JPH09262227A - X-ray image diagnostic apparatus - Google Patents

X-ray image diagnostic apparatus

Info

Publication number
JPH09262227A
JPH09262227A JP8099671A JP9967196A JPH09262227A JP H09262227 A JPH09262227 A JP H09262227A JP 8099671 A JP8099671 A JP 8099671A JP 9967196 A JP9967196 A JP 9967196A JP H09262227 A JPH09262227 A JP H09262227A
Authority
JP
Japan
Prior art keywords
ray
image
compensation filter
filter
imaging condition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8099671A
Other languages
Japanese (ja)
Other versions
JP3623308B2 (en
Inventor
Shigeyuki Ikeda
重之 池田
Katsumi Suzuki
克己 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP09967196A priority Critical patent/JP3623308B2/en
Publication of JPH09262227A publication Critical patent/JPH09262227A/en
Application granted granted Critical
Publication of JP3623308B2 publication Critical patent/JP3623308B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an X-ray diagnostic apparatus to obtain an adequate X-ray perspective by putting an X-ray compensation filter on to the most appropriate parts through the operation to compensate X-ray attenuation due to the filter by fluoroscopy condition. SOLUTION: A perspective is obtained on the condition that, for example, the tube voltage is 70kv given that the X-ray exposure time is fixed to set the X-ray compensation filter. The voltage is raised up to 80kv incidentally to obtain sufficient X-ray transmission when the subject moves and exposes its more thick part. Factor of the X-ray attenuation caused by putting an X-ray compensation filter 4 is read out from a attenuation factor memory 12 to operate the perspective data in the case that the filter 4 is not put applying the attenuation factor operated in an attenuation factor operation sector 13. An insert location calculation sector 10 is to calculate the position of the filter 4 as well as its move distance comparing to actual location based on the preset threshold prepared for new fluoroscopy condition applying the perspective data so as to move the filter 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、透視画像を用いて
X線補償フィルタを挿入/退避制御するフィルタ制御装
置を有するX線画像診断装置に係り、特にX線撮影条件
に応じてX線補償フィルタを適正に配置して良好なX線
透視画像を得ることができるX線画像診断装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray image diagnostic apparatus having a filter control device for inserting / withdrawing control of an X-ray compensation filter using a fluoroscopic image, and particularly to X-ray compensation according to X-ray imaging conditions. The present invention relates to an X-ray image diagnostic apparatus capable of properly arranging filters to obtain a favorable X-ray fluoroscopic image.

【0002】従来のX線画像診断装置は、特開平05ー
253213号公報に開示されている構成を有する。
A conventional X-ray image diagnostic apparatus has a configuration disclosed in Japanese Patent Laid-Open No. 05-253213.

【0003】上記構成のうち、X線補償フィルタ制御装
置は、上記構成のテレビカメラと電気的に接続され前記
テレビカメラより出力される透視画像データを記憶する
透視画像記憶部と、この透視画像記憶部と電気的に接続
され前記透視画像記憶部から透視画像データを読み出し
て前記透視画像データが輝度的に高い画素値を呈して画
面に表示しても階調が識別できない現象(「ハレーショ
ン現象」という)のおこる画素値(「しきい値」とい
う)以上の画素領域を上記構成のX線補償フィルタで覆
うための制御量を算出する制御量算出手段と、この制御
量算出手段と電気的に接続され前記制御量に基づいた前
記X線補償フィルタが前記画素領域の形状、位置によ
り、前記X線補償フィルタをしきい値以上の画素領域に
は挿入し、しきい値未満の画素領域から退避させるフィ
ルタ制御部とを有している。また、前記しきい値は被検
体の撮影部位およびX線を発生する条件即ち上記構成の
X線発生部に供給する電源の電圧(以下「管電圧」とい
う)、電流(以下「管電流」という)とX線照射時間の
条件(「X線撮影条件」という)によって予め設定され
ている。このように、X線補償フィルタ制御装置は予め
設定されているしきい値以上の領域を覆い隠すように前
記X線補償フィルタを挿入している。また、ある透視画
像データにあらかじめ設定されたしきい値に基づき、既
にX線補償フィルタが挿入されている場合、現在配置さ
れた前記X線補償フィルタ位置情報に基づき前記透視画
像データ上での前記X線補償フィルタ位置を算出し、前
記X線補償フィルタが挿入されたことによるX線の減弱
量を記憶しておいて、前記減弱量に基づき前記X線補償
フィルタに覆われなかった透視画像データに補正し、前
記透視画像データと別個の透視画像データに予め設定さ
れているしきい値以上の画素領域を覆い隠すように前記
X線補償フィルタを挿入し、しきい値未満の画素領域か
ら前記X線補償フィルタを退避させている。
In the above-mentioned configuration, the X-ray compensation filter control device is electrically connected to the television camera having the above-mentioned configuration and stores a perspective image storage unit for storing perspective image data output from the television camera, and the perspective image storage. Phenomenon in which gradations cannot be identified even when the fluoroscopic image data is read out from the fluoroscopic image storage unit by being electrically connected to the image display unit and the fluoroscopic image data has a high pixel value in terms of luminance and is displayed on the screen (“halation phenomenon”). Control amount calculation means for calculating a control amount for covering a pixel region having a pixel value (referred to as "threshold value") or more, which is referred to as "threshold value", by the X-ray compensation filter having the above-described configuration, and the control amount calculation means electrically. The connected X-ray compensation filter based on the control amount inserts the X-ray compensation filter into a pixel region having a threshold value or more depending on the shape and position of the pixel region, and And a filter control unit for retracting from the pixel region. Further, the threshold value is a condition (hereinafter referred to as "tube voltage") and current (hereinafter referred to as "tube current") of a power supply supplied to the X-ray generation unit having the above-mentioned configuration, that is, an imaging region of the subject and X-ray generation. ) And X-ray irradiation time conditions (referred to as “X-ray imaging conditions”). In this way, the X-ray compensation filter control device inserts the X-ray compensation filter so as to cover the area above the preset threshold value. When an X-ray compensation filter is already inserted based on a threshold value set in advance in certain fluoroscopic image data, the X-ray compensation filter on the fluoroscopic image data is used based on the currently arranged X-ray compensation filter position information. The X-ray compensation filter position is calculated, the attenuation amount of X-rays due to the insertion of the X-ray compensation filter is stored, and the fluoroscopic image data not covered by the X-ray compensation filter based on the attenuation amount. The X-ray compensation filter is inserted so as to cover a pixel area equal to or larger than a preset threshold value in the fluoroscopic image data different from the fluoroscopic image data, and the X-ray compensation filter is inserted from the pixel area less than the threshold value. The X-ray compensation filter is retracted.

【0004】[0004]

【発明が解決しようとする課題】最近従来の画像診断に
加えて、その画像を見ながら病巣部にカテーテルを進め
て治療するインターベンショナル・ラジオロジというこ
とが盛んに行われている。そのようなことから、例えば
被検体の撮影位置を前記カテーテルに追従させて移動さ
せたいという要求がある。当然、被検体を動かせばその
X線の透過する厚さが変化し、それに伴いX線撮影条件
も変化させる必要がある。このように前記被検体をX線
補償フィルタが診断対象に適合した画素領域以外の画素
領域(例えば前記ハレーション現象のある画素領域)を
覆うように必ずしも挿入されてないという問題点があっ
た。
Recently, in addition to conventional image diagnosis, interventional radiology has been actively performed in which a catheter is advanced to a lesion while treating the image to treat the image. For this reason, there is a demand for moving the imaging position of the subject, for example, so as to follow the catheter. As a matter of course, if the subject is moved, the thickness of the X-ray transmitted therethrough changes, and the X-ray imaging conditions also need to change accordingly. As described above, there is a problem in that the subject is not necessarily inserted so as to cover a pixel region (for example, a pixel region having the halation phenomenon) other than the pixel region where the X-ray compensation filter is suitable for the diagnosis target.

【0005】本発明は、上記問題点を解決するためにな
されたものであり、その目的は、X線補償フィルタをX
線撮影条件の変化に追従して診断対象に適合した画素領
域以外の画素領域を覆うような位置に挿入制御し、もっ
て診断に好適なX線透視画像の得られるX線画像診断装
置を提供することにある。
The present invention has been made to solve the above problems, and an object thereof is to provide an X-ray compensation filter with an X-ray compensation filter.
Provided is an X-ray image diagnostic apparatus capable of tracking a change in radiographic conditions and controlling insertion at a position that covers a pixel region other than a pixel region suitable for a diagnosis target, thereby obtaining an X-ray fluoroscopic image suitable for diagnosis. Especially.

【0006】[0006]

【課題を解決するための手段】上記目的は、X線を発生
するX線発生部と、前記X線によるX線撮影条件を制御
するX線制御手段と、前記X線が照射される側に配置さ
れ前記X線を減弱する部材から形成されるX線補償フィ
ルタと、被検体を挟み前記X線発生部と対向して配置さ
れ前記被検体を透過した前記X線を受けて光学画像に変
換するイメージ・インテンシファイアと、このイメージ
・インテンシファイアと光学的に接合され前記光学画像
を撮影し透視画像を出力するテレビカメラと、このテレ
ビカメラと接続され前記透視画像を記憶する透視画像記
憶手段と、前記X線撮影条件に対応して前記X線透視画
像のハレーション現象がおこる画素値をしきい値として
記憶するしきい値記憶手段と、前記透視画像記憶手段と
前記しきい値記憶手段とそれぞれ接続され前記透視画像
を読み出して前記しきい値以上の画素領域を前記X線補
償フィルタの挿入領域として算出する挿入領域算出手段
と、前記X線補償フィルタと前記挿入領域算出手段とそ
れぞれ接続され前記X線補償フィルタを前記挿入領域へ
挿入するフィルタ制御手段を備えるX線画像診断装置に
おいて、前記X線補償フィルタが第1のX線撮影条件の
挿入領域に配置され、前記X線制御手段が前記第1のX
線撮影条件と異なる第2のX線撮影条件に設定されたと
き、前記X線制御手段に接続され前記第2のX線撮影条
件の前記第1のX線撮影条件に対応して配置された前記
X線補償フィルタによる前記X線の減弱量を計算する減
弱量計算手段と、この減弱量計算手段に接続され前記減
弱量に基づき前記X線補償フィルタの挿入されないとき
のX線透視画像の各画素値に換算して換算画像とする画
像換算手段を備え、前記挿入領域算出手段が前記画像換
算手段とも接続され前記換算画像のX線撮影条件に対応
するしきい値から前記しきい値以上の画素領域を前記X
線補償フィルタの前記第2のX線撮影条件に対応した挿
入領域として算出し、前記フィルタ制御手段が前記X線
補償フィルタを前記第2のX線撮影条件に対応した挿入
領域へ挿入することで達成される。
The above-mentioned object is to provide an X-ray generation unit for generating X-rays, an X-ray control unit for controlling X-ray imaging conditions by the X-rays, and a side on which the X-rays are irradiated. An X-ray compensation filter that is arranged and formed of a member that attenuates the X-rays, and the X-rays that are arranged to face the X-ray generation unit with the subject in between and that have passed through the subject are converted into an optical image. Image intensifier, a television camera optically joined to the image intensifier, which captures the optical image and outputs a perspective image, and a perspective image memory which is connected to the television camera and stores the perspective image Means, threshold value storage means for storing, as a threshold value, a pixel value in which the halation phenomenon of the X-ray fluoroscopic image occurs corresponding to the X-ray imaging condition, the fluoroscopic image storage means, and the threshold value storage Insertion region calculation means connected to each of the stages and calculating the pixel region equal to or more than the threshold value as the insertion region of the X-ray compensation filter by reading the perspective image, the X-ray compensation filter and the insertion region calculation means, respectively. In an X-ray image diagnostic apparatus, which is connected and includes filter control means for inserting the X-ray compensation filter into the insertion area, the X-ray compensation filter is arranged in an insertion area of a first X-ray imaging condition, and the X-ray control is performed. Means is the first X
When the second X-ray imaging condition different from the X-ray imaging condition is set, it is connected to the X-ray control means and arranged corresponding to the first X-ray imaging condition of the second X-ray imaging condition. Attenuation amount calculation means for calculating the attenuation amount of the X-rays by the X-ray compensation filter, and each of the X-ray fluoroscopic images when the X-ray compensation filter is not inserted based on the attenuation amount connected to the attenuation amount calculation means. An image conversion means for converting the pixel value into a converted image is provided, and the insertion area calculation means is also connected to the image conversion means, and the threshold value corresponding to the X-ray imaging condition of the converted image is equal to or more than the threshold value. The pixel area is the X
By calculating as an insertion area corresponding to the second X-ray imaging condition of the line compensation filter, the filter control means inserts the X-ray compensation filter into the insertion area corresponding to the second X-ray imaging condition. To be achieved.

【0007】また、X線を発生するX線発生部と、前記
X線によるX線撮影条件を制御するX線制御手段と、前
記X線が照射される側に配置され前記X線を減弱する部
材から形成されるX線補償フィルタと、被検体を挟み前
記X線発生部と対向して配置され前記被検体を透過した
前記X線を受けて光学画像に変換するイメージ・インテ
ンシファイアと、このイメージ・インテンシファイアと
光学的に接合され前記光学画像を撮影し透視画像を出力
するテレビカメラと、このテレビカメラと接続され前記
透視画像を記憶する透視画像記憶手段と、前記X線撮影
条件に対応して前記X線透視画像のハレーション現象が
おこる画素値をしきい値として記憶するしきい値記憶手
段と、前記透視画像記憶手段と前記しきい値記憶手段と
それぞれ接続され前記透視画像を読み出して前記しきい
値以上の画素領域を前記X線補償フィルタの挿入領域と
して算出する挿入領域算出手段と、前記X線補償フィル
タと前記挿入領域算出手段とそれぞれ接続され前記X線
補償フィルタを前記挿入領域へ挿入するフィルタ制御手
段を備えるX線画像診断装置において、前記X線補償フ
ィルタが第1のX線撮影条件の挿入領域に配置され、前
記X線制御手段が前記第1のX線撮影条件と異なる第2
のX線撮影条件に設定されたとき、前記X線制御手段に
接続され前記第2のX線撮影条件の前記第1のX線撮影
条件に対応して配置された前記X線補償フィルタによる
前記X線の減弱量を予め計算して記憶する減弱量記憶手
段と、この減弱量記憶手段に接続され前記減弱量に基づ
き前記X線補償フィルタの挿入されないときのX線透視
画像の各画素値に換算して換算画像とする画像換算手段
を備え、前記挿入領域算出手段が前記画像換算手段とも
接続され前記換算画像のX線撮影条件に対応するしきい
値から前記しきい値以上の画素領域を前記X線補償フィ
ルタの前記第2のX線撮影条件に対応した挿入領域とし
て算出し、前記フィルタ制御手段が前記X線補償フィル
タを前記第2のX線撮影条件に対応した挿入領域へ挿入
することで達成される。
Further, an X-ray generator for generating X-rays, an X-ray control means for controlling the X-ray photographing condition by the X-rays, and an X-ray that is arranged on the side where the X-rays are irradiated are attenuated. An X-ray compensation filter formed of a member, an image intensifier that is arranged to face the X-ray generation unit with the subject in between, and receives the X-rays that have passed through the subject and converts the image into an optical image, A television camera optically joined to the image intensifier to capture the optical image and output a perspective image, a perspective image storage unit connected to the television camera to store the perspective image, and the X-ray imaging condition. Corresponding to the threshold value storage means for storing the pixel value causing the halation phenomenon of the X-ray fluoroscopic image as a threshold value, and the fluoroscopic image storage means and the threshold value storage means are respectively connected. The X-ray is connected to the insertion area calculation unit that reads out the transparent image and calculates a pixel area equal to or more than the threshold value as the insertion area of the X-ray compensation filter, and the X-ray compensation filter and the insertion area calculation unit. In an X-ray image diagnostic apparatus including a filter control unit that inserts a compensation filter into the insertion region, the X-ray compensation filter is arranged in an insertion region of a first X-ray imaging condition, and the X-ray control unit includes the first X-ray control unit. Second different from the X-ray imaging conditions
When the X-ray imaging condition is set to, the X-ray compensation filter is connected to the X-ray control means and is arranged corresponding to the first X-ray imaging condition of the second X-ray imaging condition. Attenuation amount storage means for preliminarily calculating and storing the attenuation amount of X-rays, and each pixel value of the X-ray fluoroscopic image when the attenuation amount storage means is connected and the X-ray compensation filter is not inserted based on the attenuation amount. An image conversion means for converting the converted image into a converted image is provided, and the insertion area calculation means is also connected to the image conversion means, and a pixel area equal to or more than the threshold value from a threshold value corresponding to an X-ray imaging condition of the converted image is converted. The X-ray compensation filter is calculated as an insertion area corresponding to the second X-ray imaging condition, and the filter control unit inserts the X-ray compensation filter into the insertion area corresponding to the second X-ray imaging condition. Achieved by That.

【0008】[0008]

【発明の実施の形態】本発明のX線画像診断装置の実施
の形態についてそれぞれ図面を用いて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of an X-ray image diagnostic apparatus of the present invention will be described with reference to the drawings.

【0009】まず、第一の実施の形態について、図1〜
図4を用いて説明する。図1は本発明のX線画像診断装
置の第一の実施の形態の構成例を示すブロック図、図2
は図1のX線補償フィルタの構成例を示す構造図、図3
はX線撮影条件のうちの管電圧とX線のエネルギー吸収
(相対値)の特性を示す曲線を表したグラフ、図4は透
視画像上において図2のX線補償フィルタ4が移動する
前後の画像の表示例を示す図である。
First, the first embodiment will be described with reference to FIGS.
This will be described with reference to FIG. 1 is a block diagram showing a configuration example of a first embodiment of an X-ray image diagnostic apparatus of the present invention, FIG.
3 is a structural diagram showing a configuration example of the X-ray compensation filter of FIG.
Is a graph showing a curve showing the characteristics of tube voltage and X-ray energy absorption (relative value) in the X-ray imaging conditions, and FIG. 4 shows before and after the X-ray compensation filter 4 of FIG. It is a figure which shows the example of a display of an image.

【0010】第一の実施の形態のX線画像診断装置は、
寝台2とX線発生部3とX線補償フィルタ4とイメージ
・インテンシファイア(以下「I.I.」という)5と
テレビカメラ6と画像表示処理部7と表示出力部8と透
視画像記憶部9と挿入位置算出部10とフィルタ制御部
11と減弱率記憶部12と減弱量演算部13とX線発生
制御部14と高圧発生部15と入力操作部16と中央処
理部17とを有している。寝台2は被検体1を搭載して
床面から適当な高さに被検体1を支持している。X線発
生部3はX線を発生する。X線補償フィルタ4は前記X
線が発生して照射される側で被検体1とX線発生部3の
間に配置され前記X線を減弱させる。I.I.5は被検
体1を間に挟んでX線発生部3と対向配置され被検体1
を透過したX線を蛍光面に入力し光学画像に変換出力す
る。テレビカメラ6はI.I.5と光学的に接合され前
記光学画像を入力し電気信号に変換出力する。画像表示
処理部7はテレビカメラ6と電気的に接続され前記電気
信号を階調データに変換出力する。表示出力部8は画像
表示処理部7と電気的に接続され前記階調データを表示
出力する。透視画像記憶部9はテレビカメラ6と電気的
に接続され前記電気信号を透視画像データとして記憶す
る。挿入領域算出部10は透視画像記憶部9と電気的に
接続され前記透視画像データを読み出して予め設定され
ているしきい値以上の画素領域を算出する。フィルタ制
御部11は挿入領域算出部10と電気的に接続され前記
画素領域の形状、位置によりX線補償フィルタ4をしき
い値以上の画素領域には挿入し、しきい値未満の画素領
域から退避させる。減弱率記憶部12は挿入領域算出部
10によってフィルタ挿入領域を算出するため、X線補
償フィルタを形成するアルミニウム、銅などのX線減弱
部材がどのくらいX線を減弱するかという減弱率データ
ρを記憶している。減弱量演算部13は減弱率記憶部1
2とX線発生制御部14とそれぞれ電気的に接続され前
記減弱率データρと次式で表されるX線撮影条件E
(「X線エネルギー」ともいう。)によって前記X線補
償フィルタの減弱量Fを演算する。 E=kVnit …(式1) E:X線エネルギー、k:定数、V:管電圧[kV]、
i:管電流[mA] t:X線照射時間[秒]、n:管電圧に係るべき乗数
(2≦n≦5) (日本放射線技師会編、「改訂増補版診療放射線データ
ブック」、1984年9月発行、マグブロス出版、第3
2頁から抜粋。) F=ρE (線形の減弱の場合) …(式2) X線発生制御部14は高圧発生部15と電気的に接続さ
れX線発生部3に与える管電圧、管電流、X線照射時間
などのX線撮影条件を制御する。高圧発生部15はX線
発生部3と電気的に接続され前記X線撮影条件に基づい
た電力量をX線発生部3に供給し作動させる。入力操作
部16は中央処理部17と操作者がX線撮影条件などの
各種情報を入力する。中央制御装置15はX線補償フィ
ルタ4、I.I.5、テレビカメラ6、画像表示処理部
7、透視画像記憶部9、挿入領域算出部10、フィルタ
制御部11、減弱量記憶部12、減弱量演算部13、X
線発生制御部14のそれぞれと電気的に接続され前記各
情報に基づきそれぞれを制御する。
The X-ray image diagnostic apparatus of the first embodiment is
Bed 2, X-ray generation unit 3, X-ray compensation filter 4, image intensifier (hereinafter referred to as "II") 5, television camera 6, image display processing unit 7, display output unit 8, and perspective image storage. It includes a unit 9, an insertion position calculation unit 10, a filter control unit 11, an attenuation rate storage unit 12, an attenuation amount calculation unit 13, an X-ray generation control unit 14, a high voltage generation unit 15, an input operation unit 16, and a central processing unit 17. are doing. The bed 2 carries the subject 1 and supports the subject 1 at an appropriate height from the floor surface. The X-ray generation unit 3 generates X-rays. The X-ray compensation filter 4 uses the X
The X-ray is attenuated by being arranged between the subject 1 and the X-ray generator 3 on the side where the X-ray is generated and irradiated. I. I. Reference numeral 5 denotes a subject 1 which is arranged so as to face the X-ray generator 3 with the subject 1 interposed therebetween.
The X-rays that have passed through are input to the fluorescent screen and converted into an optical image for output. The TV camera 6 is an I.D. I. The optical image is inputted to the optical signal 5 and the optical image is inputted and converted into an electric signal and outputted. The image display processing unit 7 is electrically connected to the television camera 6 and converts the electric signal into gradation data and outputs it. The display output unit 8 is electrically connected to the image display processing unit 7 to display and output the gradation data. The fluoroscopic image storage unit 9 is electrically connected to the television camera 6 and stores the electric signal as fluoroscopic image data. The insertion area calculation unit 10 is electrically connected to the fluoroscopic image storage unit 9 and reads the fluoroscopic image data to calculate a pixel area equal to or larger than a preset threshold value. The filter control unit 11 is electrically connected to the insertion region calculation unit 10 and inserts the X-ray compensation filter 4 into a pixel region equal to or larger than the threshold value depending on the shape and position of the pixel region. Evacuate. Since the attenuation rate storage unit 12 calculates the filter insertion area by the insertion area calculation unit 10, the attenuation rate data ρ indicating how much the X-ray attenuation member such as aluminum or copper forming the X-ray compensation filter attenuates the X-rays is calculated. I remember. The attenuation amount calculation unit 13 is the attenuation rate storage unit 1
2 and the X-ray generation controller 14 are electrically connected to each other and the attenuation rate data ρ and the X-ray imaging condition E represented by the following equation
(Also referred to as "X-ray energy"), the attenuation amount F of the X-ray compensation filter is calculated. E = kVnit (Equation 1) E: X-ray energy, k: constant, V: tube voltage [kV],
i: tube current [mA] t: X-ray irradiation time [second], n: power factor related to tube voltage (2 ≦ n ≦ 5) (edited by Japan Radiological Society, “Revised and expanded medical radiation data book”, 1984) Published September, Magblos Publishing, 3rd
Excerpt from page 2. ) F = ρE (in the case of linear attenuation) (Equation 2) The X-ray generation control unit 14 is electrically connected to the high-voltage generation unit 15, and the tube voltage, the tube current, and the X-ray irradiation time given to the X-ray generation unit 3. X-ray imaging conditions such as. The high voltage generation unit 15 is electrically connected to the X-ray generation unit 3 and supplies the X-ray generation unit 3 with an amount of electric power based on the X-ray imaging conditions to operate it. The input operation unit 16 allows the central processing unit 17 and the operator to input various information such as X-ray imaging conditions. The central controller 15 controls the X-ray compensation filter 4, I.V. I. 5, TV camera 6, image display processing unit 7, perspective image storage unit 9, insertion area calculation unit 10, filter control unit 11, attenuation amount storage unit 12, attenuation amount calculation unit 13, X
It is electrically connected to each of the line generation control units 14 and controls each of them based on the above information.

【0011】また、X線補償フィルタ4は、図2に示す
ように、図面上部に位置するU部、下方に位置するD
部、左方に位置するL部、右方に位置するR部からなる
4枚の羽根で構成され、各羽根U、D、L、Rの各部
は、図面の円が示す透視画像の表示領域を中心として、
前後あるいは左右に平行移動するか、回転移動して、4
枚の羽根で形成される開口の大きさなどが調整される。
As shown in FIG. 2, the X-ray compensation filter 4 has a U portion at the upper portion of the drawing and a D portion at the lower portion thereof.
Section, an L section located on the left side, and an R section located on the right side. Each of the blades U, D, L, and R is a display area of a perspective image indicated by a circle in the drawing. Centered on
Move it back and forth or left and right in parallel, or rotate it
The size of the opening formed by the blades is adjusted.

【0012】また、(式1)が示しているようにX線撮
影条件において最も影響の大きい管電圧とX線のエネル
ギー吸収の相対値の特性(I.I.5の蛍光面の代表的
な材質であるヨウ化セシウム(化学式:CsI))のう
ちの特に人体などを被検体としたときの管電圧は40〜
120[kV]の部分だけを抜粋すると、図3の点線に
表す特性になる。これと同じ方法で減弱率ρのX線補償
フィルタを介した場合を測定してみると、ρを用いて表
せば、点線で示す特性に1−ρを乗じた特性をほぼ示
し、図3の実線で表されることを発明者は検証した。
Further, as shown in (Equation 1), the characteristics of the relative value of the tube voltage and the energy absorption of X-rays, which have the greatest influence under the X-ray imaging conditions (typical of the phosphor screen of I.I.5). The tube voltage of cesium iodide (chemical formula: CsI), which is the material, is 40 to 40, especially when the human body is the subject.
If only the portion of 120 [kV] is extracted, the characteristic shown by the dotted line in FIG. 3 is obtained. When the case of passing through the X-ray compensation filter with the attenuation rate ρ is measured by the same method as described above, when expressed using ρ, the characteristic indicated by the dotted line is almost multiplied by 1-ρ, and The inventor verified that it is represented by a solid line.

【0013】次に、第一の実施の形態のX線画像診断装
置の動作について説明する。X線発生部3からX線補償
フィルタ4を通して被検体1に照射されたX線は、被検
体1を透過してI.I.5で光学画像に変換される。前
記光学画像は、テレビカメラ6で撮像され、透視画像記
憶部9に記憶される。挿入領域算出部10は、あらかじ
め設定されたしきい値以上の画素領域をX線補償フィル
タ4で覆うための画素領域として算出する。フィルタ制
御部11は前記画素領域の形状、位置によりX線補償フ
ィルタ4をしきい値以上の画素領域には挿入し、しきい
値未満の画素領域から退避させる。ここで、さらに具体
的に説明するために、X線補償フィルタ4が、図4
(a)で示されるように挿入されている場合から図4
(b)で示されるように挿入されている場合へ移動する
ことを例示する。ここでは、説明を簡単にするため、
U、D、L、Rの各部の羽根のうちの1枚を用いる。ま
ず、図4(a)に対応する位置にX線補償フィルタ4が
配置されの現在位置情報が透視画像データ上でのX線補
償フィルタ4の挿入位置を中央処理部17が検知する。
このようなX線補償フィルタの配置条件で、例えば管電
圧70[kV]、管電流とX線照射時間を一定とした
(以下の撮影においても同じ。)X線撮影条件で透視画
像データを得る。前記画像データは画像表示処理部8を
通して、表示出力部9に図4(a)のように表示出力さ
れる。次に、被検体が移動してX線を透過する厚さが厚
くなり、管電圧70[kV]のX線発生条件では、充分
な透過X線が得られないので、例えば管電圧80[k
V]にX線撮影条件を上げて調整することが行われる。
また図3に示されるように管電圧を高くすればX線の吸
収量が小さくなり、X線補償フィルタを構成する羽根型
の減弱部材に関しても同じことがいえるので、管電圧を
上昇させたX線撮影条件の下では、以前ハレーション現
象のおこらないところにおきるから、しきい値未満の画
素領域を適正に表示するために、このX線撮影条件下で
のX線補償フィルタ4をしきい値以上の画素領域までX
線補償フィルタ4を挿入させる、即ちX線補償フィルタ
4がなす開口を現在位置から狭める必要がある。そこ
で、被検体の厚さが厚くなったとき、X線補償フィルタ
4の挿入によるX線減弱分を、減弱率記憶部12から記
憶されたX線補償フィルタの減弱部材による減弱率を読
み出して、減弱量演算部13で演算された減弱量を用い
て、X線補償フィルタ4がない場合の透視画像データを
演算する。挿入位置算出部10は、前記透視画像データ
を用いて、新たなX線撮影条件80[kV]でのあらか
じめ設定されたしきい値に基づきX線補償フィルタ4の
位置を算出するとともに、前記現在位置との差から前記
羽根の移動量を算出する。フィルタ制御部11は、前記
移動量に基づきX線補償フィルタ4を移動して、前記開
口を狭める。このようなX線補償フィルタの配置条件
で、管電圧80[kV]のX線撮影条件で透視画像デー
タを得る。前記画像データは画像表示処理部8を通し
て、表示出力部9に図4(b)のように表示出力され
る。また、被検体が移動してX線を透過する厚さが薄く
なり、上記管電圧70[kV]、のX線発生条件では、
前記被検体に与えるX線の被曝線量の点で相応しくない
ので、例えば管電圧60[kV]にX線撮影条件を下げ
て調整することが行われる。また図3に示されるように
管電圧を低くすればX線の吸収量が大きくなり、X線補
償フィルタを構成する羽根型の減弱部材に関しても同じ
ことがいえるので、下降させたX線撮影条件の下では、
ハレーション現象のおこらないところまでX線補償フィ
ルタで覆ってしまうことがあるから、しきい値未満の画
素領域をX線補償フィルタを介在せずに表示するため
に、このX線撮影条件下でのX線補償フィルタ4をしき
い値以上の画素領域までX線補償フィルタ4を退避させ
る、即ち前記開口を現在位置から拡げる必要がある。こ
の場合は、前記開口を狭めるものか、拡げるものかの違
いだけであるので、説明を省略する。
Next, the operation of the X-ray image diagnostic apparatus according to the first embodiment will be described. The X-rays emitted from the X-ray generation unit 3 to the subject 1 through the X-ray compensation filter 4 pass through the subject 1 and are I.D. I. At 5, it is converted to an optical image. The optical image is captured by the television camera 6 and stored in the perspective image storage unit 9. The insertion area calculation unit 10 calculates a pixel area equal to or larger than a preset threshold value as a pixel area for covering with the X-ray compensation filter 4. The filter control unit 11 inserts the X-ray compensation filter 4 in a pixel region equal to or larger than the threshold value and withdraws it from the pixel region smaller than the threshold value, depending on the shape and position of the pixel region. Here, in order to explain more specifically, the X-ray compensation filter 4 is shown in FIG.
FIG. 4 from the case of being inserted as shown in FIG.
An example of moving to the case where it is inserted as shown in (b) is illustrated. Here, for simplicity,
One of the U, D, L, and R blades is used. First, the central processing unit 17 detects the insertion position of the X-ray compensation filter 4 on the fluoroscopic image data when the current position information in which the X-ray compensation filter 4 is arranged at the position corresponding to FIG.
Under such an arrangement condition of the X-ray compensation filter, for example, the tube voltage is 70 [kV], the tube current and the X-ray irradiation time are constant (the same applies to the following imaging), and the fluoroscopic image data is obtained. . The image data is displayed and output to the display output unit 9 through the image display processing unit 8 as shown in FIG. Next, the thickness of the X-ray that is transmitted by the subject is increased and the X-ray generation condition of the tube voltage of 70 [kV] makes it impossible to obtain sufficient transmitted X-rays.
The adjustment is performed by raising the X-ray imaging condition to V].
Further, as shown in FIG. 3, when the tube voltage is increased, the amount of X-ray absorption is reduced, and the same can be said for the vane-type attenuation member that constitutes the X-ray compensation filter. Under the X-ray imaging condition, the halation phenomenon does not occur before. Therefore, in order to properly display the pixel area below the threshold value, the X-ray compensation filter 4 under the X-ray imaging condition is set to the threshold value. X to the above pixel area
It is necessary to insert the line compensation filter 4, that is, to narrow the opening formed by the X-ray compensation filter 4 from the current position. Therefore, when the subject becomes thicker, the X-ray attenuation amount due to the insertion of the X-ray compensation filter 4 and the attenuation rate by the attenuation member of the X-ray compensation filter stored in the attenuation rate storage unit 12 are read out, Using the attenuation amount calculated by the attenuation amount calculation unit 13, the fluoroscopic image data when the X-ray compensation filter 4 is not provided is calculated. The insertion position calculation unit 10 uses the fluoroscopic image data to calculate the position of the X-ray compensation filter 4 based on a preset threshold value under a new X-ray imaging condition 80 [kV], and The moving amount of the blade is calculated from the difference from the position. The filter control unit 11 moves the X-ray compensation filter 4 based on the movement amount to narrow the opening. Under such arrangement condition of the X-ray compensation filter, the fluoroscopic image data is obtained under the X-ray imaging condition of the tube voltage of 80 [kV]. The image data is displayed and output to the display output unit 9 through the image display processing unit 8 as shown in FIG. In addition, when the subject moves and the thickness of the X-ray is reduced, the tube voltage is 70 [kV], and the X-ray generation condition is as follows.
Since it is not appropriate in terms of the X-ray exposure dose given to the subject, the X-ray imaging condition is adjusted to a tube voltage of 60 [kV], for example. Further, as shown in FIG. 3, when the tube voltage is lowered, the amount of X-ray absorption increases, and the same can be said for the vane-shaped attenuation member that constitutes the X-ray compensation filter. Under
The area where the halation phenomenon does not occur may be covered with the X-ray compensation filter. Therefore, in order to display the pixel area below the threshold value without the intervention of the X-ray compensation filter, the pixel area under this X-ray imaging condition It is necessary to retract the X-ray compensation filter 4 to a pixel area equal to or larger than the threshold value, that is, to expand the opening from the current position. In this case, the only difference is whether the opening is narrowed or widened, and a description thereof will be omitted.

【0014】第一の実施の形態のX線画像診断装置は、
以上のように構成されているので、X線補償フィルタ4
をX線撮影条件の変化に追従して診断対象に適合した画
素領域以外の画素領域を覆うような位置に挿入制御でき
る。
The X-ray image diagnostic apparatus of the first embodiment is
Since the configuration is as described above, the X-ray compensation filter 4
Can be controlled to be inserted into a position that covers a pixel region other than the pixel region suitable for the diagnosis target by following the change of the X-ray imaging condition.

【0015】次に、第二の実施の形態について、図2〜
図5を用いて説明する。図2〜図4は第一の発明の実施
の形態で説明したからその説明を省略する。図5は本発
明のX線画像診断装置の第二の実施の形態の構成例を示
すブロック図である。
Next, the second embodiment will be described with reference to FIGS.
This will be described with reference to FIG. 2 to 4 have been described in the first embodiment of the invention, the description thereof will be omitted. FIG. 5 is a block diagram showing a configuration example of the second embodiment of the X-ray image diagnostic apparatus of the present invention.

【0016】第二の実施の形態のX線画像診断装置は、
寝台2とX線発生部3とX線補償フィルタ4とI.I.
5とテレビカメラ6と画像表示処理部7と表示出力部8
と透視画像記憶部9と挿入位置算出部10とフィルタ制
御部11と減弱量換算記憶部18とX線発生制御部14
と高圧発生部15と入力操作部16と中央処理部17と
を有している。寝台2とX線発生部3とX線補償フィル
タ4とI.I.5とテレビカメラ6と画像表示処理部7
と表示出力部8と透視画像記憶部9と挿入位置算出部1
0とフィルタ制御部11とX線発生制御部14と高圧発
生部15と入力操作部16は第一の発明の実施の形態で
説明したからその説明を省略する。減弱量換算記憶部1
8はいわば減弱率記憶部12と減弱量演算部13の機能
を併せ持つもので、挿入位置算出部11とX線発生制御
部14とそれぞれ電気的に接続され挿入領域算出部10
によってフィルタ挿入領域を算出するため、X線補償フ
ィルタを形成するアルミニウム、銅などのX線減弱部材
がどのくらいX線を減弱するかという減弱率データρか
ら前記X線補償フィルタの減弱量Fをあらかじめ(式
1)、(式2)から換算して記憶される。中央制御装置
15はX線補償フィルタ4、I.I.5、テレビカメラ
6、画像表示処理部7、透視画像記憶部9、フィルタ挿
入領域算出部10、フィルタ制御部11、減弱量換算記
憶部18、X線発生制御部14のそれぞれと電気的に接
続され前記各情報に基づきそれぞれを制御する。
The X-ray image diagnostic apparatus of the second embodiment is
The bed 2, the X-ray generator 3, the X-ray compensation filter 4, and the I.D. I.
5, TV camera 6, image display processing unit 7, and display output unit 8
A perspective image storage unit 9, an insertion position calculation unit 10, a filter control unit 11, an attenuation amount conversion storage unit 18, and an X-ray generation control unit 14.
It has a high voltage generation unit 15, an input operation unit 16 and a central processing unit 17. The bed 2, the X-ray generator 3, the X-ray compensation filter 4, and the I.D. I. 5, TV camera 6, and image display processing unit 7
Display output unit 8, perspective image storage unit 9 and insertion position calculation unit 1
0, the filter control unit 11, the X-ray generation control unit 14, the high voltage generation unit 15, and the input operation unit 16 have been described in the first embodiment of the present invention, and therefore description thereof will be omitted. Attenuation conversion storage unit 1
Reference numeral 8 is a combination of the functions of the attenuation rate storage unit 12 and the attenuation amount calculation unit 13, and is electrically connected to the insertion position calculation unit 11 and the X-ray generation control unit 14, respectively.
In order to calculate the filter insertion area by using the X-ray compensation filter, the attenuation amount F of the X-ray compensation filter is calculated in advance from the attenuation rate data ρ indicating how much the X-ray attenuation member such as aluminum and copper attenuates the X-rays. It is stored after being converted from (Equation 1) and (Equation 2). The central controller 15 controls the X-ray compensation filter 4, I.V. I. 5, the television camera 6, the image display processing unit 7, the perspective image storage unit 9, the filter insertion area calculation unit 10, the filter control unit 11, the attenuation amount conversion storage unit 18, and the X-ray generation control unit 14 are electrically connected. Then, each is controlled based on each of the above information.

【0017】次に、第二の実施の形態のX線画像診断装
置の動作について説明する。まず、図4(a)に対応す
る位置にX線補償フィルタおけるX線透視画像の表示出
力については、第一の実施の形態と同じであるので、説
明を省略する。次に、被検体が移動してX線を透過する
厚さが厚くなり、X線補償フィルタ4の挿入によるX線
減弱分を、減弱量換算記憶部18から記憶されたX線補
償フィルタの減弱部材による減弱量を読み出して、中央
処理部17か画像表示処理部8が有する演算部がX線補
償フィルタ4がない場合の透視画像データを演算する。
挿入位置算出部10は、前記透視画像データを用いて、
新たなX線撮影条件80[kV]でのあらかじめ設定さ
れたしきい値に基づきX線補償フィルタ4の位置を算出
するとともに、前記現在位置との差から前記羽根U、
D、L、Rの各部の移動量を各々に算出する。フィルタ
制御部11は、各々羽根ごとに算出した前記移動量に基
づきX線補償フィルタ4を移動して、前記開口を狭め
る。このようなX線補償フィルタの配置条件で、管電圧
80[kV]のX線撮影条件で透視画像データを得る。
前記画像データは画像表示処理部8を通して、表示出力
部9に図4(b)のように表示出力される。
Next, the operation of the X-ray image diagnostic apparatus according to the second embodiment will be described. First, the display output of the X-ray fluoroscopic image in the X-ray compensation filter at the position corresponding to FIG. 4A is the same as that in the first embodiment, and thus the description thereof is omitted. Then, the thickness of the X-ray transmission filter is increased as the subject moves and the X-ray compensation filter 4 attenuates the X-ray attenuation amount due to the insertion of the X-ray compensation filter 4 from the attenuation amount conversion storage unit 18. The amount of attenuation by the member is read out, and the arithmetic processing unit included in the central processing unit 17 or the image display processing unit 8 calculates the fluoroscopic image data when the X-ray compensation filter 4 is not provided.
The insertion position calculation unit 10 uses the fluoroscopic image data,
The position of the X-ray compensation filter 4 is calculated based on a preset threshold value under the new X-ray imaging condition of 80 [kV], and the blade U is calculated from the difference from the current position.
The amount of movement of each part of D, L, and R is calculated for each. The filter control unit 11 moves the X-ray compensation filter 4 based on the moving amount calculated for each blade to narrow the opening. Under such arrangement condition of the X-ray compensation filter, the fluoroscopic image data is obtained under the X-ray imaging condition of the tube voltage of 80 [kV].
The image data is displayed and output to the display output unit 9 through the image display processing unit 8 as shown in FIG.

【0018】第二の実施の形態のX線画像診断装置は、
以上のように構成されているので、X線補償フィルタ4
をX線撮影条件の変化に追従して診断対象に適合した画
素領域以外の画素領域を覆うような位置に挿入制御でき
るとともに、第一の実施の形態で説明した減弱量演算部
による演算が不要なので、より迅速にX線撮影条件の変
化に追従することができる。また、減弱率記憶部と減弱
量演算部に代えて減弱量換算記憶部だけでよいので、よ
り簡単な構造でX線撮影条件の変化に追従することがで
きる。
The X-ray image diagnostic apparatus of the second embodiment is
Since the configuration is as described above, the X-ray compensation filter 4
Can be controlled to be inserted into a position that covers a pixel area other than the pixel area suitable for the diagnosis target by following the change of the X-ray imaging condition, and the calculation by the attenuation amount calculation unit described in the first embodiment is unnecessary. Therefore, it is possible to more quickly follow changes in X-ray imaging conditions. Further, since only the attenuation amount conversion storage unit is required instead of the attenuation rate storage unit and the attenuation amount calculation unit, it is possible to follow the change of the X-ray imaging condition with a simpler structure.

【0019】また、第三の実施の形態のX線画像診断装
置として、図2で説明したX補償フィルタを構成する羽
根をX線の照射方向にに多重化してX線撮影条件の変化
に追従する制御をしてもよい。図6に各羽根がそれぞれ
2枚ずつあるX線補償フィルタの構成図を示す。これら
の2枚の各羽根は、ハレーション現象がおきている画素
領域と、ハレーション現象がおきていないが管電圧を昇
圧すればすぐにハレーション現象がおこる画素領域(以
下「ハレーション現象がおきそうな画素領域」という)
のそれぞれを覆うように使い分ける。例えばハレーショ
ン現象がおきている画素領域は2枚の羽根を重ねて挿入
し、ハレーション現象がおきそうな画素領域は2枚のち
の一方の羽根を挿入する。例としてX線の吸収率が比較
的少ない材質でU、D、L、Rの羽根を構成し、吸収率
の多い材質でU1、D1、L1、R1を構成する。すな
わち、ハレーション現象がおきそうな画素領域にはU、
D、L、Rで構成されるX線補償フィルタのみを挿入
し、ハレーション現象がおきている画素領域にはU1、
D1、L1、R1を挿入する。またさらに管電圧を昇圧
したときはUとU1、DとD1、LとL1、RとR1を
それぞれ重ねて挿入してもよい。
Further, as the X-ray image diagnostic apparatus according to the third embodiment, the blades forming the X-compensation filter described in FIG. 2 are multiplexed in the X-ray irradiation direction to follow changes in X-ray imaging conditions. You may control it. FIG. 6 shows a configuration diagram of an X-ray compensation filter having two blades each. Each of these two blades has a pixel region where a halation phenomenon occurs, and a pixel region where a halation phenomenon does not occur but the halation phenomenon occurs immediately when the tube voltage is boosted (hereinafter referred to as “pixels where a halation phenomenon is likely to occur”). Area ")
Use to cover each of the. For example, in a pixel area where a halation phenomenon occurs, two blades are overlapped and inserted, and in a pixel area where a halation phenomenon is likely to occur, one of the two blades is inserted. As an example, U, D, L, and R blades are made of a material having a relatively low X-ray absorption rate, and U1, D1, L1, and R1 are made of a material having a high absorption rate. That is, U is applied to the pixel area where the halation phenomenon is likely to occur.
Only the X-ray compensation filter composed of D, L and R is inserted, and U1 and
Insert D1, L1 and R1. Further, when the tube voltage is further boosted, U and U1, D and D1, L and L1, and R and R1 may be inserted in layers.

【0020】第三の実施の形態のX線画像診断装置は、
以上のように構成されているので、X線補償フィルタ4
をX線撮影条件の変化に追従して診断対象に適合した画
素領域以外の画素領域を覆うような位置に挿入制御でき
るとともに、第一の実施の形態および第二の実施の形態
より、複数に多重化した羽根によってX線撮影条件の変
化に微細に追従させることができる。
The X-ray image diagnostic apparatus of the third embodiment is
Since the configuration is as described above, the X-ray compensation filter 4
Can be controlled to be inserted at a position that covers a pixel area other than the pixel area suitable for the diagnosis target by following a change in the X-ray imaging condition, and a plurality of pixels can be provided according to the first and second embodiments. With the multiplexed blades, it is possible to finely follow changes in X-ray imaging conditions.

【0021】上述した各実施の形態をどのように組み合
わせても、X線補償フィルタ4をX線撮影条件の変化に
追従して診断対象に適合した画素領域以外の画素領域を
覆うような位置に挿入制御できることはいうまでもな
い。
No matter how the above-mentioned respective embodiments are combined, the X-ray compensation filter 4 is placed at such a position as to follow a change in X-ray imaging conditions and cover a pixel region other than the pixel region suitable for the diagnosis target. It goes without saying that the insertion can be controlled.

【0022】[0022]

【発明の効果】本発明は、前記X線減弱量算出手段が任
意に変更する前記X線撮影条件に基づいて前記X線補償
フィルタの挿入位置を前記X線補償フィルタが挿入され
るときの前記X線の減弱量を算出し、前記X線補償フィ
ルタ挿入領域算出手段が前記減弱量に基づき前記画素領
域を算出し、前記X線補償フィルタ制御手段が前記減弱
量に基づいた前記画素領域により前記X線補償フィルタ
の挿入あるいは退避をするので、X線補償フィルタをX
線撮影条件の変化に追従して診断対象に適合した画素領
域以外の画素領域を覆うような位置に挿入制御できるか
ら、前記X線補償フィルタが適正な位置であって、診断
に好適なX線透視画像の得られるX線画像診断装置を提
供することができるという効果を奏する。
According to the present invention, the insertion position of the X-ray compensation filter is set when the X-ray compensation filter is inserted based on the X-ray imaging condition arbitrarily changed by the X-ray attenuation amount calculating means. An X-ray attenuation amount is calculated, the X-ray compensation filter insertion area calculation means calculates the pixel area based on the attenuation amount, and the X-ray compensation filter control means uses the pixel area based on the attenuation amount. Since the X-ray compensation filter is inserted or retracted, the X-ray compensation filter
Since the insertion control can be performed at a position that covers a pixel area other than the pixel area that is suitable for the diagnosis target by following a change in the radiographic conditions, the X-ray compensation filter is at an appropriate position and is suitable for diagnosis. It is possible to provide an X-ray image diagnostic apparatus capable of obtaining a fluoroscopic image.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のX線画像診断装置の第一の実施の形態
の構成例を示すブロック図。
FIG. 1 is a block diagram showing a configuration example of a first embodiment of an X-ray image diagnostic apparatus of the present invention.

【図2】図1のX線補償フィルタの構成例を示す構造
図。
FIG. 2 is a structural diagram showing a configuration example of an X-ray compensation filter in FIG.

【図3】X線撮影条件のうちの管電圧とX線のエネルギ
ー吸収(相対値)の特性を示す曲線を表したグラフ。
FIG. 3 is a graph showing a curve showing characteristics of tube voltage and X-ray energy absorption (relative value) under X-ray imaging conditions.

【図4】透視画像上において図2のX線補償フィルタ4
が移動する前後の画像の表示例を示す図。
4 is an X-ray compensation filter 4 of FIG. 2 on a perspective image.
FIG. 7 is a diagram showing a display example of images before and after moving.

【図5】本発明のX線画像診断装置の第二の実施の形態
の構成例を示すブロック図。
FIG. 5 is a block diagram showing a configuration example of a second embodiment of an X-ray image diagnostic apparatus of the invention.

【図6】各羽根がそれぞれ2枚ずつあるX線補償フィル
タの構成図。
FIG. 6 is a configuration diagram of an X-ray compensation filter having two blades each.

【符号の説明】[Explanation of symbols]

11 フィルタ制御部 12 減弱率記憶部 13 減弱量演算部 18 減弱量換算記憶部 11 Filter Control Section 12 Attenuation Rate Storage Section 13 Attenuation Calculation Section 18 Attenuation Conversion Storage Section

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】X線を発生するX線発生部と、前記X線に
よるX線撮影条件を制御するX線制御手段と、前記X線
が照射される側に配置され前記X線を減弱する部材から
形成されるX線補償フィルタと、被検体を挟み前記X線
発生部と対向して配置され前記被検体を透過した前記X
線を受けて光学画像に変換するイメージ・インテンシフ
ァイアと、このイメージ・インテンシファイアと光学的
に接合され前記光学画像を撮影し透視画像を出力するテ
レビカメラと、このテレビカメラと接続され前記透視画
像を記憶する透視画像記憶手段と、前記X線撮影条件に
対応して前記X線透視画像のハレーション現象がおこる
画素値をしきい値として記憶するしきい値記憶手段と、
前記透視画像記憶手段と前記しきい値記憶手段とそれぞ
れ接続され前記透視画像を読み出して前記しきい値以上
の画素領域を前記X線補償フィルタの挿入領域として算
出する挿入領域算出手段と、前記X線補償フィルタと前
記挿入領域算出手段とそれぞれ接続され前記X線補償フ
ィルタを前記挿入領域へ挿入するフィルタ制御手段を備
えるX線画像診断装置において、前記X線補償フィルタ
が第1のX線撮影条件の挿入領域に配置され、前記X線
制御手段が前記第1のX線撮影条件と異なる第2のX線
撮影条件に設定されたとき、前記X線制御手段に接続さ
れ前記第2のX線撮影条件の前記第1のX線撮影条件に
対応して配置された前記X線補償フィルタによる前記X
線の減弱量を計算する減弱量計算手段と、この減弱量計
算手段に接続され前記減弱量に基づき前記X線補償フィ
ルタの挿入されないときのX線透視画像の各画素値に換
算して換算画像とする画像換算手段を備え、前記挿入領
域算出手段が前記画像換算手段とも接続され前記換算画
像のX線撮影条件に対応するしきい値から前記しきい値
以上の画素領域を前記X線補償フィルタの前記第2のX
線撮影条件に対応した挿入領域として算出し、前記フィ
ルタ制御手段が前記X線補償フィルタを前記第2のX線
撮影条件に対応した挿入領域へ挿入することを特徴とす
るX線画像診断装置。
1. An X-ray generation unit for generating X-rays, X-ray control means for controlling X-ray imaging conditions by the X-rays, and an X-ray attenuation unit arranged on the side irradiated with the X-rays. An X-ray compensation filter formed of a member, and the X-ray which is arranged so as to face the X-ray generation unit with the subject in between and which has passed through the subject.
An image intensifier for receiving a line and converting it into an optical image, a television camera optically joined to the image intensifier for photographing the optical image and outputting a perspective image, and the television camera connected to the television camera A fluoroscopic image storage means for storing a fluoroscopic image, and a threshold value storage means for storing a pixel value causing a halation phenomenon of the X-ray fluoroscopic image corresponding to the X-ray imaging condition as a threshold value.
An insertion area calculation means that is connected to the perspective image storage means and the threshold value storage means and that reads out the perspective image and calculates a pixel area equal to or more than the threshold value as an insertion area of the X-ray compensation filter; In an X-ray image diagnostic apparatus including a filter control unit that is respectively connected to a line compensation filter and the insertion region calculation unit and that inserts the X-ray compensation filter into the insertion region, the X-ray compensation filter is a first X-ray imaging condition. When the X-ray control means is set to a second X-ray photography condition different from the first X-ray photography condition, the second X-ray control means is connected to the X-ray control means. The X by the X-ray compensation filter arranged corresponding to the first X-ray imaging condition of the imaging condition.
Attenuation amount calculation means for calculating the attenuation amount of a ray, and a conversion image which is connected to the attenuation amount calculation means and is converted into each pixel value of the X-ray fluoroscopic image when the X-ray compensation filter is not inserted based on the attenuation amount. The insertion area calculating means is also connected to the image converting means, and the pixel area from the threshold value corresponding to the X-ray imaging condition of the converted image to the threshold value or more is the X-ray compensation filter. The second X of
An X-ray image diagnostic apparatus, wherein the filter control means inserts the X-ray compensation filter into an insertion area corresponding to the second X-ray imaging condition, which is calculated as an insertion area corresponding to the X-ray imaging condition.
【請求項2】X線を発生するX線発生部と、前記X線に
よるX線撮影条件を制御するX線制御手段と、前記X線
が照射される側に配置され前記X線を減弱する部材から
形成されるX線補償フィルタと、被検体を挟み前記X線
発生部と対向して配置され前記被検体を透過した前記X
線を受けて光学画像に変換するイメージ・インテンシフ
ァイアと、このイメージ・インテンシファイアと光学的
に接合され前記光学画像を撮影し透視画像を出力するテ
レビカメラと、このテレビカメラと接続され前記透視画
像を記憶する透視画像記憶手段と、前記X線撮影条件に
対応して前記X線透視画像のハレーション現象がおこる
画素値をしきい値として記憶するしきい値記憶手段と、
前記透視画像記憶手段と前記しきい値記憶手段とそれぞ
れ接続され前記透視画像を読み出して前記しきい値以上
の画素領域を前記X線補償フィルタの挿入領域として算
出する挿入領域算出手段と、前記X線補償フィルタと前
記挿入領域算出手段とそれぞれ接続され前記X線補償フ
ィルタを前記挿入領域へ挿入するフィルタ制御手段を備
えるX線画像診断装置において、前記X線補償フィルタ
が第1のX線撮影条件の挿入領域に配置され、前記X線
制御手段が前記第1のX線撮影条件と異なる第2のX線
撮影条件に設定されたとき、前記X線制御手段に接続さ
れ前記第2のX線撮影条件の前記第1のX線撮影条件に
対応して配置された前記X線補償フィルタによる前記X
線の減弱量を予め計算して記憶する減弱量記憶手段と、
この減弱量記憶手段に接続され前記減弱量に基づき前記
X線補償フィルタの挿入されないときのX線透視画像の
各画素値に換算して換算画像とする画像換算手段を備
え、前記挿入領域算出手段が前記画像換算手段とも接続
され前記換算画像のX線撮影条件に対応するしきい値か
ら前記しきい値以上の画素領域を前記X線補償フィルタ
の前記第2のX線撮影条件に対応した挿入領域として算
出し、前記フィルタ制御手段が前記X線補償フィルタを
前記第2のX線撮影条件に対応した挿入領域へ挿入する
ことを特徴とするX線画像診断装置。
2. An X-ray generation unit for generating X-rays, X-ray control means for controlling X-ray imaging conditions by the X-rays, and an X-ray attenuation unit arranged on the side irradiated with the X-rays. An X-ray compensation filter formed of a member, and the X-ray which is arranged so as to face the X-ray generation unit with the subject in between and which has passed through the subject.
An image intensifier for receiving a line and converting it into an optical image, a television camera optically joined to the image intensifier for photographing the optical image and outputting a perspective image, and the television camera connected to the television camera A fluoroscopic image storage means for storing a fluoroscopic image, and a threshold value storage means for storing a pixel value causing a halation phenomenon of the X-ray fluoroscopic image corresponding to the X-ray imaging condition as a threshold value.
An insertion area calculation means that is connected to the perspective image storage means and the threshold value storage means and that reads out the perspective image and calculates a pixel area equal to or more than the threshold value as an insertion area of the X-ray compensation filter; In an X-ray image diagnostic apparatus including a filter control unit that is respectively connected to a line compensation filter and the insertion region calculation unit and that inserts the X-ray compensation filter into the insertion region, the X-ray compensation filter is a first X-ray imaging condition. When the X-ray control means is set to a second X-ray photography condition different from the first X-ray photography condition, the second X-ray control means is connected to the X-ray control means. The X by the X-ray compensation filter arranged corresponding to the first X-ray imaging condition of the imaging condition.
Attenuation amount storage means for pre-calculating and storing the attenuation amount of the line,
The insertion area calculation means is connected to the attenuation amount storage means, and includes image conversion means for converting each pixel value of the X-ray fluoroscopic image when the X-ray compensation filter is not inserted based on the attenuation amount into a converted image. Is also connected to the image conversion means, and a pixel region from the threshold value corresponding to the X-ray imaging condition of the converted image to the threshold value or more is inserted into the X-ray compensation filter corresponding to the second X-ray imaging condition. An X-ray image diagnostic apparatus, characterized in that the filter control means inserts the X-ray compensation filter into an insertion region corresponding to the second X-ray imaging condition.
【請求項3】前記X線撮影条件は前記被検体に前記X線
が透過する厚さに基づいて設定されることを特徴とする
請求項1又は請求項2の何れか1項に記載のX線画像診
断装置。
3. The X-ray imaging condition according to claim 1, wherein the X-ray imaging condition is set based on a thickness at which the X-ray is transmitted to the subject. Line image diagnostic equipment.
【請求項4】前記X線補償フィルタは、前記減弱部材を
前記X線の照射方向に複数枚重ねたものであるととも
に、前記複数枚の減弱部材がそれぞれ個別/一体に制御
され、前記イメージインテンシファイアの受けるX線が
任意に減弱できることを特徴とする請求項1〜3の何れ
か1項に記載のX線画像診断装置。
4. The X-ray compensation filter is formed by stacking a plurality of the attenuation members in the X-ray irradiation direction, and the plurality of attenuation members are individually / integrally controlled, and the image The X-ray diagnostic imaging apparatus according to any one of claims 1 to 3, wherein the X-rays received by the tensifier can be arbitrarily attenuated.
JP09967196A 1996-03-29 1996-03-29 X-ray diagnostic imaging equipment Expired - Fee Related JP3623308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09967196A JP3623308B2 (en) 1996-03-29 1996-03-29 X-ray diagnostic imaging equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09967196A JP3623308B2 (en) 1996-03-29 1996-03-29 X-ray diagnostic imaging equipment

Publications (2)

Publication Number Publication Date
JPH09262227A true JPH09262227A (en) 1997-10-07
JP3623308B2 JP3623308B2 (en) 2005-02-23

Family

ID=14253505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09967196A Expired - Fee Related JP3623308B2 (en) 1996-03-29 1996-03-29 X-ray diagnostic imaging equipment

Country Status (1)

Country Link
JP (1) JP3623308B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020025744A (en) * 2000-09-28 2002-04-04 추후제출 X-ray ct system, gantry apparatus, console terminal, method of controlling them, and storage medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020025744A (en) * 2000-09-28 2002-04-04 추후제출 X-ray ct system, gantry apparatus, console terminal, method of controlling them, and storage medium

Also Published As

Publication number Publication date
JP3623308B2 (en) 2005-02-23

Similar Documents

Publication Publication Date Title
Schueler The AAPM/RSNA physics tutorial for residents general overview of fluoroscopic imaging
KR102201407B1 (en) X-ray imaging apparatus and control method thereof
JP5042887B2 (en) Radiation imaging equipment
US20040131145A1 (en) Mammography apparatus
JP4878828B2 (en) X-ray fluoroscopic equipment
JPH06154198A (en) X-ray diagnostic device
EP0648466B1 (en) Radiographic imaging apparatus
JPH08164130A (en) X-ray radioscopic system
JP2509503B2 (en) Image processing method and apparatus
US6108403A (en) X-ray equalization filter
US20120082295A1 (en) Radiographic imaging apparatus, radiographic imaging system, image processing device, and computer-readable recording medium for storing program
Webster X rays in diagnostic radiology
JP2005296277A (en) X-ray diagnostic apparatus and diagnostic method using the same
JP3623308B2 (en) X-ray diagnostic imaging equipment
JP4032409B2 (en) Fluoroscopic image processing device
JP2000261724A (en) X-ray device and photographing condition setting method
JP2005027823A (en) Roentgenography apparatus
JPH08107891A (en) Radioscopic image display in digital x-ray apparatus
JP3741508B2 (en) X-ray diagnostic imaging equipment
Hynes et al. Clinical experience with combined videofluorography and pulsed fluoroscopy.
JP5044457B2 (en) Radiation imaging apparatus and imaging condition setting method
CN111973209A (en) Dynamic perspective method and system of C-shaped arm equipment
JP2756346B2 (en) Method of erasing stimulable phosphor sheet
JPH1147122A (en) X-ray image diagnostic device
Hynes et al. Radiographic, photofluorographic, and television imaging systems: an evaluation

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees