実験No.20と
する。熱可塑性樹脂組成物として組成物番号7を使用
し、延伸雰囲気温度を83℃に変更することの他は上記
実験No.1と同じ実験を繰り返し、得られたフィルム
を実験No.21とする。熱可塑性樹脂組成物として組
成物番号8を使用し、延伸雰囲気温度を98℃に変更す
ることの他は上記実験No.1と同じ実験を繰り返し、
得られたフィルムを実験No.22とする。熱可塑性樹
脂組成物として組成物番号9を使用し、延伸雰囲気温度
を89℃に変更することの他は上記実験No.1と同じ
実験を繰り返し、得られたフィルムを実験No.23と
する。熱可塑性樹脂組成物として組成物番号10を使用
し、延伸雰囲気温度を85℃に変更することの他は上記
実験No.1と同じ実験を繰り返し、得られたフィルム
を実験No.24とする。熱可塑性樹脂組成物として組
成物番号11を使用して上記実験No.1と同様に押出
成形を行ったところ、原反は流れムラが酷く延伸加工は
不可能であった。この実験を実験No.25とする。
Table 6 shows the contents of the thermoplastic resin compositions used in Example 4 and Comparative Example 4. Composition number 1 in Table 6
Is the above experiment No. 1 shows the thermoplastic resin composition used in Example 1. The composition No. 2 was used as the thermoplastic resin composition and the stretching atmosphere temperature was changed to 91.degree. The same experiment as in No. 1 was repeated, and the obtained film was tested as Experiment No. 1. It is assumed to be 16. The above experiment No. 1 was used except that the composition number 3 was used as the thermoplastic resin composition. The same experiment as in No. 1 was repeated, and the obtained film was tested as Experiment No. 1. 17
And The composition No. 4 was used as the thermoplastic resin composition and the stretching atmosphere temperature was changed to 86 ° C. The same experiment as in No. 1 was repeated, and the obtained film was tested as Experiment No. 1. It is assumed to be 18. The above Experiment No. was used except that Composition No. 5 was used as the thermoplastic resin composition and the drawing atmosphere temperature was changed to 99 ° C. Repeat the same experiment as 1.
The obtained film was subjected to Experiment No. 19 is assumed. The composition No. 6 was used as the thermoplastic resin composition and the stretching atmosphere temperature was changed to 86.degree. The same experiment as in No. 1 was repeated, and the obtained film was tested as Experiment No. 1. 20. The composition of Experiment No. 7 was used, except that Composition No. 7 was used as the thermoplastic resin composition and the stretching atmosphere temperature was changed to 83 ° C. The same experiment as in No. 1 was repeated, and the obtained film was tested as Experiment No. 1. 21. The composition No. 8 was used as the thermoplastic resin composition and the stretching atmosphere temperature was changed to 98 ° C. Repeat the same experiment as 1.
The obtained film was subjected to Experiment No. 22. The composition No. 9 was used as the thermoplastic resin composition and the stretching atmosphere temperature was changed to 89.degree. The same experiment as in No. 1 was repeated, and the obtained film was tested as Experiment No. 1. 23. The above experiment No. was used except that composition No. 10 was used as the thermoplastic resin composition and the stretching atmosphere temperature was changed to 85 ° C. The same experiment as in No. 1 was repeated, and the obtained film was tested as Experiment No. 1. 24. Using the composition No. 11 as the thermoplastic resin composition, the above experiment No. When extrusion molding was performed in the same manner as in No. 1, the raw fabric had severe flow unevenness, and stretching was impossible. This experiment is referred to as Experiment No. 25.

【0067】この実験No.1、実験No.16〜25
の原反をサンプルとして、前述した押出均一性について
評価を行った。また、これら実験で得られた感熱穿孔性
フィルムをサンプルフィルムとして、前述した配向保持
度、経時寸法安定性及び穿孔感度について評価を行っ
た。それらをまとめて表7に示す。尚、実験No.25
では感熱穿孔性フィルムが得られなかったので、配向保
持度、経時寸法安定性及び穿孔感度の評価を行わず判定
は「−」とした。表7の結果によると、感熱穿孔性フィ
ルム用基材の熱可塑性樹脂組成物を構成するポリエステ
ル系樹脂がポリエステル(A)を50〜80重量%、ポ
リエステル(B)を10〜45重量%及びポリエステル
(C)を5〜40重量%の範囲で混合したものは、印刷
濃度が実用性のあるレベル(OD値0.85以上)を示
して穿孔感度が高く、更に経時寸法安定性に優れている
ことが判る(実験No.1、16、17、18、19、
20、21参照)。これに対して、ポリエステル(A)
の組成割合がポリエステル系樹脂のうち80重量%を超
えるもの、或いは50重量%に満たないものは、黒べた
印刷物は白抜けが見られ穿孔感度は低いことが判る(実
験No.22、24参照)。また、ポリエステル(C)
の組成割合がポリエステル系樹脂のうち5重量%に満た
ないものは寸法収縮がかなり大きく経時寸法安定性に劣
り(実験No.23参照)、ポリエステル(B)の組成
割合がポリエステル系樹脂のうち10重量%に満たない
ものは原反の流れムラが酷く均一に溶融混合できないこ
とが判る(実験No.25参照)。
This experiment No. 1, Experiment No. 16-25
The above-mentioned extrusion uniformity was evaluated by using the original fabric as a sample. Further, the heat-sensitive perforated film obtained in these experiments was used as a sample film, and the above-mentioned orientation retention, dimensional stability with time and perforation sensitivity were evaluated. The results are shown in Table 7. In addition, experiment No. 25
Since a heat-sensitive perforation film was not obtained in the above, the degree of orientation retention, dimensional stability over time, and perforation sensitivity were not evaluated and the judgment was "-". According to the results of Table 7, the polyester-based resin constituting the thermoplastic resin composition of the substrate for heat-sensitive perforable film contains 50 to 80% by weight of polyester (A), 10 to 45% by weight of polyester (B), and polyester. The mixture of (C) in the range of 5 to 40% by weight shows a practical print level (OD value of 0.85 or more), high perforation sensitivity, and excellent dimensional stability over time. It turns out (Experiment No. 1, 16, 17, 18, 19,
20, 21). On the other hand, polyester (A)
In the case where the composition ratio of the polyester resin exceeds 80% by weight or less than 50% by weight, the black solid print has white spots and the perforation sensitivity is low (see Experiment Nos. 22 and 24). ). Also, polyester (C)
If the composition ratio of the polyester resin is less than 5% by weight of the polyester resin, the dimensional shrinkage is considerably large and the dimensional stability with time is poor (see Experiment No. 23), and the composition ratio of the polyester (B) is 10% of the polyester resin. It can be seen that if the content is less than 10% by weight, the flow ununiformity of the raw fabric is so severe that uniform melting and mixing cannot be achieved (see Experiment No. 25).

【0068】[0068]

【表6】 [Table 6]

【0069】[0069]

【表7】 [Table 7]

【0070】[0070]

【実施例5及び比較例5】この実験は、ビニルアルコー
ル系重合体の組成割合に着目した実験である。したがっ
て、熱可塑性樹脂組成物を構成する樹脂は、ビニルアル
コール系重合体の組成割合を変更する以外は、ポリエス
テル系樹脂の種類、ポリエステル系樹脂のうちのポリエ
ステル(A)、ポリエステル(B)及びポリエステル
(C)の組成割合、ビニルアルコール系重合体の種類は
同一とした。また、フィルム製造時には、延伸条件は延
伸後のフィルムが70℃における加熱収縮応力の最大値
を580〜630g/mm2 の範囲になるよう努めてあ
り、熱処理条件やエージング処理条件は一定、感熱穿孔
性フィルムの厚みは8μmとした。
Example 5 and Comparative Example 5 This experiment focuses on the composition ratio of the vinyl alcohol polymer. Therefore, the resin constituting the thermoplastic resin composition is the type of polyester resin, polyester (A), polyester (B) and polyester of the polyester resins, except that the composition ratio of the vinyl alcohol polymer is changed. The composition ratio of (C) and the type of vinyl alcohol-based polymer were the same. At the time of producing the film, the stretching conditions are such that the maximum value of the heat shrinkage stress of the stretched film at 70 ° C. is in the range of 580 to 630 g / mm 2 , and the heat treatment conditions and the aging treatment conditions are constant, and the heat-sensitive perforation is performed. The thickness of the flexible film was 8 μm.

【0071】ビニルアルコール系重合体2重量%とポリ
エステル系樹脂98重量%で構成される熱可塑性樹脂組
成物を使用し、延伸雰囲気温度を86℃に変更すること
の他は上記実験No.1と同じ実験を繰り返し、得られ
たフィルムを実験No.26とする。ビニルアルコール
系重合体15重量%とポリエステル系樹脂85重量%で
構成される熱可塑性樹脂組成物を使用し、延伸雰囲気温
度を89℃に変更することの他は上記実験No.1と同
じ実験を繰り返し、得られたフィルムを実験No.27
とする。ビニルアルコール系重合体20重量%とポリエ
ステル系樹脂80重量%で構成される熱可塑性樹脂組成
物を使用し、延伸雰囲気温度を90℃に変更することの
他は上記実験No.1と同じ実験を繰り返し、得られた
フィルムを実験No.28とする。ビニルアルコール系
重合体1重量%とポリエステル系樹脂99重量%で構成
される熱可塑性樹脂組成物を使用し、延伸雰囲気温度を
86℃に変更することの他は上記実験No.1と同じ実
験を繰り返し、得られたフィルムを実験No.29とす
る。ビニルアルコール系重合体23重量%とポリエステ
ル系樹脂77重量%で構成される熱可塑性樹脂組成物を
使用し、延伸雰囲気温度を90℃に変更することの他は
上記実験No.1と同じ実験を繰り返し、得られたフィ
ルムを実験No.30とする。
The above experiment No. 1 was used except that a thermoplastic resin composition composed of 2% by weight of a vinyl alcohol polymer and 98% by weight of a polyester resin was used and the stretching atmosphere temperature was changed to 86 ° C. The same experiment as in No. 1 was repeated, and the obtained film was tested as Experiment No. 1. 26. The above experiment No. was used except that a thermoplastic resin composition composed of 15% by weight of a vinyl alcohol polymer and 85% by weight of a polyester resin was used, and the stretching atmosphere temperature was changed to 89 ° C. The same experiment as in No. 1 was repeated, and the obtained film was tested as Experiment No. 1. 27
And The above experiment No. 1 was repeated except that a thermoplastic resin composition composed of 20% by weight of a vinyl alcohol polymer and 80% by weight of a polyester resin was used and the stretching atmosphere temperature was changed to 90 ° C. The same experiment as in No. 1 was repeated, and the obtained film was tested as Experiment No. 1. 28. In the above experiment No. 1 except that a thermoplastic resin composition composed of 1% by weight of a vinyl alcohol polymer and 99% by weight of a polyester resin was used, and the stretching atmosphere temperature was changed to 86 ° C. The same experiment as in No. 1 was repeated, and the obtained film was tested as Experiment No. 1. 29. The experiment No. was the same as the experiment No. 1 except that a thermoplastic resin composition composed of 23% by weight of a vinyl alcohol polymer and 77% by weight of a polyester resin was used and the drawing atmosphere temperature was changed to 90 ° C. The same experiment as in No. 1 was repeated, and the obtained film was tested as Experiment No. 1. Set to 30.

【0072】この実験No.1、実験No.26〜30
の感熱穿孔性フィルムをサンプルとして、前述した経時
寸法安定性及び穿孔感度について評価を行った。それら
をまとめて表8に示す。表8の結果によると、ビニルア
ルコール系重合体の組成割合が2〜20重量%の範囲に
あるものは、印刷濃度が実用性のあるレベル(OD値
0.85以上)を示して穿孔感度が高く、更に経時寸法
安定性に優れていることが判る(実験No.1、26、
27、28参照)。これに対して、ビニルアルコール系
重合体の組成割合が2重量%に満たないものは寸法収縮
が大きく経時寸法安定性に劣り(実験No.29参
照)、ビニルアルコール系重合体の組成割合が20重量
%を超えるものは黒べた印刷物は白抜が多く穿孔感度は
低いことが判る(実験No.30参照)。尚、実験N
o.29では感熱穿孔性フィルムの滑り性が乏しい為に
フィルム製造時の巻上げ工程においてシワが発生し、実
験No.30では感熱穿孔性フィルムが滑り過ぎる為に
フィルム製造時の巻上げ工程においてフィルムが蛇行し
端面が揃わなかった。
This experiment No. 1, Experiment No. 26-30
Using the heat-sensitive perforable film as a sample, the above-described dimensional stability with time and perforation sensitivity were evaluated. They are collectively shown in Table 8. According to the results shown in Table 8, when the composition ratio of the vinyl alcohol polymer is in the range of 2 to 20% by weight, the printing density shows a practical level (OD value of 0.85 or more) and the perforation sensitivity is high. It is found that it is high and has excellent dimensional stability over time (Experiment No. 1, 26,
27, 28). On the other hand, when the composition ratio of the vinyl alcohol polymer is less than 2% by weight, the dimensional shrinkage is large and the dimensional stability with time is poor (see Experiment No. 29), and the composition ratio of the vinyl alcohol polymer is 20%. It can be seen that black solid prints with more than 10% by weight have a lot of voids and low perforation sensitivity (see Experiment No. 30). Experiment N
o. In Experiment No. 29, wrinkles were generated in the winding step during the film production due to the poor slipperiness of the heat-sensitive perforable film. In No. 30, since the heat-sensitive perforated film slipped too much, the film meandered in the winding step during the film production and the end faces were not aligned.

【0073】[0073]

【表8】 [Table 8]

【0074】[0074]

【実施例6及び比較例6】この実験は、感熱穿孔性フィ
ルムのフィルム厚みに着目した実験である。したがっ
て、熱可塑性樹脂組成物を構成する樹脂とその組成割合
は同一とした。また、フィルム製造時には、延伸条件は
延伸後のフィルムが70℃における加熱収縮応力の最大
値を580〜630g/mm2 の範囲になるよう努めて
あり、熱処理条件やエージング条件は一定とした。
Example 6 and Comparative Example 6 This experiment is an experiment focusing on the film thickness of the heat-sensitive perforation film. Therefore, the resin constituting the thermoplastic resin composition has the same composition ratio. At the time of film production, the stretching conditions were such that the maximum value of the heat shrinkage stress of the stretched film at 70 ° C. was in the range of 580 to 630 g / mm 2 , and the heat treatment conditions and the aging conditions were constant.

【0075】フィルム厚みを6.0μmに変更すること
の他は上記実験No.1と同じ実験を繰り返し得られた
フィルムを実験No.31とする。延伸雰囲気温度を8
8℃、フィルム厚みを12.0μmに変更することの他
は上記実験No.1と同じ実験を繰り返し得られたフィ
ルムを実験No.32とする。フィルム厚みを5.0μ
mに変更することの他は上記実験No.1と同じ実験を
繰り返し得られたフィルムを実験No.33とする。延
伸雰囲気温度を89℃、フィルム厚みを15.0μmに
変更することの他は上記実験No.1と同じ実験を繰り
返し得られたフィルムを実験No.34とする。延伸雰
囲気温度を86℃、フィルム厚みを4.5μmに変更す
ることの他は上記実験No.1と同じ実験を繰り返し得
られたフィルムを実験No.35とする。延伸雰囲気温
度を89℃、フィルム厚みを16.0μmに変更するこ
との他は上記実験No.1と同じ実験を繰り返し得られ
たフィルムを実験No.36とする。
The above experiment No. was changed except that the film thickness was changed to 6.0 μm. The film obtained by repeating the same experiment as that of Experiment 1 was used as Experiment No. 1. 31. Stretching atmosphere temperature is 8
Other than changing the film thickness to 12.0 μm at 8 ° C., the above experiment No. The film obtained by repeating the same experiment as that of Experiment 1 was used as Experiment No. 1. 32. Film thickness is 5.0μ
m except that the above experiment No. was changed. The film obtained by repeating the same experiment as that of Experiment 1 was used as Experiment No. 1. 33. Other than changing the stretching atmosphere temperature to 89 ° C. and the film thickness to 15.0 μm, the above Experiment No. The film obtained by repeating the same experiment as that of Experiment 1 was used as Experiment No. 1. 34. Other than changing the stretching atmosphere temperature to 86 ° C. and the film thickness to 4.5 μm, the above experiment No. The film obtained by repeating the same experiment as that of Experiment 1 was used as Experiment No. 1. 35. Other than changing the stretching atmosphere temperature to 89 ° C. and the film thickness to 16.0 μm, the above Experiment No. The film obtained by repeating the same experiment as that of Experiment 1 was used as Experiment No. 1. 36.

【0076】この実験No.1、実験No.31〜36
の感熱穿孔性フィルムをサンプルフィルムとして、前述
した穿孔感度及び搬送着版性について評価を行った。そ
れらをまとめて表9に示す。表9の結果によると、フィ
ルム厚みが5〜15μmのものは、印刷機内でフィルム
切れやジャムの発生が無く、更に穿孔感度は高いことが
判る(実験No.1、31、32、33、34参照)。
これに対して、フィルム厚みが5μmに満たないものは
ジャム等が発生して印刷に供することができず(実験N
o.35参照)、フィルム厚みが15μmを超えるもの
は黒べた印刷物に白抜けが多く穿孔感度が低下すること
が判る(実験No.36参照)。
This experiment No. 1, Experiment No. 31-36
Using the heat-sensitive perforable film as a sample film, the above-described perforation sensitivity and transport plateability were evaluated. They are collectively shown in Table 9. The results shown in Table 9 show that the film having a film thickness of 5 to 15 μm does not cause film breakage or jam in the printing machine and has a high perforation sensitivity (Experiment No. 1, 31, 32, 33, 34). reference).
On the other hand, if the film thickness is less than 5 μm, jamming or the like occurs and printing cannot be performed (Experiment N
o. 35), a film having a film thickness of more than 15 μm has many white spots on the black solid printed matter, and the perforation sensitivity decreases (see Experiment No. 36).

【0077】[0077]

【表9】 [Table 9]

【0078】[0078]

【参考例】この実験は、感熱穿孔性フィルムの経時的な
寸法収縮率の変化、及びフィルム厚みに依存する穿孔感
度の変化が、基材として用いた熱可塑性樹脂組成物によ
って異なることを調べる為の実験である。したがって、
フィルム製造時には、延伸条件は延伸後のフィルムが7
0℃における加熱収縮応力の最大値を580〜630g
/mm2 の範囲になるよう努めてあり、熱処理条件やエ
ージング条件は一定とした。
[Reference Example] This experiment was conducted to examine that the change in dimensional shrinkage of a heat-sensitive perforated film over time and the change in perforation sensitivity depending on the film thickness differ depending on the thermoplastic resin composition used as the substrate. Is an experiment. Therefore,
When producing the film, the stretching condition is 7 for the stretched film.
The maximum value of heat shrinkage stress at 0 ° C is 580 to 630 g.
We tried to keep it within the range of / mm 2 , and kept the heat treatment conditions and aging conditions constant.

【0079】熱可塑性樹脂組成物として組成物番号1を
使用し、延伸雰囲気温度を86〜89℃、フィルム厚み
を5、6、7、8、9、10、12、15μmとするこ
との他は上記実験No.1と同じ実験を繰り返して本発
明の感熱穿孔性フィルムを得た。熱可塑性樹脂組成物と
してポリエステル系樹脂99重量%とビニルアルコール
系重合体1重量%で構成され、該ポリエステル系樹脂が
A1樹脂55重量%とB1樹脂45重量%、該ビニルア
ルコール系樹脂がエチレン−ビニルアルコール共重合体
(ビニルアルコール単位割合56mol%)である混合
物を使用し、延伸雰囲気温度を81〜85℃、フィルム
厚みを5、6、8、10、12、15、16μmとする
ことの他は上記実験No.1と同じ実験を繰り返して従
来の感熱穿孔性フィルムを得た。
Composition No. 1 was used as the thermoplastic resin composition, the drawing atmosphere temperature was 86 to 89 ° C., and the film thickness was 5, 6, 7, 8, 9, 10, 12, 15 μm. The above experiment No. The same experiment as 1 was repeated to obtain the heat-sensitive perforable film of the present invention. The thermoplastic resin composition comprises 99% by weight of a polyester resin and 1% by weight of a vinyl alcohol polymer, the polyester resin is 55% by weight of A1 resin and 45% by weight of B1 resin, and the vinyl alcohol resin is ethylene- Other than using a mixture that is a vinyl alcohol copolymer (vinyl alcohol unit ratio 56 mol%), the stretching atmosphere temperature is 81 to 85 ° C., and the film thickness is 5, 6, 8, 10, 12, 15, 16 μm. Is the above experiment No. The same experiment as in 1 was repeated to obtain a conventional heat-sensitive perforable film.

【0080】これら感熱穿孔性フィルムのうちフィルム
厚み8μmのものをサンプルフィルムとして、前述した
経時寸法安定性の評価に従い経過時間3、6、12、2
4、36、48時間後の寸法収縮率を測定した。また、
各フィルム厚みの感熱穿孔性フィルムをサンプルフィル
ムとして、前述した穿孔感度の評価に従い黒べた印刷物
の印刷濃度を測定した。その結果を図1にまとめて示
す。
Of these heat-sensitive perforable films, those having a film thickness of 8 μm were used as sample films, and the elapsed time was 3, 6, 12, 2 according to the above-mentioned evaluation of dimensional stability with time.
The dimensional shrinkage ratio was measured after 4, 36 and 48 hours. Also,
The print density of the black solid printed matter was measured according to the evaluation of the perforation sensitivity described above using the heat-sensitive perforation film having each film thickness as a sample film. The results are summarized in FIG.

【0081】図1は、下方横軸に経過時間(時間)、左
方縦軸に寸法収縮率(%)を各々目盛り、時間の経過と
共に寸法収縮率が増加する様子を丸印(○及び●)で示
してある。一方、上方横軸にフィルム厚み(μm)、右
方縦軸に印刷濃度(OD値)を各々目盛り、フィルムが
厚くなると共に印刷濃度が低下する様子を星印(☆及び
★)で示してある。ただし、図1中の白塗印(○及び
☆)は本発明の感熱穿孔性フィルムの場合を、黒塗印
(●及び★)は従来の感熱穿孔性フィルムの場合を各々
示している。
In FIG. 1, the lower horizontal axis represents elapsed time (hours) and the left vertical axis represents dimensional shrinkage (%), and the circles (○ and ●) indicate how the dimensional shrinkage increases with time. ). On the other hand, the film thickness (μm) is plotted on the upper horizontal axis and the print density (OD value) is scaled on the right vertical axis. Stars (☆ and ★) indicate how the print density decreases as the film becomes thicker. . However, the white marks (∘ and ∘) in FIG. 1 indicate the case of the heat-sensitive perforated film of the present invention, and the black marks (● and ★) indicate the case of the conventional heat-sensitive perforated film.

【0082】図1の結果によると、従来技術の感熱穿孔
性フィルムは、55℃雰囲気下6時間後で寸法収縮率が
2%を超え、その後も経過時間に伴って寸法収縮率は増
大し24時間後には4.5%に達した。したがって、従
来技術の感熱穿孔性フィルムでは、フィルム単体型原紙
として使用する場合に寸法収縮が著しく、シワが多数発
生して実用は不可能である。これに対して、本発明の感
熱穿孔性フィルムは、55℃雰囲気下6時間後には寸法
収縮率が0.8%で飽和し、経時寸法安定性が大幅に向
上した事が判る。一方、本発明の感熱穿孔性フィルム、
従来技術の感熱穿孔性フィルムともに、フィルム厚みを
12μmにしても印刷濃度はOD=1.0を上回り鮮明
な黒ベタ印刷が得られ、15μmの厚さでも黒ベタ印刷
に若干の白抜けが見られる程度であり、両者とも穿孔感
度が十分高い事が判る。すなわち、本発明の感熱穿孔性
フィルムは、従来技術の感熱穿孔性フィルムと同等の穿
孔感度を保ちながら経時寸法安定性が大幅に向上してお
り、穿孔感度と経時寸法安定性を両立している事が判
る。
According to the results shown in FIG. 1, the heat-sensitive perforated film of the prior art has a dimensional shrinkage ratio of more than 2% after 6 hours in an atmosphere of 55 ° C., and thereafter, the dimensional shrinkage ratio increases with time. It reached 4.5% after hours. Therefore, in the heat-sensitive perforable film of the prior art, when it is used as a single film type base paper, the dimensional shrinkage is remarkable and many wrinkles occur, which is not practical. On the other hand, it can be seen that the heat-sensitive perforable film of the present invention saturates at a dimensional shrinkage rate of 0.8% after 6 hours in an atmosphere of 55 ° C., and the dimensional stability with time is significantly improved. On the other hand, the heat-sensitive perforable film of the present invention,
With the heat-sensitive perforating film of the prior art, even if the film thickness is 12 μm, the printing density exceeds OD = 1.0, and clear black solid printing is obtained. Even with a thickness of 15 μm, some white spots are seen in black solid printing. It can be seen that both are sufficiently high in perforation sensitivity. That is, the heat-sensitive perforable film of the present invention has significantly improved dimensional stability with time while maintaining the same perforation sensitivity as the heat-sensitive perforated film of the prior art, and has both perforation sensitivity and time-dependent dimensional stability. I understand.

【0083】ところで、図1には示さなかったが、熱可
塑性樹脂組成物としてポリエステル系樹脂95重量%と
ビニルアルコール系重合体5重量%で構成され、該ポリ
エステル系樹脂がA1樹脂、該ビニルアルコール系樹脂
がエチレン−ビニルアルコール共重合体(ビニルアルコ
ール単位割合56mol%)である混合物を使用し、延
伸雰囲気温度を100℃、フィルム厚みを8μmとする
ことの他は上記実験No.1と同じ実験を繰り返して得
られた従来技術の感熱穿孔性フィルムを、サンプルフィ
ルムとして前述した穿孔感度の評価を行ったところ、黒
べた印刷物の印刷濃度はOD値0.51であり、穿孔感
度は著しく低かった。
Although not shown in FIG. 1, the thermoplastic resin composition is composed of 95% by weight of a polyester resin and 5% by weight of a vinyl alcohol polymer, the polyester resin being an A1 resin and a vinyl alcohol. The above experiment No. 1 was used except that a mixture in which the resin was an ethylene-vinyl alcohol copolymer (vinyl alcohol unit ratio 56 mol%), the stretching atmosphere temperature was 100 ° C., and the film thickness was 8 μm. The heat-sensitive perforation film of the prior art obtained by repeating the same experiment as in 1 was evaluated as perforation sensitivity as a sample film, and the printing density of the black solid print was OD value 0.51. Was significantly lower.

【0084】[0084]

【発明の効果】本発明によれば、感熱穿孔性フィルム単
体を感熱孔版印刷用原紙として用いる場合に印刷機内の
搬送時に破れやジャム等の発生が無く、穿孔感度が優
れ、かつ経時寸法安定性が優れ製品保存中にシワ等が発
生せず、更に印刷物は和紙目や白抜け等の無い高品質な
印刷画像を得ることができる感熱穿孔性フィルムを提供
できる。
EFFECTS OF THE INVENTION According to the present invention, when a heat-sensitive perforated film alone is used as a base paper for heat-sensitive stencil printing, there is no occurrence of tears or jams during transportation in a printing machine, excellent perforation sensitivity, and dimensional stability over time. It is possible to provide a heat-sensitive perforating film which does not cause wrinkles or the like during storage of the product and can obtain a high-quality printed image without printed lines or white spots on printed matter.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明及び従来技術の各々の感熱穿孔性フィル
ムについて、経時的な寸法収縮率の変化及びフィルム厚
みに依存する穿孔感度の変化を示す実験図である。
FIG. 1 is an experimental diagram showing changes in dimensional shrinkage over time and changes in perforation sensitivity depending on film thickness for each of the heat-sensitive perforable films of the present invention and the prior art.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B29K 67:00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location B29K 67:00

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ポリエステル系樹脂80〜98重量%と
ビニルアルコール系重合体2〜20重量%で構成される
熱可塑性樹脂組成物よりなる厚みが5〜15μmの二軸
延伸フィルムであって、該ポリエステル系樹脂が実質的
に非晶質のポリエステル(A)、融点が150〜200
℃で、かつ結晶融解エネルギーが5〜9cal/gのポ
リエステル(B)、及び融点が210〜265℃で、か
つメルトフローレートが30〜100g/10分のポリ
エステル(C)の混合物であることを特徴とする感熱穿
孔性フィルム。
1. A biaxially stretched film having a thickness of 5 to 15 μm, which is composed of a thermoplastic resin composition composed of 80 to 98% by weight of a polyester resin and 2 to 20% by weight of a vinyl alcohol polymer. Polyester resin is substantially amorphous polyester (A), melting point 150-200
A mixture of polyester (B) having a crystal melting energy of 5 to 9 cal / g and a melting point of 210 to 265 ° C. and a melt flow rate of 30 to 100 g / 10 min. Characteristic heat-sensitive perforating film.
【請求項2】 ポリエステル系樹脂が、ポリエステル
(A)を50〜80重量%、ポリエステル(B)を10
〜45重量%、及び上記ポリエステル(C)を5〜40
重量%の混合物であることを特徴とする請求項1記載の
感熱穿孔性フィルム。
2. The polyester resin comprises 50 to 80% by weight of polyester (A) and 10 of polyester (B).
~ 45% by weight, and 5-40% of the polyester (C)
The heat-sensitive pierceable film according to claim 1, wherein the heat-sensitive pierceable film is a mixture by weight.
【請求項3】 ビニルアルコール系重合体が、分子構造
中のビニルアルコール単位割合が50〜90mol%、
結晶融解エネルギーが10〜20cal/gで、かつメ
ルトフローレートが0.5〜15g/10分であること
を特徴とする請求項1又は請求項2記載の感熱穿孔性フ
ィルム。
3. The vinyl alcohol polymer, wherein the proportion of vinyl alcohol units in the molecular structure is 50 to 90 mol%,
The heat-sensitive perforable film according to claim 1 or 2, wherein the crystal melting energy is 10 to 20 cal / g and the melt flow rate is 0.5 to 15 g / 10 minutes.
JP7214096A 1996-03-27 1996-03-27 Thermosensitively perforative film Withdrawn JPH09262959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7214096A JPH09262959A (en) 1996-03-27 1996-03-27 Thermosensitively perforative film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7214096A JPH09262959A (en) 1996-03-27 1996-03-27 Thermosensitively perforative film

Publications (1)

Publication Number Publication Date
JPH09262959A true JPH09262959A (en) 1997-10-07

Family

ID=13480693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7214096A Withdrawn JPH09262959A (en) 1996-03-27 1996-03-27 Thermosensitively perforative film

Country Status (1)

Country Link
JP (1) JPH09262959A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004060691A1 (en) * 2002-12-26 2004-07-22 Mitsubishi Polyester Film Corporation Highly sensitive thermosensitive polyester film for porous printing base paper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004060691A1 (en) * 2002-12-26 2004-07-22 Mitsubishi Polyester Film Corporation Highly sensitive thermosensitive polyester film for porous printing base paper

Similar Documents

Publication Publication Date Title
JP2507612B2 (en) Film for heat-sensitive stencil printing base paper
JP2825830B2 (en) High-sensitivity heat-sensitive multilayer film and method for producing stencil sheet using the same
JPH09262959A (en) Thermosensitively perforative film
JP4441837B2 (en) Polyester laminated film containing voids for form printing
JP3581617B2 (en) Film for heat sensitive stencil printing base paper
JP4202789B2 (en) screen
JP3806888B2 (en) Polyester film for heat-sensitive stencil sheet and heat-sensitive stencil sheet comprising the same
JPH0768964A (en) Thermal perforative film and base paper for thermal stencil printing used therewith
JP2007168285A (en) Method for manufacturing biaxially oriented polyester film for thermal transfer recording material
JPH0872430A (en) Thermal perforable sheet
JP3164387B2 (en) Base paper for heat-sensitive stencil printing
JPH1044364A (en) Thermosensitive perforatable film
JP3830792B2 (en) Polyester film for heat sensitive stencil printing paper
JP4131452B2 (en) Cavity-containing polyester film
JPS62116194A (en) Biaxially-oriented polyethylene naphthalate film for heat-sensitive mimeograph paper
JP4357194B2 (en) Thermal recording paper
JPH11348449A (en) Polyester film for thermosensitive stencil printing base sheet
JPH0399890A (en) Heat-sensitive perforable film
JPH01200991A (en) Highly-sensitive photo-perforative film or base paper
JPH0645272B2 (en) High-sensitivity heat-sensitive platemaking paper and method for producing
JPH06210976A (en) Thermally perforable film
JP2006347001A (en) Sublimable thermal transfer image receptor
JPH05185763A (en) Film for thermal stencil printing base paper
JPH0645273B2 (en) High-sensitivity and heat-sensitive stencil film and base paper
JPH05270162A (en) Thermal film and stencil paper using same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030603