JPH09262887A - Simulation method of mold shrinkage process in crystalline resin molding and device thereof - Google Patents

Simulation method of mold shrinkage process in crystalline resin molding and device thereof

Info

Publication number
JPH09262887A
JPH09262887A JP7504796A JP7504796A JPH09262887A JP H09262887 A JPH09262887 A JP H09262887A JP 7504796 A JP7504796 A JP 7504796A JP 7504796 A JP7504796 A JP 7504796A JP H09262887 A JPH09262887 A JP H09262887A
Authority
JP
Japan
Prior art keywords
resin
molding
shrinkage
specific volume
crystallinity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7504796A
Other languages
Japanese (ja)
Inventor
Masao Narita
賢生 成田
Motonori Hiratsuka
元紀 平塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP7504796A priority Critical patent/JPH09262887A/en
Publication of JPH09262887A publication Critical patent/JPH09262887A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/7693Measuring, controlling or regulating using rheological models of the material in the mould, e.g. finite elements method

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To estimate a shrinkage factor by a method wherein the PVT curve of resin in accordance with the crystallization behavior in molding and the specific volume of the resin are calculated. SOLUTION: The outputs from an input part 11, in which various data necessary for analysis are fed to a PVC characteristic curve analysing part 12 for calculating the PVC characteristic curve of resin at any crystallinity, a PVC curve calculating part 13 for calculating the PVC curve of resin in accordance with the crystallization behavior at molding and a specific volume calculating part 14 of the resin. The output of the PVC curve calculating part 13 is fed to a storage part A16 and the specific volume calculating part 14. The output of the specific volume calculating part 14 is fed to a storage part, in which the analytical result is stored, and to a shrinkage factor calculating part 15 for calculating the shrinkage factors at molding. The output of the shrinkage factor calculating part 15 is fed to the storage part, in which the analytical result is stored.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は結晶性樹脂成形品の
成形過程シミュレーション方法およびその装置に係り、
より詳細には成形品のそり、ひけ、収縮の解析に不可欠
な結晶化による収縮を含めた成形収縮量を予測すること
の出来る収縮過程シミュレーション方法およびその装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for simulating a molding process of a crystalline resin molded product,
More specifically, the present invention relates to a shrinking process simulation method and apparatus capable of predicting the amount of molding shrinkage including shrinkage due to crystallization, which is indispensable for analysis of warpage, sink marks, and shrinkage of molded products.

【0002】[0002]

【従来の技術】近年、従来考慮されていなかった金型内
における樹脂の変形挙動、変形開始後の金型内の温度挙
動を解析することにより、実際の成形現象により近い形
状不良の予測を可能にした成形プロセス過程シミュレー
ションシステムが開発されている。
2. Description of the Related Art In recent years, it is possible to predict a shape defect closer to an actual molding phenomenon by analyzing a deformation behavior of a resin in a mold and a temperature behavior in the mold after the deformation starts, which has not been considered in recent years. A molding process simulation system has been developed.

【0003】例えば特公平6−22840号公報に示さ
れる射出成形過程シミュレーションシステムでは成形過
程における樹脂温度変化を算出し、冷却に伴う樹脂温度
の低下によって成形材料の溶融相のつながりが断たれる
時点を算出し、その時点以降、冷却に伴う変形を樹脂の
PVTデータより算出された樹脂固有の線膨張率を用い
て計算を行う。
For example, in the injection molding process simulation system disclosed in Japanese Examined Patent Publication No. 6-22840, a change in resin temperature in the molding process is calculated, and at the time when the molten phase of the molding material is disconnected due to the decrease in the resin temperature due to cooling. After that time, the deformation due to cooling is calculated using the linear expansion coefficient of the resin calculated from the PVT data of the resin.

【0004】しかしこの方法では結晶性樹脂における結
晶収縮を全く考慮しておらず、従って結晶性樹脂の成形
に関する収縮率の計算結果は、実際の収縮率に比べて小
さく見積もられるといった問題があった。
However, this method does not consider crystal shrinkage of the crystalline resin at all, and therefore has a problem that the calculation result of the shrinkage ratio for the molding of the crystalline resin is estimated to be smaller than the actual shrinkage ratio. .

【0005】また特開平4−282746では成形品の
外観不良評価を行う方法が提案されている。この方法で
は射出成形品の充填解析、保圧流動解析、樹脂冷却解析
を順次行って、射出成形過程中の成形材料の温度変化、
圧力、比容積変化を計算し、この計算結果に基づいて成
形品の型内離型時若しくは取り出し時の温度分布を算出
し、この算出した分布温度から外気温度になるまでの熱
収縮分および結晶化領域における結晶化速度を考慮した
結晶収縮分を累積して収縮量評価指標値Mを次式により
求めている。
Further, Japanese Patent Laid-Open No. 4-282746 proposes a method for evaluating the appearance defect of a molded product. In this method, the filling analysis of the injection-molded product, the holding pressure flow analysis, and the resin cooling analysis are sequentially performed, and the temperature change of the molding material during the injection molding process,
Calculate the pressure and specific volume change, and calculate the temperature distribution of the molded product during mold release or removal based on the calculation results, and the heat shrinkage and crystallites from the calculated distribution temperature to the ambient temperature. The shrinkage amount evaluation index value M is calculated by the following equation by accumulating the crystal shrinkage amount in consideration of the crystallization rate in the crystallization region.

【0006】[0006]

【数1】 M=α(T−T0)+β・f[(T−T0)/t] (1) ただし、α:線膨張係数、β:100%結晶収縮量、
T:取り出し温度、T0:外気温度、f:関数、t:時
間であるが、fについては取り出し温度から外気温度に
至るまでの間の結晶化度の増分を求める関数を規定して
いることは明らかである。
## EQU1 ## M = α (T-T0) + βf [(T-T0) / t] (1) where α: linear expansion coefficient, β: 100% crystal shrinkage,
T: take-out temperature, T0: outside air temperature, f: function, t: time, where f defines a function for obtaining an increase in crystallinity from the take-out temperature to the outside air temperature. it is obvious.

【0007】[0007]

【発明が解決しようとする課題】しかしこの方法ではメ
ラの発生を予測することは出来ても成形時の比容積、収
縮率の変化を定量的に計算することは出来ず、また取り
出し温度から外気温度に至るまでの結晶化度の増分を正
確に計算する関数を規定出来ないと言う問題があった。
However, although this method can predict the occurrence of mella, it cannot quantitatively calculate the change in specific volume and shrinkage during molding, and it cannot be calculated from the temperature taken out from the outside air. There is a problem that a function for accurately calculating the increment of crystallinity up to temperature cannot be defined.

【0008】本発明はかかる実状に鑑みてなされたもの
で、その目的は結晶性樹脂において成形過程における比
容積、収縮率を定量的に予測する収縮過程シミュレーシ
ョン方法およびその装置を提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a shrinkage process simulation method and apparatus for quantitatively predicting a specific volume and a shrinkage rate in a molding process in a crystalline resin. .

【0009】[0009]

【課題を解決するための手段】すなわち本発明は成形過
程の樹脂温度、圧力、結晶化度のデータと任意の結晶化
度における樹脂のPVT特性を求める方法を用いて、成
形時の結晶化挙動に従った樹脂のPVT曲線と樹脂の比
容積を計算し、さらに収縮率を予測することを特徴とす
る結晶性樹脂成形品における成形収縮過程シミュレーシ
ョン方法、樹脂の非晶、過冷却液体、結晶の各状態にお
ける比容積の温度、圧力依存性を求め、さらに結晶と非
晶、または結晶と過冷却液体の比容積と結晶化度から、
任意の結晶化度における樹脂のPVT特性を求める方
法、実際に測定された樹脂のPVT曲線から熱収縮のみ
を考慮した比容積を求め、また室温における結晶と非晶
の比容積から、結晶化度と結晶収縮による比容積の変化
の関係を求め、この両者から任意の結晶化度における樹
脂のPVT特性を求める方法、少なくとも成形過程の樹
脂温度、圧力、結晶化度のデータを入力するデータ入力
部と任意の結晶化度における樹脂のPVT特性を求める
PVT特性解析部と、この両者から成形時の結晶化挙動
に従った樹脂のPVT曲線と樹脂の比容積を算出するP
VT曲線解析部、比容積算出部と、さらに収縮率を予測
する収縮率算出部を備え、成形過程の比容積、収縮率の
変化を算出する事を特徴とする結晶性樹脂成形品におけ
る収縮過程シミュレーション装置、製造を支援するため
の成形プロセスシミュレーションシステムにおいて、上
記成形収縮過程シミュレーション方法を組み込んで、樹
脂成形品の設計、成形品のそり、ひけ、収縮を計算する
事を特徴とする成形プロセスシミュレーションシステ
ム、上記成形プロセスシミュレーションシステムを用い
て、成形品のそり、ひけ、収縮を計算する事により、成
形条件の設定を最適化する事を特徴とする樹脂成形品の
成形条件の設定方法、上記成形収縮過程シミュレーショ
ン方法を用いて、成形品の収縮を計算することにより、
金型形状を最適化することを特徴とする金型の設計方
法、上記上記成形プロセスシミュレーションシステムを
用いて、成形品の収縮を計算することにより、金型形状
を最適化することを特徴とする金型の設計方法、上記金
型の設計方法により設計された金型、該成形条件の設定
方法を用いることにより設定した成形条件により樹脂ま
たは樹脂組成物を成形することを特徴とする成形品の製
造方法、上記金型を用いて成形することを特徴とする成
形品の製造方法および上記製造方法により製造されてな
る成形品である。
That is, the present invention uses the data of resin temperature, pressure, and crystallinity in the molding process and the method for determining the PVT characteristics of the resin at an arbitrary crystallinity, and the crystallization behavior during molding is A method for simulating a molding shrinkage process in a crystalline resin molded article, which is characterized by calculating a PVT curve of a resin and a specific volume of the resin, and further predicting a shrinkage ratio, an amorphous resin, a supercooled liquid, and a crystalline resin. Determine the temperature and pressure dependence of the specific volume in each state, further from the specific volume and crystallinity of crystals and amorphous, or crystals and supercooled liquid,
A method for determining the PVT characteristics of a resin at an arbitrary crystallinity, a specific volume considering only heat shrinkage from the actually measured PVT curve of the resin, and a crystallinity from a crystalline and amorphous specific volume at room temperature. And a change in the specific volume due to crystal shrinkage, and a method for obtaining the PVT characteristic of the resin at an arbitrary crystallinity from the two, a data input section for inputting at least resin temperature, pressure, and crystallinity data in the molding process. And a PVT characteristic analysis section for obtaining the PVT characteristic of the resin at an arbitrary crystallinity, and a PVT curve of the resin and a specific volume of the resin according to the crystallization behavior at the time of molding P
A shrinkage process in a crystalline resin molded product, characterized by comprising a VT curve analysis unit, a specific volume calculation unit, and a shrinkage ratio calculation unit for predicting the shrinkage ratio, and calculating changes in the specific volume and shrinkage ratio during the molding process. A molding apparatus and a molding process simulation system for supporting manufacturing, which incorporates the above-described molding shrinkage process simulation method to calculate the design of a resin molded product, warpage, sinking, and shrinkage of the molded product. System, a method of setting molding conditions of a resin molded product, characterized by optimizing molding condition setting by calculating warp, sink, shrinkage of the molded product using the molding process simulation system, By using the shrinkage process simulation method to calculate the shrinkage of the molded product,
A method for designing a mold characterized by optimizing a mold shape, characterized in that the mold shape is optimized by calculating shrinkage of a molded product using the above-mentioned molding process simulation system. A method for designing a mold, a mold designed by the method for designing a mold, and a molded article characterized by molding a resin or a resin composition under the molding conditions set by using the method for setting the molding conditions. A manufacturing method, a method for manufacturing a molded article characterized by molding using the above-mentioned mold, and a molded article manufactured by the above manufacturing method.

【0010】[0010]

【発明の実施の形態】本発明の成形収縮過程シミュレー
ション方法においては、成形過程の樹脂温度、圧力、結
晶化度のデータと任意の結晶化度における樹脂のPVT
特性を求める方法を求める必要がある。なお、本発明に
おいてPVT特性とは、圧力P、比容積V、そして温度
Tの間に存在する物質固有の性質をいう。PVT曲線と
はPVT特性にしたがって、圧力Pと温度Tの関数とし
て比容積Vを求め、グラフの両軸に圧力Pと温度Tを選
択した時に得られる比容積Vの変化を図示したときに得
られる曲線をいう。
BEST MODE FOR CARRYING OUT THE INVENTION In the molding shrinkage process simulation method of the present invention, data of resin temperature, pressure and crystallinity in the molding process and PVT of resin at an arbitrary crystallinity are used.
It is necessary to find a method for obtaining the characteristics. In addition, in the present invention, the PVT characteristic means a property peculiar to a substance existing between the pressure P, the specific volume V, and the temperature T. What is a PVT curve? A specific volume V is obtained as a function of a pressure P and a temperature T according to a PVT characteristic, and a change in the specific volume V obtained when the pressure P and the temperature T are selected on both axes of the graph is obtained when illustrated. A curved line.

【0011】成形過程における樹脂温度、圧力、結晶化
度を求める方法については特に限定されないが、例えば
既存の成形プロセスシミュレーションシステムによる充
填解析、保圧解析、冷却解析を順次行なうことにより算
出することができる。
The method for obtaining the resin temperature, pressure, and crystallinity in the molding process is not particularly limited, but can be calculated, for example, by sequentially performing filling analysis, holding pressure analysis, and cooling analysis by an existing molding process simulation system. it can.

【0012】また任意の結晶化度における樹脂のPVT
特性を求める方法については、例えば下記の(A)また
は(B)の方法を用いる事が望ましい。
Also, the PVT of the resin at any crystallinity
It is desirable to use the following method (A) or (B) as a method for obtaining the characteristics.

【0013】(A)樹脂の非晶、過冷却液体、結晶の各
状態における比容積の温度、圧力依存性を求め、さらに
結晶と非晶、または結晶と過冷却液体の比容積と結晶化
度から任意の結晶化度における樹脂のPVT特性を求め
る方法。
(A) The temperature and pressure dependence of the specific volume of the resin in the amorphous, supercooled liquid and crystal states are determined, and the specific volume and crystallinity of the crystal and the amorphous, or the crystal and the supercooled liquid. To determine the PVT characteristics of the resin at any crystallinity.

【0014】(B)実際に測定された樹脂のPVT曲線
から熱収縮のみを考慮した比容積を求め、また室温にお
ける結晶と非晶の比容積から、結晶化度と結晶収縮によ
る比容積の変化の関係を求め、この両者から任意の結晶
化度における樹脂のPVT特性を求める方法。
(B) The specific volume considering only heat shrinkage was determined from the actually measured PVT curve of the resin, and the change in the specific volume due to the crystallinity and the crystal shrinkage was calculated from the crystalline and amorphous specific volumes at room temperature. Is obtained, and the PVT characteristics of the resin at an arbitrary crystallinity are obtained from the two relationships.

【0015】以下上記(A)および(B)の方法につい
て詳述する。
The above methods (A) and (B) will be described in detail below.

【0016】まず、(A)の方法について説明する。First, the method (A) will be described.

【0017】図2は大気圧における樹脂の非晶、過冷却
液体、結晶の各状態における温度と比容積の関係を示し
た概念図である。ただしVc0:0Kにおける結晶の比
容積(cm/g)、Vg0:0Kにおける非晶の比容
積、ΔVg:カ゛ラス転移温度Tg以下の温度における結晶
と非晶の比容積の差、ΔVm:融点Tmにおける液体と
結晶の比容積の差、El:液体、過冷却液体の熱膨張率
(cm/g・K)、Eg:非晶の熱膨張率、Ec:結
晶の熱膨張率であり、またガラス転移温度以下における
非晶の熱膨張率Egと結晶の熱膨張率Ecは等しい。温
度Tにおける非晶、過冷却液体、結晶の比容積は下式
(2)(3)(4)により求められる。
FIG. 2 is a conceptual diagram showing the relationship between the temperature and the specific volume of each of the amorphous, supercooled liquid, and crystalline states of the resin at atmospheric pressure. However, the specific volume of the crystal at Vc 0: 0K (cm 3 / g), the specific volume of the amorphous at Vg 0: 0K, ΔVg: the difference between the specific volume of the crystal and the amorphous at a temperature below the glass transition temperature Tg, ΔVm: the melting point Tm , The difference in specific volume between the liquid and the crystal, El: thermal expansion coefficient of liquid, supercooled liquid (cm 3 / gK), Eg: amorphous thermal expansion coefficient, Ec: thermal expansion coefficient of the crystal, and The coefficient of thermal expansion Eg of the amorphous material and the coefficient of thermal expansion Ec of the crystalline material at the glass transition temperature or lower are equal. The specific volumes of the amorphous, supercooled liquid and crystals at the temperature T are calculated by the following equations (2), (3) and (4).

【0018】[0018]

【数2】 Vg(T)=Vg0+Eg・T=Vc0+ΔVg+Ec・T (2) 但しVg(T):温度Tにおける非晶の比容積、Tは0
Kからガラス転移温度までの温度(K)である。
## EQU00002 ## Vg (T) = Vg0 + Eg.T = Vc0 + .DELTA.Vg + Ec.T (2) where Vg (T) is the amorphous specific volume at temperature T, where T is 0
It is the temperature (K) from K to the glass transition temperature.

【0019】[0019]

【数3】 Vl(T)=Vc0+El・T=Vg(Tg)+El・(T−Tg) (3) 但しVl(T):温度Tにおける非晶の比容積、Tはガ
ラス転移温度以上の温度である。
## EQU00003 ## Vl (T) = Vc0 + El.T = Vg (Tg) + El. (T-Tg) (3) where Vl (T) is the amorphous specific volume at temperature T, where T is the glass transition temperature or higher. Is.

【0020】[0020]

【数4】Vc(T)=Vc0+Ec・T (4) 但しVc(T):温度Tにおける結晶の比容積、Tは0
Kから融点までの温度である。またΔVgは下式(5)
により求める事が出来る。
## EQU4 ## Vc (T) = Vc0 + Ec.multidot.T (4) where Vc (T): specific volume of crystal at temperature T, T is 0
The temperature is from K to the melting point. In addition, ΔVg is the following formula (5)
You can ask for it.

【0021】[0021]

【数5】ΔVg=Vl(Tg)−Vc(Tg) (5) 従って少なくともEl、Ec、Vc0が分かれば、非
晶、過冷却液体、結晶について大気圧における温度と比
容積の関係を式(2)(3)(4)により求める事が出
来る。
ΔVg = Vl (Tg) -Vc (Tg) (5) Therefore, if at least El, Ec, and Vc0 are known, the relation between the temperature and the specific volume at atmospheric pressure for the amorphous, supercooled liquid, and crystal is expressed by the formula ( 2) (3) (4) can be obtained.

【0022】また圧力と比容積の関係は、下記(6)式
のTaitの式に従って計算を行うことで求める事が出
来る。
The relationship between the pressure and the specific volume can be obtained by performing the calculation according to the Tait equation of the following equation (6).

【0023】[0023]

【数6】 V(P,T)=V(0,T)[1−C・ln(1+P/B(T))] (6) ただしP:圧力、V(P,T):圧力P、温度Tにおけ
る比容積、C:定数、B(T):Taitの式の温度依
存性を示す項である。
[Equation 6] V (P, T) = V (0, T) [1-C · ln (1 + P / B (T))] (6) where P: pressure, V (P, T): pressure P, It is a term showing the temperature dependence of the formulas of specific volume at temperature T, C: constant, B (T): Tait.

【0024】以上、式(2)(3)(4)(5)(6)
によって、非晶、過冷却液体、結晶について圧力−比容
積−温度の関係を求める事が出来る。
As described above, the equations (2), (3), (4), (5) and (6)
Thus, the pressure-specific volume-temperature relationship can be obtained for amorphous, supercooled liquid, and crystal.

【0025】さらに成形時の結晶化度をxとすると、樹
脂温度T、圧力P(MPa)、結晶化度x(T)におけ
る比容積Vx(P、T)は、次式によって計算する事が
出来る。
Further, assuming that the crystallinity at the time of molding is x, the resin temperature T, the pressure P (MPa), and the specific volume Vx (P, T) at the crystallinity x (T) can be calculated by the following equation. I can.

【0026】[0026]

【数7】 Vx(P,T)=Vc(P,T)・(1−x(T))+Vl(P、T)・x(T ) =[Vc(0,T)・(1−x(T))+Vl(0,T)・x(T)]・[1− C・ln(1+P/B(T))] (7) 但し式(7)はガラス転移温度から融点までの温度に関
するものであって、ガラス転移温度以下では過冷却液体
の比容積Vlではなく、非晶の比容積Vgを用いる。ま
た式(7)から明らかなように、比容積の圧力依存性は
先に大気圧下における結晶化度x(T)を計算した後に
考慮しても良い。以上、式(2)(3)(4)(5)
(6)(7)によって任意の結晶化度における樹脂のP
VT特性を求める事が出来る。
## EQU00007 ## Vx (P, T) = Vc (P, T) .multidot. (1-x (T)) + Vl (P, T) .x (T) = [Vc (0, T). (1-x (T)) + Vl (0, T) .x (T)]. [1-C.ln (1 + P / B (T))] (7) However, the expression (7) relates to the temperature from the glass transition temperature to the melting point. That is, below the glass transition temperature, not the specific volume Vl of the supercooled liquid but the amorphous specific volume Vg is used. Further, as is clear from the formula (7), the pressure dependence of the specific volume may be considered after first calculating the crystallinity x (T) under atmospheric pressure. Above, the formulas (2) (3) (4) (5)
(6) P of the resin at an arbitrary crystallinity according to (7)
VT characteristics can be obtained.

【0027】次に前記(B)の任意の結晶化度における
樹脂のPVT特性を求める方法について説明する。
Next, a method for obtaining the PVT characteristic of the resin at the arbitrary crystallinity (B) will be described.

【0028】前記(B)の方法によれば、任意の結晶化
度における樹脂のPVT特性は 実際に測定された樹脂
のPVT曲線から熱収縮のみによる比容積を求め、また
室温における結晶と非晶の比容積から、結晶化度と結晶
収縮による比容積の変化の関係を求め、この両者から求
める。
According to the method (B), the PVT characteristics of the resin at any crystallinity are obtained by determining the specific volume only by thermal contraction from the actually measured PVT curve of the resin, and the crystalline and amorphous at room temperature. The relationship between the crystallinity and the change in the specific volume due to crystal shrinkage is obtained from the specific volume of, and both are obtained.

【0029】図3はポリブチレンテレフタレート樹脂に
ついて等温条件で測定した圧力−比容積データを組み合
わせて作製したPVT曲線を示したもので、図中に示さ
れた点Vcは大気圧、室温における結晶の比容積、Vl
は非晶の比容積である。図3より温度TaとTbの間で
比容積が急激に変化する事が分かるが、これは結晶化に
よる収縮が原因である。PVT測定のように定温で圧力
を変化させて測定するか、または毎分数℃程度の昇温、
冷却を行って測定を行うような条件では、結晶化は融点
近傍の狭い温度範囲TaとTbで生じ、Tb以下の温度
でそれ以上の結晶化が進むことはほとんどなく、従って
Tb以下の温度領域では熱収縮のみ生じると考えて差し
支えない。また熱収縮による比容積の変化は結晶化度に
依らず一定であると見なせる。結晶化による結晶収縮分
は室温における非晶の比容積と実際に測定された大気
圧、室温における比容積の差によって求められるので、
結局、熱収縮のみを考慮した場合の樹脂の比容積は、実
際に測定された樹脂のPVT曲線からTa以上の温度で
は結晶化の影響を受けないので実際に測定されたPVT
曲線をそのまま用い、Tb以下の温度ではPVT曲線を
結晶収縮分を相殺するためにVl−Vだけ上方へ平行移
動して求める事が出来る。尚、TbとTaの間の温度に
おける比容積については、一般に成形時の冷却速度は非
常に速く結晶化はTbよりも低い温度で生じるので特に
求める必要はないが、Tb以下の温度についてVl−V
だけ上方へ平行移動した比容積の各曲線を最小2乗近似
などによって数式化し、これをTbとTaの温度で適用
して用いて求めてもよい。
FIG. 3 shows a PVT curve prepared by combining pressure-specific volume data measured for a polybutylene terephthalate resin under isothermal conditions. A point Vc shown in the figure indicates a crystal at atmospheric pressure and room temperature. Specific volume, Vl
Is an amorphous specific volume. It can be seen from FIG. 3 that the specific volume changes abruptly between the temperatures Ta and Tb, but this is due to shrinkage due to crystallization. The measurement is performed by changing the pressure at a constant temperature as in the PVT measurement, or the temperature is raised by several degrees centigrade per minute,
Under the condition that the measurement is performed by cooling, crystallization occurs in a narrow temperature range Ta and Tb near the melting point, and further crystallization hardly progresses at a temperature of Tb or lower. Then, it is safe to assume that only heat shrinkage will occur. Further, it can be considered that the change in the specific volume due to heat shrinkage is constant regardless of the crystallinity. Since the crystal shrinkage due to crystallization is obtained by the difference between the specific volume of the amorphous at room temperature and the actually measured atmospheric pressure, the specific volume at room temperature,
After all, the specific volume of the resin in the case of considering only the heat shrinkage is not affected by the crystallization at the temperature of Ta or more from the actually measured PVT curve of the resin, and thus the actually measured PVT is obtained.
The curve can be used as it is, and at a temperature of Tb or lower, the PVT curve can be obtained by translating upward by Vl-V in order to cancel the crystal shrinkage. The specific volume at a temperature between Tb and Ta is not particularly required because the cooling rate during molding is very fast and crystallization occurs at a temperature lower than Tb. V
It is also possible to formulate each curve of the specific volume that has been translated upwards by a mathematical expression by least-squares approximation or the like, and apply this at temperatures of Tb and Ta to obtain it.

【0030】一方、結晶化度と結晶収縮による比容積の
変化の関係については、室温における結晶の比容積(V
c)と非晶の比容積(Vl)から、結晶化度x(T)の
時、結晶収縮による比容積の変化Vh(T)を下式
(8)により求められる。
On the other hand, regarding the relationship between the crystallinity and the change in specific volume due to crystal shrinkage, the specific volume (V
From c) and the amorphous specific volume (Vl), when the crystallinity is x (T), the change in specific volume due to crystal shrinkage Vh (T) is calculated by the following equation (8).

【0031】[0031]

【数8】 Vh(T)=(Vl−Vc)・x(T) (8) ただし結晶収縮による比容積の変化Vh(T)は圧力の
影響を受けないものとする。従って結晶化を考慮した樹
脂のPVT特性は、温度Tにおける結晶化度x(T)を
式(8)に代入して、結晶収縮による比容積の変化Vh
(T)を計算し、熱収縮のみを考慮した樹脂の比容積
を、縦軸方向にVh(T)だけ下方に平行移動すること
により計算出来る。
## EQU8 ## Vh (T) = (V1-Vc) .multidot.x (T) (8) However, the change in specific volume due to crystal shrinkage Vh (T) is not affected by pressure. Therefore, the PVT characteristic of the resin in consideration of crystallization is obtained by substituting the crystallinity x (T) at the temperature T into the equation (8) and changing the specific volume due to crystal shrinkage Vh.
It can be calculated by calculating (T) and moving the specific volume of the resin considering only the heat shrinkage downward by Vh (T) in the vertical axis direction.

【0032】上記(A)あるいは(B)の方法を用いる
ことによって、任意の結晶化度における樹脂のPVT特
性を求めることができるので、成形過程の樹脂温度と圧
力、結晶化度のデータを用いて成形過程の結晶化度に従
った樹脂のPVT曲線と樹脂の比容積を計算する事が出
来る。なお、上記(A)および(B)の方法の内いずれ
を選択するかは任意である。
By using the above method (A) or (B), the PVT characteristic of the resin at any crystallinity can be obtained. Therefore, the data of the resin temperature and pressure in the molding process and the crystallinity are used. The PVT curve of the resin and the specific volume of the resin can be calculated according to the crystallinity of the molding process. It should be noted that which of the above methods (A) and (B) is selected is arbitrary.

【0033】また成形プロセスシミュレーションなどに
よって成形時の樹脂温度Tと時間tの関係を求める事が
出来るならば、樹脂の比容積の経時変化を求めることも
出来る。
Further, if the relationship between the resin temperature T and the time t at the time of molding can be obtained by a molding process simulation or the like, it is also possible to obtain the change with time of the specific volume of the resin.

【0034】そして温度Tにおける体積収縮率をSv
(T)、線収縮率をSl(T)とすれば収縮率の変化
は、次式によって予測する事が出来る。
Then, the volume shrinkage ratio at the temperature T is Sv
If (T) and the linear shrinkage ratio are Sl (T), the change in shrinkage ratio can be predicted by the following equation.

【0035】[0035]

【数9】 Sv(T)=1−V(T)/Vs (9) Sl(T)=1−(V(T)/Vs)1/3 ここでVs:収縮開始時の比容積で、収縮開始温度Ts
を規定することにより求められる。また成形時の樹脂温
度Tと時間tの関係を求める事が出来るならば、収縮率
の経時変化についても求められる。また収縮開始温度T
sについては、好ましくはゲートが固化してキャビティ
内に樹脂が流入しなくなる温度や、樹脂の各部が固化
し、樹脂の流動が無くなる温度、圧力が大気圧に達する
温度をTsとすると良い。
Sv (T) = 1-V (T) / Vs (9) Sl (T) = 1- (V (T) / Vs) 1/3 where Vs is the specific volume at the start of contraction, Shrinkage start temperature Ts
It is required by defining. If the relationship between the resin temperature T and the time t at the time of molding can be obtained, the change in shrinkage rate with time can also be obtained. Also, the contraction start temperature T
Regarding s, it is preferable to set Ts to a temperature at which the gate solidifies and resin does not flow into the cavity, a temperature at which each part of the resin solidifies and the resin does not flow, and a temperature at which the pressure reaches atmospheric pressure.

【0036】本発明においては上記成形収縮過程シミュ
レーション方法を樹脂成型品の設計、製造を支援するた
めの成形プロセスシミュレーションシステムに組み込ん
で、成形品のそり、ひけ、収縮を計算することができ
る。かかる成形プロセスシミュレーションシステムに前
記成形収縮過程プロセスシミュレーション方法を組み込
む方法については特に限定されないが、従来の成形プロ
セスシミュレーションシステムに追加して組み込むこと
もできるが、成形品のそり、ひけ、収縮率を計算するこ
とができる成形プロセスシミュレーションシステムに
は、従来の方法による成形収縮プロセスシミュレーショ
ン方法が組み込まれているので、それと置き換えること
が望ましい。
In the present invention, the above-described molding shrinkage process simulation method can be incorporated into a molding process simulation system for supporting the design and manufacture of a resin molded product to calculate the warp, sink mark and shrinkage of the molded product. The method of incorporating the molding shrinkage process simulation method into such a molding process simulation system is not particularly limited, but it can be incorporated in addition to the conventional molding process simulation system. The molding process simulation system capable of incorporating the molding shrinkage process simulation method by the conventional method is preferably replaced.

【0037】また、上記成形収縮過程シミュレーション
方法を用いて、収縮率を予測し、その収縮率を勘案して
金型を設計することにより所望の形状、寸法の成形品を
成形し得る金型を設計することができ、それにより得ら
れる金型を用いることにより所望の形状、寸法の成形品
を得ることができる。この場合、単に上記成形収縮過程
シミュレーション方法のみを用いるよりも下記成形プロ
セスシミュレーションシステムを用い、成形条件の最適
化の一部として金型の設計を含める方がより正確に所望
の形状、寸法の成形品を得ることができる。
Further, a mold capable of molding a molded product having a desired shape and size by predicting the shrinkage rate by using the above-described molding shrinkage process simulation method and designing the mold in consideration of the shrinkage rate. It is possible to design, and by using the mold thus obtained, it is possible to obtain a molded product having a desired shape and size. In this case, it is more accurate to use the following molding process simulation system and to include the mold design as part of the optimization of molding conditions, rather than simply using the above-mentioned molding shrinkage process simulation method, to mold the desired shape and size. You can get the goods.

【0038】また上記成形収縮過程シミュレーション方
法を組み込んだ成形プロセスシミュレーションシステム
を用いて、成形品のそり、ひけ、収縮を計算する事によ
り、金型温度、射出温度、保圧などの成形条件の設定を
最適化して樹脂成形品における成形条件を設定すること
ができる。成形条件の最適化の方法については特に限定
されないが従来から用いられているようにそり、ひけ、
収縮率と樹脂温度、圧力、金型温度の関係をシミュレー
ションによって調べ、検討を重ねていくのが好ましい。
Further, by using the molding process simulation system incorporating the above-mentioned molding shrinkage process simulation method, the warp, sink and shrinkage of the molded product are calculated to set molding conditions such as mold temperature, injection temperature and holding pressure. Can be optimized to set molding conditions for the resin molded product. The method of optimizing the molding conditions is not particularly limited, but as conventionally used, sled, sinker,
It is preferable that the relationship between the shrinkage ratio and the resin temperature, pressure, and mold temperature be investigated by simulation and further studies be repeated.

【0039】また、上記成形収縮過程シミュレーション
方法を用いて、収縮率を予測し、その収縮率を勘案して
金型を設計することにより所望の形状、寸法の成形品を
成形し得る金型を設計することができ、それにより得ら
れる金型を用いることにより所望の形状、寸法の成形品
を得ることができる。この場合、単に前記成形収縮過程
シミュレーション方法のみを用いるよりも上記成形プロ
セスシミュレーションシステムを用い、成形条件の最適
化の一部として金型の設計を含める方がより正確に所望
の形状、寸法を有する成形品を得ることができる。
Further, a mold capable of molding a molded product having a desired shape and size by predicting the shrinkage rate by using the above-described molding shrinkage process simulation method and designing the mold in consideration of the shrinkage rate. It is possible to design, and by using the mold thus obtained, it is possible to obtain a molded product having a desired shape and size. In this case, it is more accurate to include the mold design as a part of the optimization of the molding conditions by using the molding process simulation system, rather than only using the molding shrinkage process simulation method, to have a desired shape and size. A molded product can be obtained.

【0040】また本発明の収縮過程シミュレーション装
置は、少なくとも成形過程の樹脂温度、圧力、結晶化度
のデータを入力するデータ入力部と任意の結晶化度にお
ける樹脂のPVT特性を求めるPVT特性解析部と、こ
の両者から成形時の結晶化挙動に従った樹脂のPVT曲
線と樹脂の比容積を算出するPVT曲線解析部、比容積
算出部と、さらに収縮率を予測する収縮率算出部を備え
るものである。
The shrinkage process simulation apparatus of the present invention includes a data input unit for inputting at least data of resin temperature, pressure, and crystallinity in the molding process, and a PVT characteristic analysis unit for obtaining PVT properties of the resin at an arbitrary crystallinity. And a PVT curve analysis unit for calculating the PVT curve of the resin and the specific volume of the resin according to the crystallization behavior during molding, a specific volume calculation unit, and a shrinkage ratio calculation unit for predicting the shrinkage ratio. Is.

【0041】この装置ではデータ入力部で入力されたデ
ータを用いてPVT特性解析部で任意の結晶化度におけ
る樹脂のPVT特性を求め、さらにPVT曲線解析部に
おいてデータ入力部で入力されたデータとPVT特性解
析部で求めたPVT特性の両者から成形時の結晶化挙動
に従った樹脂のPVT曲線を求め、このPVT曲線を用
いて比容積算出部で樹脂の比容積を算出する。
In this apparatus, the PVT characteristic analysis unit obtains the PVT characteristic of the resin at an arbitrary crystallinity using the data input in the data input unit, and the data input in the data input unit in the PVT curve analysis unit are used. The PVT curve of the resin according to the crystallization behavior during molding is obtained from both of the PVT characteristics obtained by the PVT characteristic analysis unit, and the specific volume of the resin is calculated by the specific volume calculation unit using this PVT curve.

【0042】本発明の結晶性樹脂成形品における収縮過
程シミュレーション装置は前記必要条件を満たす構成で
あれば、その装置構成を限定するものではないが、好ま
しくは単一の計算装置内に前記計算部を全て組み込んだ
装置、または各部分は独立の計算装置により構成され、
各装置間をデータの受け渡し装置により結ばれた構成と
する事が望ましい。
The apparatus for simulating the shrinkage process in the crystalline resin molded product of the present invention is not limited as long as it has a configuration satisfying the above-mentioned requirements, but preferably the calculation unit is provided in a single calculation device. , Or all parts are configured by independent computing devices,
It is desirable that each device be connected by a data transfer device.

【0043】[0043]

【実施例】以下に本発明の一実施例を図面を参照して説
明するが、本発明はこれらに限定されるものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings, but the present invention is not limited thereto.

【0044】図1は、本発明の結晶性樹脂における収縮
過程シミュレーション方法を適用した装置の電気的構成
(ブロックダイヤグラム)を示している。
FIG. 1 shows an electrical configuration (block diagram) of an apparatus to which the shrinkage process simulation method for crystalline resin of the present invention is applied.

【0045】同図において、解析に必要な各種データの
入力を行う入力部11の出力は任意の結晶化度における
樹脂のPVT特性を求めるPVT特性解析部12と成形
時の結晶化挙動に従った樹脂のPVT曲線を求めるPV
T曲線算出部13と樹脂の比容積を算出する比容積算出
部14に導かれており、PVT特性解析部12の出力は
PVT曲線算出部13に導かれており、PVT曲線算出
部13の出力は解析結果を記憶する記憶部A17と比容
積算出部14に導かれており、比容積算出部14の出力
は、解析結果を記憶する記憶部B18と成形時の収縮率
の変化を算出する収縮率算出部15に導かれ、収縮率算
出部15の出力は、解析結果を記憶する記憶部B18に
導かれ、さらに結果を例えば図形表示する出力部16に
導かれた構成となっている。なお、記憶部A17および
記憶部B18は必ずしも必要なものではないが、解析結
果をデータとして記憶しておくことにより、シミュレー
ションの精度の検証などに利用することができる。記憶
部の記憶媒体としても、フロッピーディスク、コンパク
トディスクなど特に限定されない。
In the figure, the output of the input section 11 for inputting various data required for analysis is in accordance with the PVT characteristic analysis section 12 for obtaining the PVT characteristic of the resin at an arbitrary crystallinity and the crystallization behavior during molding. PV to obtain PVT curve of resin
The output from the PVT characteristic analysis unit 12 is led to the T curve calculation unit 13 and the specific volume calculation unit 14 that calculates the specific volume of the resin, and the output from the PVT curve calculation unit 13 is output from the PVT curve calculation unit 13. Is led to the storage unit A17 for storing the analysis result and the specific volume calculation unit 14, and the output of the specific volume calculation unit 14 is the storage unit B18 for storing the analysis result and the contraction for calculating the change of the contraction rate at the time of molding. The output of the contraction rate calculation unit 15 is guided to the rate calculation unit 15, the storage unit B18 that stores the analysis result, and the output unit 16 that graphically displays the result. The storage unit A17 and the storage unit B18 are not always necessary, but by storing the analysis result as data, it can be used for verification of the accuracy of simulation. The storage medium of the storage unit is not particularly limited to a floppy disk or a compact disk.

【0046】入力部11では、成形時の樹脂温度、圧
力、結晶化度の変化、実際に測定された樹脂のPVT曲
線を数値化したデータ等、解析に必要な各種データの入
力を行う。
The input section 11 inputs various data necessary for analysis, such as changes in resin temperature, pressure and crystallinity at the time of molding, and data obtained by digitizing the actually measured PVT curve of the resin.

【0047】図4はポリブチレンテレフタレート樹脂ペ
レット(相対粘度1.45)について縦80mm×横8
0mm×厚さ3mmの角板状の形状を持つ成形品の成形
時の樹脂温度、圧力、結晶化度の関係を射出成形過程シ
ミュレーション装置(東レ(株)製“TIMON”)と
Avramiの式に基づいた結晶化シミュレーションを
行って求めたもので、これをデータ化して入力部11に
入力し、また実際に測定したPVT曲線についても、こ
れを数値化して入力部11に入力する。これは樹脂成形
品の設計、製造を支援するための成形プロセスシミュレ
ーションシステムに、前記請求項1記載の成形収縮過程
シミュレーション方法を組み込んで、成形品のそり、ひ
け、収縮率を計算する事に等しい。
FIG. 4 shows a polybutylene terephthalate resin pellet (relative viscosity: 1.45) having a length of 80 mm and a width of 8
The relationship between resin temperature, pressure, and crystallinity at the time of molding of a 0 mm × 3 mm thick rectangular plate-shaped product is expressed by the injection molding process simulation device (“TIMON” manufactured by Toray Industries, Inc.) and the Avrami formula. It is obtained by performing a crystallization simulation based on this, and this is converted into data and input to the input unit 11, and the PVT curve actually measured is also converted into a numerical value and input to the input unit 11. This is equivalent to incorporating the molding shrinkage process simulation method according to claim 1 into a molding process simulation system for supporting the design and manufacturing of a resin molded product, and calculating the warp, sink mark and shrinkage ratio of the molded product. .

【0048】PVT特性解析部12では任意の結晶化度
における樹脂のPVT特性の計算を行う。図5は第2発
明の方法によって計算されたポリブチレンテレフタレー
ト樹脂の過冷却液体、液体、結晶におけるPVT特性を
示したもので、計算に必要なEl、Ec、Vcは樹脂の
Van der waals体積Vw(Vw=114.
6(cm/mol))を用いて次式により計算した
が、これはEl、Ec、Vc(0)について求める方法
を限定するものではない。
The PVT characteristic analysis unit 12 calculates the PVT characteristic of the resin at any crystallinity. FIG. 5 shows the PVT characteristics of the polybutylene terephthalate resin in the supercooled liquid, liquid, and crystal calculated by the method of the second invention, where El, Ec, and Vc required for the calculation are the Van der Waals volume Vw of the resin. (Vw = 114.
6 (cm 3 / mol)), but this does not limit the method for obtaining El, Ec, and Vc (0).

【0049】[0049]

【数10】 El=0.001・Vw/Mw Ec=0.00045・Vw/Mw (10) Vc(0)=1.3・Vw/Mw−D ここでMw:分子量(M=220(g/mol))、
D:補正項であって、D=0.041を用いたが、これ
は室温における結晶、非晶の比容積などから値を求める
事が出来る。またTaitの式による圧力依存性を計算
するために必要な定数Cと温度依存性を示す関数B
(T)について定数Cはさまざまな樹脂について求めら
れた平均値C=0.00894を用い、B(T)は次式
の関数を用いて算出した。
[Equation 10] El = 0.001 · Vw / Mw Ec = 0.00045 · Vw / Mw (10) Vc (0) = 1.3 · Vw / Mw−D where Mw: molecular weight (M = 220 (g / Mol)),
D: As a correction term, D = 0.041 was used, but the value can be obtained from crystalline or amorphous specific volume at room temperature. Also, a constant C necessary for calculating the pressure dependence by the Tait equation and a function B showing the temperature dependence.
Regarding (T), the constant C was calculated using the average value C = 0.00894 obtained for various resins, and B (T) was calculated using the function of the following equation.

【0050】[0050]

【数11】 B(T)=B0・exp(−B1・(T−273.14)) (11) ただしB0、B1:定数である。B (T) = B0 · exp (−B1 · (T−273.14)) (11) However, B0 and B1: are constants.

【0051】PVT曲線解析部13では成形時の結晶化
挙動に従った樹脂のPVT曲線を計算する。図6は、第
2発明の方法を用い、図4に示される樹脂温度と結晶化
度の入力データに基づいて計算された樹脂のPVT曲線
を示しており、図7は、第3発明の方法と図4に示され
る樹脂温度と結晶化度の入力データに基づいて計算され
た樹脂のPVT特性を示している。
The PVT curve analysis unit 13 calculates the PVT curve of the resin according to the crystallization behavior during molding. FIG. 6 shows a PVT curve of a resin calculated based on the input data of the resin temperature and the crystallinity shown in FIG. 4 using the method of the second invention, and FIG. 7 shows the method of the third invention. And the PVT characteristics of the resin calculated based on the input data of resin temperature and crystallinity shown in FIG.

【0052】比容積算出部14では、入力部11で入力
された樹脂温度、圧力、結晶化度のデータとPVT曲線
解析部13で求められた成形時の結晶化挙動に従った樹
脂のPVT曲線から成形時の樹脂の比容積を計算する。
図8は図4に示された樹脂温度、圧力、結晶化度のデー
タと図6に示されるように第2発明の方法によって計算
された樹脂のPVT特性を用いて、成形時の比容積の変
化を計算した結果で、図には圧力、結晶化度と比容積の
関係を明示するため、図6に示した樹脂のPVT特性を
点線で併記してある。
In the specific volume calculation unit 14, the resin temperature, pressure, and crystallinity data input by the input unit 11 and the PVT curve of the resin in accordance with the crystallization behavior at the time of molding obtained by the PVT curve analysis unit 13 are calculated. Calculate the specific volume of the resin during molding from.
FIG. 8 is a graph showing the specific volume at the time of molding using the resin temperature, pressure and crystallinity data shown in FIG. 4 and the PVT characteristics of the resin calculated by the method of the second invention as shown in FIG. The PVT characteristics of the resin shown in FIG. 6 are also shown by dotted lines in the figure in order to clearly show the relationship between the pressure, the crystallinity and the specific volume, as a result of calculating the change.

【0053】収縮率算出部15では、比容積算出部14
で求められた結果を用いて、成形時の収縮率の変化を算
出する。図9は成形時の線収縮率の変化を示したもの
で、図中に示されたSeは実際に成形品の成形収縮率
(線収縮率)を測定した結果で、本発明を用いた計算結
果と実際に測定された結果はかなり一致している。
In the contraction rate calculating section 15, the specific volume calculating section 14
The change in shrinkage rate during molding is calculated using the result obtained in. FIG. 9 shows the change in linear shrinkage during molding. Se shown in the figure is the result of actually measuring the molding shrinkage (linear shrinkage) of the molded product, which is calculated using the present invention. The results and the actually measured results are in good agreement.

【0054】[0054]

【発明の効果】【The invention's effect】

(1)本発明に係わる結晶性樹脂成形品における収縮過
程シミュレーション方法およびその装置は、成形過程の
樹脂温度、圧力、結晶化度のデータと任意の結晶化度に
おける樹脂のPVT特性を求める方法を用いて、成形時
の結晶化挙動に従った樹脂のPVT曲線と樹脂の比容積
を計算し、さらに収縮率を予測するように構成したの
で、成形時の結晶化度に合った収縮率を計算する事がで
き、さらに従来の方法に比べて適切な収縮量の計算を行
う事が出来る。
(1) The shrinkage process simulation method and apparatus for a crystalline resin molded article according to the present invention provides a method for obtaining data of resin temperature, pressure and crystallinity during the molding process and a PVT characteristic of the resin at an arbitrary crystallinity. It was configured to calculate the PVT curve of the resin and the specific volume of the resin according to the crystallization behavior during molding, and to predict the shrinkage rate, so calculate the shrinkage rate that matches the crystallinity during molding. In addition, it is possible to calculate an appropriate shrinkage amount as compared with the conventional method.

【0055】(2)樹脂の非晶、過冷却液体、結晶の各
状態における比容積の温度、圧力依存性を求め、さらに
結晶と非晶、または結晶と過冷却液体の比容積と結晶化
度から任意の結晶化度における樹脂のPVT特性を求め
る方法により、実際に樹脂のPVT曲線を測定する労力
を削減でき、さらに種々の樹脂について様々な結晶化挙
動を有する時の樹脂のPVT特性を求める事が出来る。
(2) The temperature and pressure dependence of the specific volume of the resin in each state of amorphous, supercooled liquid and crystal is determined, and further the specific volume and crystallinity of the crystal and the amorphous or the crystal and the supercooled liquid. By the method of obtaining the PVT characteristics of the resin at an arbitrary crystallinity from the above, the labor for actually measuring the PVT curve of the resin can be reduced, and further, the PVT characteristics of the resin having various crystallization behaviors for various resins can be obtained. I can do things.

【0056】(3)実際に測定された樹脂のPVT曲線
から熱収縮のみを考慮した比容積を求め、また室温にお
ける結晶と非晶の比容積から、結晶化度と結晶収縮によ
る比容積の変化の関係を求め、この両者から任意の結晶
化度における樹脂のPVT特性を求める方法により、実
際のPVT曲線から簡単に任意の結晶化度におけるPV
T曲線を求める事ができ、かつ様々な結晶化挙動を有す
る場合の樹脂のPVT特性を求める事が出来る。
(3) The specific volume considering only heat shrinkage was determined from the actually measured PVT curve of the resin, and the change in specific volume due to crystallinity and crystal shrinkage was calculated from the crystalline and amorphous specific volumes at room temperature. Of the resin at an arbitrary crystallinity from both of them, the PV at an arbitrary crystallinity can be easily obtained from the actual PVT curve.
The T curve can be obtained, and the PVT characteristics of the resin having various crystallization behaviors can be obtained.

【0057】(4)本発明の成形プロセスシミュレーシ
ョンシステムによれば、樹脂成形品の設計、製造を支援
するための成形プロセスシミュレーションシステムにお
いて、上記成形収縮過程シミュレーション方法を組み込
んで、成形品のそり、ひけ、収縮率を計算することによ
り、成形過程における樹脂のPVT曲線を得るといった
新規の機能を成形プロセスシミュレーションシステムに
付加する事が出来、さらに収縮率の計算結果を成形品の
ひけ、そり等、成形品の収縮に関係した変形の解析に用
いることによって、解析の精度の向上を行う事が出来る
といった種々の効果を奏する。
(4) According to the molding process simulation system of the present invention, in the molding process simulation system for supporting the design and manufacturing of the resin molded product, the above-described molding shrinkage process simulation method is incorporated to bend the molded product. By calculating sink marks and shrinkage rates, new functions such as obtaining the PVT curve of the resin in the molding process can be added to the molding process simulation system, and the shrinkage rate calculation results can be used for sinking, warping, etc. of molded products. By using it for the analysis of the deformation related to the shrinkage of the molded product, it is possible to achieve various effects such that the accuracy of the analysis can be improved.

【0058】(5)本発明の成形条件の設定方法によれ
ば、前記成形収縮過程シミュレーション方法を組み込ん
だ、樹脂成形品の設計、製造を支援するための成形プロ
セスシミュレーションシステムを用いて、成形品のそ
り、ひけ、収縮率を計算しする事により、金型温度、射
出温度、保圧などの成形条件の設定を最適化するため、
収縮量によって成形品の品質基準が設定されるような場
合には、本発明を用いて適切な成形条件を設定する事が
出来る。
(5) According to the molding condition setting method of the present invention, a molding process simulation system for supporting the design and manufacturing of a resin molded product, which incorporates the molding shrinkage process simulation method, is used. In order to optimize the setting of molding conditions such as mold temperature, injection temperature, holding pressure, etc. by calculating warpage, sink marks, shrinkage ratio,
When the quality standard of a molded product is set by the shrinkage amount, the present invention can be used to set an appropriate molding condition.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の結晶性樹脂における収縮過程シミュレ
ーション方法を適用した収縮過程シミュレーション装置
の電気的構成を示すブロック図である。
FIG. 1 is a block diagram showing an electrical configuration of a shrinkage process simulation device to which a shrinkage process simulation method for a crystalline resin of the present invention is applied.

【図2】図2は大気圧下における樹脂の温度と比容積の
関係を示した概念図である。
FIG. 2 is a conceptual diagram showing the relationship between the resin temperature and the specific volume under atmospheric pressure.

【図3】図3はポリブチレンテレフタレートのPVT測
定結果である。
FIG. 3 is a PVT measurement result of polybutylene terephthalate.

【図4】図4はポリブチレンテレフタレート樹脂成形品
の成形時の樹脂温度、圧力、結晶化度の関係を示してい
る。
FIG. 4 shows the relationship among resin temperature, pressure, and crystallinity during molding of a polybutylene terephthalate resin molded product.

【図5】図5は第2発明の方法によって計算されたポリ
ブチレンテレフタレート樹脂の過冷却液体、液体、結晶
におけるPVT特性を示したものである。
FIG. 5 is a graph showing PVT characteristics of a polybutylene terephthalate resin in a supercooled liquid, a liquid, and a crystal calculated by the method of the second invention.

【図6】図6は第2発明の方法を用いて、成形時の結晶
化挙動に従った樹脂のPVT曲線を計算した結果を示し
たものである。
FIG. 6 shows a result of calculating a PVT curve of a resin according to a crystallization behavior during molding by using the method of the second invention.

【図7】図7は第3発明の方法を用いて、成形時の結晶
化挙動に従った樹脂のPVT曲線を計算した結果を示し
たものである。
FIG. 7 shows the results of calculating the PVT curve of the resin according to the crystallization behavior during molding, using the method of the third invention.

【図8】図8は第2発明の方法によって計算された樹脂
のPVT曲線を用いて、成形時の比容積の変化を計算し
た結果を示したものである。
FIG. 8 shows the results of calculating the change in specific volume during molding using the PVT curve of the resin calculated by the method of the second invention.

【図9】図9は成形時の線収縮率の変化を示したもので
ある。
FIG. 9 shows changes in linear shrinkage during molding.

【符号の説明】[Explanation of symbols]

11.データ入力部 12.PVT特性解析部 13.PVT曲線算出部 14.比容積算出部 15.収縮率算出部 16.出力部 17.記憶部A 18.記憶部B 11. Data input section 12. PVT characteristic analysis unit 13. PVT curve calculation unit 14. Specific volume calculation unit 15. Shrinkage rate calculator 16. Output unit 17. Storage unit A 18. Memory B

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】成形過程の樹脂温度、圧力、結晶化度のデ
ータと任意の結晶化度における樹脂のPVT特性を求め
る方法を用いて、成形時の結晶化挙動に従った樹脂のP
VT曲線と樹脂の比容積を計算し、さらに収縮率を予測
することを特徴とする結晶性樹脂成形品における成形収
縮過程シミュレーション方法。
1. A method for determining the PVT characteristic of a resin at a desired crystallinity and the data of the resin temperature, pressure and crystallinity during the molding process, to determine the P of the resin according to the crystallization behavior during molding.
A method for simulating a molding shrinkage process in a crystalline resin molded product, which comprises calculating a VT curve and a specific volume of a resin, and further predicting a shrinkage rate.
【請求項2】樹脂の非晶、過冷却液体、結晶の各状態に
おける比容積の温度、圧力依存性を求め、さらに結晶と
非晶、または結晶と過冷却液体の比容積と結晶化度か
ら、任意の結晶化度における樹脂のPVT特性を求める
方法。
2. The temperature and pressure dependence of the specific volume of the resin in each state of amorphous, supercooled liquid, and crystal are determined, and further, from the specific volume and crystallinity of the crystal and the amorphous, or the crystal and the supercooled liquid. , A method for obtaining PVT characteristics of a resin at an arbitrary crystallinity.
【請求項3】実際に測定された樹脂のPVT曲線から熱
収縮のみを考慮した比容積を求め、また室温における結
晶と非晶の比容積から、結晶化度と結晶収縮による比容
積の変化の関係を求め、この両者から任意の結晶化度に
おける樹脂のPVT特性を求める方法。
3. A specific volume in which only heat shrinkage is taken into consideration is obtained from an actually measured PVT curve of a resin, and a change in specific volume due to crystallinity and crystal shrinkage is calculated from crystalline and amorphous specific volumes at room temperature. A method of obtaining the relationship and then obtaining the PVT characteristic of the resin at an arbitrary crystallinity from the two.
【請求項4】少なくとも成形過程の樹脂温度、圧力、結
晶化度のデータを入力するデータ入力部と任意の結晶化
度における樹脂のPVT特性を求めるPVT特性解析部
と、この両者から成形時の結晶化挙動に従った樹脂のP
VT曲線と樹脂の比容積を算出するPVT曲線解析部、
比容積算出部と、さらに収縮率を予測する収縮率算出部
を備え、成形過程の比容積、収縮率の変化を算出する事
を特徴とする結晶性樹脂成形品における収縮過程シミュ
レーション装置。
4. A data input section for inputting data of resin temperature, pressure and crystallinity at least during a molding process, a PVT characteristic analysis section for obtaining a PVT characteristic of resin at an arbitrary crystallinity, and a PVT characteristic analyzing section for molding the resin from both of them. P of resin according to crystallization behavior
A PVT curve analysis unit for calculating the VT curve and the specific volume of the resin,
A shrinkage process simulation device for a crystalline resin molded product, comprising a specific volume calculation unit and a shrinkage ratio calculation unit that predicts a shrinkage ratio, and calculates changes in specific volume and shrinkage ratio during the molding process.
【請求項5】樹脂成形品製造を支援するための成形プロ
セスシミュレーションシステムにおいて、請求項1記載
の成形収縮過程シミュレーション方法を組み込んでなる
成形プロセスシミュレーションシステム。
5. A molding process simulation system, which incorporates the molding shrinkage process simulation method according to claim 1 in a molding process simulation system for supporting the manufacture of a resin molded product.
【請求項6】請求項5記載の成形プロセスシミュレーシ
ョンシステムを用いて、成形品のそり、ひけ、収縮を計
算する事により、成形条件の設定を最適化する事を特徴
とする樹脂成形品における成形条件の設定方法。
6. Molding in a resin molded product, characterized in that the setting of molding conditions is optimized by calculating the warp, sink mark and shrinkage of the molded product using the molding process simulation system according to claim 5. How to set the conditions.
【請求項7】請求項1記載の成形収縮過程シミュレーシ
ョン方法を用いて、成形品の収縮率を計算することによ
り、金型形状を最適化することを特徴とする金型の設計
方法。
7. A method for designing a mold, which comprises optimizing a mold shape by calculating a shrinkage rate of a molded product by using the molding shrinkage process simulation method.
【請求項8】請求項5記載の成形プロセスシミュレーシ
ョンシステムを用いて、成形品の収縮率を計算すること
により、金型形状を最適化することを特徴とする金型の
設計方法。
8. A method of designing a mold, wherein the mold shape is optimized by calculating the shrinkage rate of a molded product using the molding process simulation system according to claim 5.
【請求項9】請求項7または8記載の金型の設計方法に
より設計された金型。
9. A mold designed by the mold designing method according to claim 7.
【請求項10】請求項6記載の成形条件の設定方法を用
いて設定した成形条件により樹脂または樹脂組成物を成
形することを特徴とする成形品の製造方法。
10. A method for producing a molded article, which comprises molding a resin or a resin composition under the molding conditions set by using the molding condition setting method according to claim 6.
【請求項11】請求項7または記載の金型を用いて成形
することを特徴とする成形品の製造方法。
11. A method of manufacturing a molded article, which comprises molding using the mold according to claim 7.
【請求項12】請求項11または12記載の製造方法に
より製造されてなる成形品。
12. A molded product manufactured by the manufacturing method according to claim 11.
JP7504796A 1996-03-29 1996-03-29 Simulation method of mold shrinkage process in crystalline resin molding and device thereof Pending JPH09262887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7504796A JPH09262887A (en) 1996-03-29 1996-03-29 Simulation method of mold shrinkage process in crystalline resin molding and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7504796A JPH09262887A (en) 1996-03-29 1996-03-29 Simulation method of mold shrinkage process in crystalline resin molding and device thereof

Publications (1)

Publication Number Publication Date
JPH09262887A true JPH09262887A (en) 1997-10-07

Family

ID=13564909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7504796A Pending JPH09262887A (en) 1996-03-29 1996-03-29 Simulation method of mold shrinkage process in crystalline resin molding and device thereof

Country Status (1)

Country Link
JP (1) JPH09262887A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008023974A (en) * 2006-06-19 2008-02-07 Toray Ind Inc Injection molding analysis method, sled deformation analysis method, and its apparatus
JP2010214906A (en) * 2009-03-18 2010-09-30 Kanto Auto Works Ltd Injection molding simulation method of crystalline resin
JP2011127179A (en) * 2009-12-17 2011-06-30 Jfe Steel Corp Annealing separating-agent and method for finish-annealing grain-oriented magnetic steel sheet
US7979257B2 (en) 2003-02-05 2011-07-12 Moldflow Netherlands Limited Apparatus and methods for performing process simulation using a hybrid model
CN102962971A (en) * 2011-08-31 2013-03-13 住友重机械工业株式会社 An injection moulding machine and a setting support device of the same
DE102018106144A1 (en) 2017-03-17 2018-09-20 Aisin Seiki Kabushiki Kaisha A method of predicting a deformation of a resin molding
JP2018154124A (en) * 2017-03-17 2018-10-04 アイシン精機株式会社 Transformation prediction method of resin molding product
CN110948811A (en) * 2019-11-29 2020-04-03 湖南工业大学 Polymer crystallization on-line measuring device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7979257B2 (en) 2003-02-05 2011-07-12 Moldflow Netherlands Limited Apparatus and methods for performing process simulation using a hybrid model
JP2008023974A (en) * 2006-06-19 2008-02-07 Toray Ind Inc Injection molding analysis method, sled deformation analysis method, and its apparatus
JP2010214906A (en) * 2009-03-18 2010-09-30 Kanto Auto Works Ltd Injection molding simulation method of crystalline resin
JP2011127179A (en) * 2009-12-17 2011-06-30 Jfe Steel Corp Annealing separating-agent and method for finish-annealing grain-oriented magnetic steel sheet
CN102962971A (en) * 2011-08-31 2013-03-13 住友重机械工业株式会社 An injection moulding machine and a setting support device of the same
CN102962971B (en) * 2011-08-31 2016-01-20 住友重机械工业株式会社 The set supporting device of injection (mo(u)lding) machine and injection (mo(u)lding) machine
DE102018106144A1 (en) 2017-03-17 2018-09-20 Aisin Seiki Kabushiki Kaisha A method of predicting a deformation of a resin molding
JP2018154124A (en) * 2017-03-17 2018-10-04 アイシン精機株式会社 Transformation prediction method of resin molding product
CN110948811A (en) * 2019-11-29 2020-04-03 湖南工业大学 Polymer crystallization on-line measuring device

Similar Documents

Publication Publication Date Title
Chan et al. Quiescent polymer crystallization: modelling and measurements
JP2559651B2 (en) Injection molding control method and apparatus
US20040230411A1 (en) Apparatus and methods for predicting properties of processed material
US10012562B2 (en) Method for determining time-delayed changes of temperature-dependent or stress-dependent physical quantities of a glass or a glass ceramic
Spina et al. Simulation of crystallization of isotactic polypropylene with different shear regimes
Zhao et al. A novel method for predicting degrees of crystallinity in injection molding during packing stage
Dawson et al. The effect of pressure on the thermal conductivity of polymer melts
Fitzharris et al. Fast scanning calorimetry for semicrystalline polymers in fused deposition modeling
JPH09262887A (en) Simulation method of mold shrinkage process in crystalline resin molding and device thereof
Zhao et al. In-situ ultrasonic measurement of molten polymers during injection molding
Pignon et al. Improvement of heat transfer analytical models for thermoplastic injection molding and comparison with experiments
Wang et al. Influence of measurement processes on pressure-specific volume-temperature relationships of semi-crystalline polymer: Polypropylene
Wang et al. Modeling of pressure-specific volume-temperature behavior of polymers considering the dependence of cooling and heating processes
Yu et al. Frequency dependence and equilibration of the specific heat of glass-forming liquids
Suárez et al. Analytical review of some relevant methods and devices for the determination of the specific volume on thermoplastic polymers under processing conditions
CN105286812A (en) Body temperature measurement method and device
CN112784407A (en) Cementing material temperature stress calculation method considering asphalt thermal reversible aging phenomenon
JP4378011B2 (en) Mold design equipment and mold shape design method
JPH10138312A (en) Method and apparatus for crystallizing process simulation in crystalline resin molded product
Yang et al. Numerical prediction of phase‐change heat conduction of injection‐molded high density polyethylene thick‐walled parts via the enthalpy transforming model with mushy zone
JP2001293748A (en) Injection molding process simulation apparatus and shape accuracy estimating method
Albano et al. Analysis of nylon 66 solidification process
Tropin et al. The calorimetric glass transition in a wide range of cooling rates and frequencies
JP3835853B2 (en) Method for predicting physical properties of crystalline materials in thermal nonequilibrium state
JP3999049B2 (en) Injection molding process simulation method