JP3623308B2 - X-ray diagnostic imaging equipment - Google Patents

X-ray diagnostic imaging equipment Download PDF

Info

Publication number
JP3623308B2
JP3623308B2 JP09967196A JP9967196A JP3623308B2 JP 3623308 B2 JP3623308 B2 JP 3623308B2 JP 09967196 A JP09967196 A JP 09967196A JP 9967196 A JP9967196 A JP 9967196A JP 3623308 B2 JP3623308 B2 JP 3623308B2
Authority
JP
Japan
Prior art keywords
ray
compensation filter
image
attenuation
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09967196A
Other languages
Japanese (ja)
Other versions
JPH09262227A (en
Inventor
重之 池田
克己 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP09967196A priority Critical patent/JP3623308B2/en
Publication of JPH09262227A publication Critical patent/JPH09262227A/en
Application granted granted Critical
Publication of JP3623308B2 publication Critical patent/JP3623308B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、透視画像を用いてX線補償フィルタを挿入/退避制御するフィルタ制御装置を有するX線画像診断装置に係り、特にX線撮影条件に応じてX線補償フィルタを適正に配置して良好なX線透視画像を得ることができるX線画像診断装置に関する。
【0002】
従来のX線画像診断装置は、特開平05ー253213号公報に開示されている構成を有する。
【0003】
上記構成のうち、X線補償フィルタ制御装置は、上記構成のテレビカメラと電気的に接続され前記テレビカメラより出力される透視画像データを記憶する透視画像記憶部と、この透視画像記憶部と電気的に接続され前記透視画像記憶部から透視画像データを読み出して前記透視画像データが輝度的に高い画素値を呈して画面に表示しても階調が識別できない現象(「ハレーション現象」という)のおこる画素値(「しきい値」という)以上の画素領域を上記構成のX線補償フィルタで覆うための制御量を算出する制御量算出手段と、この制御量算出手段と電気的に接続され前記制御量に基づいた前記X線補償フィルタが前記画素領域の形状、位置により、前記X線補償フィルタをしきい値以上の画素領域には挿入し、しきい値未満の画素領域から退避させるフィルタ制御部とを有している。また、前記しきい値は被検体の撮影部位およびX線を発生する条件即ち上記構成のX線発生部に供給する電源の電圧(以下「管電圧」という)、電流(以下「管電流」という)とX線照射時間の条件(「X線撮影条件」という)によって予め設定されている。
このように、X線補償フィルタ制御装置は予め設定されているしきい値以上の領域を覆い隠すように前記X線補償フィルタを挿入している。
また、ある透視画像データにあらかじめ設定されたしきい値に基づき、既にX線補償フィルタが挿入されている場合、現在配置された前記X線補償フィルタ位置情報に基づき前記透視画像データ上での前記X線補償フィルタ位置を算出し、前記X線補償フィルタが挿入されたことによるX線の減弱量を記憶しておいて、前記減弱量に基づき前記X線補償フィルタに覆われなかった透視画像データに補正し、前記透視画像データと別個の透視画像データに予め設定されているしきい値以上の画素領域を覆い隠すように前記X線補償フィルタを挿入し、しきい値未満の画素領域から前記X線補償フィルタを退避させている。
【0004】
【発明が解決しようとする課題】
最近従来の画像診断に加えて、その画像を見ながら病巣部にカテーテルを進めて治療するインターベンショナル・ラジオロジということが盛んに行われている。そのようなことから、例えば被検体の撮影位置を前記カテーテルに追従させて移動させたいという要求がある。当然、被検体を動かせばそのX線の透過する厚さが変化し、それに伴いX線撮影条件も変化させる必要がある。このように前記被検体をX線補償フィルタが診断対象に適合した画素領域以外の画素領域(例えば前記ハレーション現象のある画素領域)を覆うように必ずしも挿入されてないという問題点があった。
【0005】
本発明は、上記問題点を解決するためになされたものであり、その目的は、X線補償フィルタをX線撮影条件の変化に追従して診断対象に適合した画素領域以外の画素領域を覆うような位置に挿入制御し、もって診断に好適なX線透視画像の得られるX線画像診断装置を提供することにある。
【0006】
【課題を解決するための手段】
上記目的は、X線を発生するX線発生部と、前記X線によるX線撮影条件を制御するX線制御手段と、前記X線が照射される側に配置され前記X線を減弱する部材から形成されるX線補償フィルタと、被検体を挟み前記X線発生部と対向して配置され前記被検体を透過した前記X線を受けて光学画像に変換するイメージ・インテンシファイアと、このイメージ・インテンシファイアと光学的に接合され前記光学画像を撮影し透視画像を出力するテレビカメラと、このテレビカメラと接続され前記透視画像を記憶する透視画像記憶手段と、前記X線撮影条件に対応して前記X線透視画像のハレーション現象がおこる画素値をしきい値として記憶するしきい値記憶手段と、前記透視画像記憶手段と前記しきい値記憶手段とそれぞれ接続され前記透視画像を読み出して前記しきい値以上の画素領域を前記X線補償フィルタの挿入領域として算出する挿入領域算出手段と、前記X線補償フィルタと前記挿入領域算出手段とそれぞれ接続され前記X線補償フィルタを前記挿入領域へ挿入するフィルタ制御手段を備えるX線画像診断装置において、前記X線補償フィルタが第1のX線撮影条件の挿入領域に配置され、前記X線制御手段が前記第1のX線撮影条件と異なる第2のX線撮影条件に設定されたとき、前記X線制御手段に接続され前記第2のX線撮影条件の前記第1のX線撮影条件に対応して配置された前記X線補償フィルタによる前記X線の減弱量を計算する減弱量計算手段と、この減弱量計算手段に接続され前記減弱量に基づき前記X線補償フィルタの挿入されないときのX線透視画像の各画素値に換算して換算画像とする画像換算手段を備え、前記挿入領域算出手段が前記画像換算手段とも接続され前記換算画像のX線撮影条件に対応するしきい値から前記しきい値以上の画素領域を前記X線補償フィルタの前記第2のX線撮影条件に対応した挿入領域として算出し、前記フィルタ制御手段が前記X線補償フィルタを前記第2のX線撮影条件に対応した挿入領域へ挿入することで達成される。
【0007】
また、X線を発生するX線発生部と、前記X線によるX線撮影条件を制御するX線制御手段と、前記X線が照射される側に配置され前記X線を減弱する部材から形成されるX線補償フィルタと、被検体を挟み前記X線発生部と対向して配置され前記被検体を透過した前記X線を受けて光学画像に変換するイメージ・インテンシファイアと、このイメージ・インテンシファイアと光学的に接合され前記光学画像を撮影し透視画像を出力するテレビカメラと、このテレビカメラと接続され前記透視画像を記憶する透視画像記憶手段と、前記X線撮影条件に対応して前記X線透視画像のハレーション現象がおこる画素値をしきい値として記憶するしきい値記憶手段と、前記透視画像記憶手段と前記しきい値記憶手段とそれぞれ接続され前記透視画像を読み出して前記しきい値以上の画素領域を前記X線補償フィルタの挿入領域として算出する挿入領域算出手段と、前記X線補償フィルタと前記挿入領域算出手段とそれぞれ接続され前記X線補償フィルタを前記挿入領域へ挿入するフィルタ制御手段を備えるX線画像診断装置において、前記X線補償フィルタが第1のX線撮影条件の挿入領域に配置され、前記X線制御手段が前記第1のX線撮影条件と異なる第2のX線撮影条件に設定されたとき、前記X線制御手段に接続され前記第2のX線撮影条件の前記第1のX線撮影条件に対応して配置された前記X線補償フィルタによる前記X線の減弱量を予め計算して記憶する減弱量記憶手段と、この減弱量記憶手段に接続され前記減弱量に基づき前記X線補償フィルタの挿入されないときのX線透視画像の各画素値に換算して換算画像とする画像換算手段を備え、前記挿入領域算出手段が前記画像換算手段とも接続され前記換算画像のX線撮影条件に対応するしきい値から前記しきい値以上の画素領域を前記X線補償フィルタの前記第2のX線撮影条件に対応した挿入領域として算出し、前記フィルタ制御手段が前記X線補償フィルタを前記第2のX線撮影条件に対応した挿入領域へ挿入することで達成される。
【0008】
【発明の実施の形態】
本発明のX線画像診断装置の実施の形態についてそれぞれ図面を用いて説明する。
【0009】
まず、第一の実施の形態について、図1〜図4を用いて説明する。
図1は本発明のX線画像診断装置の第一の実施の形態の構成例を示すブロック図、図2は図1のX線補償フィルタの構成例を示す構造図、図3はX線撮影条件のうちの管電圧とX線のエネルギー吸収(相対値)の特性を示す曲線を表したグラフ、図4は透視画像上において図2のX線補償フィルタ4が移動する前後の画像の表示例を示す図である。
【0010】
第一の実施の形態のX線画像診断装置は、寝台2とX線発生部3とX線補償フィルタ4とイメージ・インテンシファイア(以下「I.I.」という)5とテレビカメラ6と画像表示処理部7と表示出力部8と透視画像記憶部9と挿入位置算出部10とフィルタ制御部11と減弱率記憶部12と減弱量演算部13とX線発生制御部14と高圧発生部15と入力操作部16と中央処理部17とを有している。
寝台2は被検体1を搭載して床面から適当な高さに被検体1を支持している。X線発生部3はX線を発生する。X線補償フィルタ4は前記X線が発生して照射される側で被検体1とX線発生部3の間に配置され前記X線を減弱させる。I.I.5は被検体1を間に挟んでX線発生部3と対向配置され被検体1を透過したX線を蛍光面に入力し光学画像に変換出力する。テレビカメラ6はI.I.5と光学的に接合され前記光学画像を入力し電気信号に変換出力する。画像表示処理部7はテレビカメラ6と電気的に接続され前記電気信号を階調データに変換出力する。表示出力部8は画像表示処理部7と電気的に接続され前記階調データを表示出力する。透視画像記憶部9はテレビカメラ6と電気的に接続され前記電気信号を透視画像データとして記憶する。挿入領域算出部10は透視画像記憶部9と電気的に接続され前記透視画像データを読み出して予め設定されているしきい値以上の画素領域を算出する。フィルタ制御部11は挿入領域算出部10と電気的に接続され前記画素領域の形状、位置によりX線補償フィルタ4をしきい値以上の画素領域には挿入し、しきい値未満の画素領域から退避させる。減弱率記憶部12は挿入領域算出部10によってフィルタ挿入領域を算出するため、X線補償フィルタを形成するアルミニウム、銅などのX線減弱部材がどのくらいX線を減弱するかという減弱率データρを記憶している。減弱量演算部13は減弱率記憶部12とX線発生制御部14とそれぞれ電気的に接続され前記減弱率データρと次式で表されるX線撮影条件E(「X線エネルギー」ともいう。)によって前記X線補償フィルタの減弱量Fを演算する。
E=kVnit …(式1)
E:X線エネルギー、k:定数、V:管電圧[kV]、i:管電流[mA]
t:X線照射時間[秒]、n:管電圧に係るべき乗数(2≦n≦5)
(日本放射線技師会編、「改訂増補版診療放射線データブック」、1984年9月発行、マグブロス出版、第32頁から抜粋。)
F=ρE (線形の減弱の場合) …(式2)
X線発生制御部14は高圧発生部15と電気的に接続されX線発生部3に与える管電圧、管電流、X線照射時間などのX線撮影条件を制御する。高圧発生部15はX線発生部3と電気的に接続され前記X線撮影条件に基づいた電力量をX線発生部3に供給し作動させる。入力操作部16は中央処理部17と操作者がX線撮影条件などの各種情報を入力する。中央制御装置15はX線補償フィルタ4、I.I.5、テレビカメラ6、画像表示処理部7、透視画像記憶部9、挿入領域算出部10、フィルタ制御部11、減弱量記憶部12、減弱量演算部13、X線発生制御部14のそれぞれと電気的に接続され前記各情報に基づきそれぞれを制御する。
【0011】
また、X線補償フィルタ4は、図2に示すように、図面上部に位置するU部、下方に位置するD部、左方に位置するL部、右方に位置するR部からなる4枚の羽根で構成され、各羽根U、D、L、Rの各部は、図面の円が示す透視画像の表示領域を中心として、前後あるいは左右に平行移動するか、回転移動して、4枚の羽根で形成される開口の大きさなどが調整される。
【0012】
また、(式1)が示しているようにX線撮影条件において最も影響の大きい管電圧とX線のエネルギー吸収の相対値の特性(I.I.5の蛍光面の代表的な材質であるヨウ化セシウム(化学式:CsI))のうちの特に人体などを被検体としたときの管電圧は40〜120[kV]の部分だけを抜粋すると、図3の点線に表す特性になる。これと同じ方法で減弱率ρのX線補償フィルタを介した場合を測定してみると、ρを用いて表せば、点線で示す特性に1−ρを乗じた特性をほぼ示し、図3の実線で表されることを発明者は検証した。
【0013】
次に、第一の実施の形態のX線画像診断装置の動作について説明する。
X線発生部3からX線補償フィルタ4を通して被検体1に照射されたX線は、被検体1を透過してI.I.5で光学画像に変換される。前記光学画像は、テレビカメラ6で撮像され、透視画像記憶部9に記憶される。挿入領域算出部10は、あらかじめ設定されたしきい値以上の画素領域をX線補償フィルタ4で覆うための画素領域として算出する。フィルタ制御部11は前記画素領域の形状、位置によりX線補償フィルタ4をしきい値以上の画素領域には挿入し、しきい値未満の画素領域から退避させる。
ここで、さらに具体的に説明するために、X線補償フィルタ4が、図4(a)で示されるように挿入されている場合から図4(b)で示されるように挿入されている場合へ移動することを例示する。ここでは、説明を簡単にするため、U、D、L、Rの各部の羽根のうちの1枚を用いる。
まず、図4(a)に対応する位置にX線補償フィルタ4が配置されの現在位置情報が透視画像データ上でのX線補償フィルタ4の挿入位置を中央処理部17が検知する。このようなX線補償フィルタの配置条件で、例えば管電圧70[kV]、管電流とX線照射時間を一定とした(以下の撮影においても同じ。)X線撮影条件で透視画像データを得る。前記画像データは画像表示処理部8を通して、表示出力部9に図4(a)のように表示出力される。
次に、被検体が移動してX線を透過する厚さが厚くなり、管電圧70[kV]のX線発生条件では、充分な透過X線が得られないので、例えば管電圧80[kV]にX線撮影条件を上げて調整することが行われる。また図3に示されるように管電圧を高くすればX線の吸収量が小さくなり、X線補償フィルタを構成する羽根型の減弱部材に関しても同じことがいえるので、管電圧を上昇させたX線撮影条件の下では、以前ハレーション現象のおこらないところにおきるから、しきい値未満の画素領域を適正に表示するために、このX線撮影条件下でのX線補償フィルタ4をしきい値以上の画素領域までX線補償フィルタ4を挿入させる、即ちX線補償フィルタ4がなす開口を現在位置から狭める必要がある。
そこで、被検体の厚さが厚くなったとき、X線補償フィルタ4の挿入によるX線減弱分を、減弱率記憶部12から記憶されたX線補償フィルタの減弱部材による減弱率を読み出して、減弱量演算部13で演算された減弱量を用いて、X線補償フィルタ4がない場合の透視画像データを演算する。挿入位置算出部10は、前記透視画像データを用いて、新たなX線撮影条件80[kV]でのあらかじめ設定されたしきい値に基づきX線補償フィルタ4の位置を算出するとともに、前記現在位置との差から前記羽根の移動量を算出する。フィルタ制御部11は、前記移動量に基づきX線補償フィルタ4を移動して、前記開口を狭める。このようなX線補償フィルタの配置条件で、管電圧80[kV]のX線撮影条件で透視画像データを得る。前記画像データは画像表示処理部8を通して、表示出力部9に図4(b)のように表示出力される。
また、被検体が移動してX線を透過する厚さが薄くなり、上記管電圧70[kV]、のX線発生条件では、前記被検体に与えるX線の被曝線量の点で相応しくないので、例えば管電圧60[kV]にX線撮影条件を下げて調整することが行われる。また図3に示されるように管電圧を低くすればX線の吸収量が大きくなり、X線補償フィルタを構成する羽根型の減弱部材に関しても同じことがいえるので、下降させたX線撮影条件の下では、ハレーション現象のおこらないところまでX線補償フィルタで覆ってしまうことがあるから、しきい値未満の画素領域をX線補償フィルタを介在せずに表示するために、このX線撮影条件下でのX線補償フィルタ4をしきい値以上の画素領域までX線補償フィルタ4を退避させる、即ち前記開口を現在位置から拡げる必要がある。この場合は、前記開口を狭めるものか、拡げるものかの違いだけであるので、説明を省略する。
【0014】
第一の実施の形態のX線画像診断装置は、以上のように構成されているので、X線補償フィルタ4をX線撮影条件の変化に追従して診断対象に適合した画素領域以外の画素領域を覆うような位置に挿入制御できる。
【0015】
次に、第二の実施の形態について、図2〜図5を用いて説明する。
図2〜図4は第一の発明の実施の形態で説明したからその説明を省略する。図5は本発明のX線画像診断装置の第二の実施の形態の構成例を示すブロック図である。
【0016】
第二の実施の形態のX線画像診断装置は、寝台2とX線発生部3とX線補償フィルタ4とI.I.5とテレビカメラ6と画像表示処理部7と表示出力部8と透視画像記憶部9と挿入位置算出部10とフィルタ制御部11と減弱量換算記憶部18とX線発生制御部14と高圧発生部15と入力操作部16と中央処理部17とを有している。
寝台2とX線発生部3とX線補償フィルタ4とI.I.5とテレビカメラ6と画像表示処理部7と表示出力部8と透視画像記憶部9と挿入位置算出部10とフィルタ制御部11とX線発生制御部14と高圧発生部15と入力操作部16は第一の発明の実施の形態で説明したからその説明を省略する。減弱量換算記憶部18はいわば減弱率記憶部12と減弱量演算部13の機能を併せ持つもので、挿入位置算出部11とX線発生制御部14とそれぞれ電気的に接続され挿入領域算出部10によってフィルタ挿入領域を算出するため、X線補償フィルタを形成するアルミニウム、銅などのX線減弱部材がどのくらいX線を減弱するかという減弱率データρから前記X線補償フィルタの減弱量Fをあらかじめ(式1)、(式2)から換算して記憶される。中央制御装置15はX線補償フィルタ4、I.I.5、テレビカメラ6、画像表示処理部7、透視画像記憶部9、フィルタ挿入領域算出部10、フィルタ制御部11、減弱量換算記憶部18、X線発生制御部14のそれぞれと電気的に接続され前記各情報に基づきそれぞれを制御する。
【0017】
次に、第二の実施の形態のX線画像診断装置の動作について説明する。
まず、図4(a)に対応する位置にX線補償フィルタおけるX線透視画像の表示出力については、第一の実施の形態と同じであるので、説明を省略する。
次に、被検体が移動してX線を透過する厚さが厚くなり、X線補償フィルタ4の挿入によるX線減弱分を、減弱量換算記憶部18から記憶されたX線補償フィルタの減弱部材による減弱量を読み出して、中央処理部17か画像表示処理部8が有する演算部がX線補償フィルタ4がない場合の透視画像データを演算する。挿入位置算出部10は、前記透視画像データを用いて、新たなX線撮影条件80[kV]でのあらかじめ設定されたしきい値に基づきX線補償フィルタ4の位置を算出するとともに、前記現在位置との差から前記羽根U、D、L、Rの各部の移動量を各々に算出する。フィルタ制御部11は、各々羽根ごとに算出した前記移動量に基づきX線補償フィルタ4を移動して、前記開口を狭める。このようなX線補償フィルタの配置条件で、管電圧80[kV]のX線撮影条件で透視画像データを得る。前記画像データは画像表示処理部8を通して、表示出力部9に図4(b)のように表示出力される。
【0018】
第二の実施の形態のX線画像診断装置は、以上のように構成されているので、X線補償フィルタ4をX線撮影条件の変化に追従して診断対象に適合した画素領域以外の画素領域を覆うような位置に挿入制御できるとともに、第一の実施の形態で説明した減弱量演算部による演算が不要なので、より迅速にX線撮影条件の変化に追従することができる。また、減弱率記憶部と減弱量演算部に代えて減弱量換算記憶部だけでよいので、より簡単な構造でX線撮影条件の変化に追従することができる。
【0019】
また、第三の実施の形態のX線画像診断装置として、図2で説明したX補償フィルタを構成する羽根をX線の照射方向にに多重化してX線撮影条件の変化に追従する制御をしてもよい。図6に各羽根がそれぞれ2枚ずつあるX線補償フィルタの構成図を示す。これらの2枚の各羽根は、ハレーション現象がおきている画素領域と、ハレーション現象がおきていないが管電圧を昇圧すればすぐにハレーション現象がおこる画素領域(以下「ハレーション現象がおきそうな画素領域」という)のそれぞれを覆うように使い分ける。例えばハレーション現象がおきている画素領域は2枚の羽根を重ねて挿入し、ハレーション現象がおきそうな画素領域は2枚のちの一方の羽根を挿入する。例としてX線の吸収率が比較的少ない材質でU、D、L、Rの羽根を構成し、吸収率の多い材質でU1、D1、L1、R1を構成する。すなわち、ハレーション現象がおきそうな画素領域にはU、D、L、Rで構成されるX線補償フィルタのみを挿入し、ハレーション現象がおきている画素領域にはU1、D1、L1、R1を挿入する。またさらに管電圧を昇圧したときはUとU1、DとD1、LとL1、RとR1をそれぞれ重ねて挿入してもよい。
【0020】
第三の実施の形態のX線画像診断装置は、以上のように構成されているので、X線補償フィルタ4をX線撮影条件の変化に追従して診断対象に適合した画素領域以外の画素領域を覆うような位置に挿入制御できるとともに、第一の実施の形態および第二の実施の形態より、複数に多重化した羽根によってX線撮影条件の変化に微細に追従させることができる。
【0021】
上述した各実施の形態をどのように組み合わせても、X線補償フィルタ4をX線撮影条件の変化に追従して診断対象に適合した画素領域以外の画素領域を覆うような位置に挿入制御できることはいうまでもない。
【0022】
【発明の効果】
本発明は、前記X線減弱量算出手段が任意に変更する前記X線撮影条件に基づいて前記X線補償フィルタの挿入位置を前記X線補償フィルタが挿入されるときの前記X線の減弱量を算出し、前記X線補償フィルタ挿入領域算出手段が前記減弱量に基づき前記画素領域を算出し、前記X線補償フィルタ制御手段が前記減弱量に基づいた前記画素領域により前記X線補償フィルタの挿入あるいは退避をするので、X線補償フィルタをX線撮影条件の変化に追従して診断対象に適合した画素領域以外の画素領域を覆うような位置に挿入制御できるから、前記X線補償フィルタが適正な位置であって、診断に好適なX線透視画像の得られるX線画像診断装置を提供することができるという効果を奏する。
【図面の簡単な説明】
【図1】本発明のX線画像診断装置の第一の実施の形態の構成例を示すブロック図。
【図2】図1のX線補償フィルタの構成例を示す構造図。
【図3】X線撮影条件のうちの管電圧とX線のエネルギー吸収(相対値)の特性を示す曲線を表したグラフ。
【図4】透視画像上において図2のX線補償フィルタ4が移動する前後の画像の表示例を示す図。
【図5】本発明のX線画像診断装置の第二の実施の形態の構成例を示すブロック図。
【図6】各羽根がそれぞれ2枚ずつあるX線補償フィルタの構成図。
【符号の説明】
11 フィルタ制御部
12 減弱率記憶部
13 減弱量演算部
18 減弱量換算記憶部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an X-ray diagnostic imaging apparatus having a filter control device that controls insertion / retraction of an X-ray compensation filter using a fluoroscopic image, and particularly appropriately arranges the X-ray compensation filter according to X-ray imaging conditions. The present invention relates to an X-ray diagnostic imaging apparatus capable of obtaining a good X-ray fluoroscopic image.
[0002]
A conventional X-ray diagnostic imaging apparatus has a configuration disclosed in Japanese Patent Laid-Open No. 05-253213.
[0003]
Among the above-described configurations, the X-ray compensation filter control device is electrically connected to the television camera having the above-described configuration and stores the fluoroscopic image data output from the television camera, and the fluoroscopic image storage unit and the electric image storage unit. A phenomenon in which gradation is not discernible even if the fluoroscopic image data is read out from the fluoroscopic image storage unit and the fluoroscopic image data exhibits a high luminance pixel value and is displayed on the screen (referred to as “halation phenomenon”). A control amount calculating means for calculating a control amount for covering a pixel region having a pixel value (referred to as a “threshold value”) or higher with an X-ray compensation filter having the above-described configuration; and the control amount calculating means electrically connected to the control amount calculating means. The X-ray compensation filter based on the control amount inserts the X-ray compensation filter into a pixel region that is equal to or greater than a threshold value depending on the shape and position of the pixel region, and the pixel region that is less than the threshold value And a filter control unit for al retracted. Further, the threshold value is a condition for generating an imaging region of an object and X-rays, that is, a voltage of a power source (hereinafter referred to as “tube voltage”) and a current (hereinafter referred to as “tube current”) supplied to the X-ray generation unit having the above configuration. ) And X-ray irradiation time conditions (referred to as “X-ray imaging conditions”).
As described above, the X-ray compensation filter control apparatus inserts the X-ray compensation filter so as to cover an area equal to or greater than a preset threshold value.
In addition, when an X-ray compensation filter is already inserted based on a predetermined threshold value for certain fluoroscopic image data, the fluoroscopic image data on the fluoroscopic image data is based on the X-ray compensation filter position information currently arranged. X-ray compensation filter position is calculated, X-ray attenuation amount due to insertion of the X-ray compensation filter is stored, and fluoroscopic image data not covered by the X-ray compensation filter based on the attenuation amount And inserting the X-ray compensation filter so as to cover a pixel area equal to or higher than a preset threshold value in the fluoroscopic image data separate from the fluoroscopic image data, The X-ray compensation filter is retracted.
[0004]
[Problems to be solved by the invention]
Recently, in addition to conventional image diagnosis, interventional radiology in which a catheter is advanced to a lesion while treating the image while viewing the image has been actively performed. For this reason, there is a demand for moving the imaging position of the subject to follow the catheter, for example. Naturally, if the subject is moved, the thickness of transmission of the X-rays changes, and accordingly, the X-ray imaging conditions need to be changed. As described above, there is a problem in that the subject is not necessarily inserted so as to cover a pixel region (for example, a pixel region having the halation phenomenon) other than the pixel region in which the X-ray compensation filter is suitable for the diagnosis target.
[0005]
The present invention has been made to solve the above-described problems, and an object of the present invention is to cover a pixel region other than a pixel region suitable for an object to be diagnosed by following the change in the X-ray imaging condition of the X-ray compensation filter. It is an object of the present invention to provide an X-ray diagnostic imaging apparatus that controls insertion at such a position and thereby obtains a fluoroscopic image suitable for diagnosis.
[0006]
[Means for Solving the Problems]
The object is to provide an X-ray generator for generating X-rays, X-ray control means for controlling X-ray imaging conditions using the X-rays, and a member disposed on the side irradiated with the X-rays to attenuate the X-rays. An X-ray compensation filter formed from the image intensifier, an image intensifier arranged to face the X-ray generation unit with the subject interposed therebetween, and to receive the X-ray transmitted through the subject and convert it into an optical image, A television camera that is optically joined to an image intensifier and captures the optical image and outputs a fluoroscopic image; a fluoroscopic image storage means that is connected to the television camera and stores the fluoroscopic image; and the X-ray imaging conditions Correspondingly, a threshold value storage means for storing a pixel value at which the halation phenomenon of the X-ray fluoroscopic image occurs as a threshold value, and the fluoroscopic image storage means and the threshold value storage means are respectively connected to the transparent image. An X-ray compensation filter connected to the X-ray compensation filter and the insertion-area calculation unit, respectively, for inserting an image-reading area and calculating a pixel area equal to or greater than the threshold as an X-ray compensation filter insertion area; In the X-ray diagnostic imaging apparatus including filter control means for inserting the X-ray into the insertion area, the X-ray compensation filter is disposed in the insertion area of the first X-ray imaging condition, and the X-ray control means When a second X-ray imaging condition different from the X-ray imaging condition is set, the X-ray control unit is connected to the first X-ray imaging condition and is arranged corresponding to the first X-ray imaging condition. Attenuation amount calculation means for calculating the attenuation amount of the X-ray by the X-ray compensation filter, and X-ray fluoroscopy when the X-ray compensation filter is not inserted based on the attenuation amount connected to the attenuation amount calculation means Image conversion means for converting each pixel value of the image into a converted image, and the insertion area calculation means is connected to the image conversion means, and the threshold is determined from a threshold value corresponding to the X-ray imaging condition of the converted image. A pixel area greater than or equal to the value is calculated as an insertion area corresponding to the second X-ray imaging condition of the X-ray compensation filter, and the filter control means corresponds to the X-ray compensation filter corresponding to the second X-ray imaging condition. This is achieved by inserting into the inserted area.
[0007]
In addition, an X-ray generation unit that generates X-rays, an X-ray control unit that controls X-ray imaging conditions by the X-rays, and a member that is disposed on the side irradiated with the X-rays and attenuates the X-rays An X-ray compensation filter, an image intensifier arranged to face the X-ray generation unit with the subject interposed therebetween and receiving the X-ray transmitted through the subject and converting it into an optical image, A television camera that is optically joined to an intensifier and captures the optical image and outputs a fluoroscopic image; a fluoroscopic image storage means that is connected to the television camera and stores the fluoroscopic image; and corresponds to the X-ray imaging conditions. Threshold value storage means for storing a pixel value at which a halation phenomenon of the X-ray fluoroscopic image occurs as a threshold value, and the fluoroscopic image storage means and the threshold value storage means connected to the fluoroscopic image, respectively. Insertion area calculation means for reading out and calculating a pixel area equal to or greater than the threshold value as an insertion area for the X-ray compensation filter; and the X-ray compensation filter connected to the X-ray compensation filter and the insertion area calculation means, respectively. In an X-ray diagnostic imaging apparatus including filter control means for inserting into an insertion area, the X-ray compensation filter is disposed in an insertion area for a first X-ray imaging condition, and the X-ray control means is configured to perform the first X-ray imaging. When set to a second X-ray imaging condition that is different from the conditions, the X is connected to the X-ray control means and arranged corresponding to the first X-ray imaging condition of the second X-ray imaging condition Attenuation amount storage means for calculating and storing the attenuation amount of the X-ray by the line compensation filter in advance, and X when the X-ray compensation filter is not inserted based on the attenuation amount connected to the attenuation amount storage means Image conversion means for converting each pixel value of the fluoroscopic image into a converted image, and the insertion area calculation means is connected to the image conversion means, and the threshold value corresponding to the X-ray imaging condition of the converted image is calculated from the threshold value. A pixel area equal to or greater than a threshold value is calculated as an insertion area corresponding to the second X-ray imaging condition of the X-ray compensation filter, and the filter control means sets the X-ray compensation filter as the second X-ray imaging condition. This is achieved by inserting into the corresponding insertion area.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the X-ray image diagnostic apparatus of the present invention will be described with reference to the drawings.
[0009]
First, a first embodiment will be described with reference to FIGS.
FIG. 1 is a block diagram showing a configuration example of the first embodiment of the X-ray image diagnostic apparatus of the present invention, FIG. 2 is a structural diagram showing a configuration example of the X-ray compensation filter of FIG. 1, and FIG. FIG. 4 is a graph showing a curve indicating the characteristics of tube voltage and X-ray energy absorption (relative value), and FIG. 4 is a display example of images before and after the X-ray compensation filter 4 of FIG. 2 moves on a fluoroscopic image. FIG.
[0010]
The X-ray diagnostic imaging apparatus according to the first embodiment includes a bed 2, an X-ray generation unit 3, an X-ray compensation filter 4, an image intensifier (hereinafter referred to as “II”) 5, a television camera 6, Image display processing unit 7, display output unit 8, fluoroscopic image storage unit 9, insertion position calculation unit 10, filter control unit 11, attenuation rate storage unit 12, attenuation amount calculation unit 13, X-ray generation control unit 14, and high pressure generation unit 15, an input operation unit 16, and a central processing unit 17.
The bed 2 carries the subject 1 and supports the subject 1 at an appropriate height from the floor surface. The X-ray generator 3 generates X-rays. The X-ray compensation filter 4 is disposed between the subject 1 and the X-ray generation unit 3 on the side where the X-ray is generated and irradiated, and attenuates the X-ray. I. I. Reference numeral 5 denotes an X-ray which is disposed opposite to the X-ray generator 3 with the subject 1 interposed therebetween and transmitted through the subject 1 is input to the fluorescent screen and converted into an optical image. The TV camera 6 is an I.D. I. 5 is optically joined to the optical image and converted into an electrical signal. The image display processing unit 7 is electrically connected to the television camera 6 and converts the electric signal into gradation data and outputs it. The display output unit 8 is electrically connected to the image display processing unit 7 to display and output the gradation data. The fluoroscopic image storage unit 9 is electrically connected to the television camera 6 and stores the electrical signal as fluoroscopic image data. The insertion region calculation unit 10 is electrically connected to the perspective image storage unit 9 and reads the perspective image data to calculate a pixel region equal to or greater than a preset threshold value. The filter control unit 11 is electrically connected to the insertion region calculation unit 10 and inserts the X-ray compensation filter 4 into the pixel region above the threshold value depending on the shape and position of the pixel region. Evacuate. Since the attenuation rate storage unit 12 calculates the filter insertion region by the insertion region calculation unit 10, attenuation rate data ρ indicating how much X-ray attenuation members such as aluminum and copper forming the X-ray compensation filter attenuate X-rays. I remember it. The attenuation amount calculation unit 13 is electrically connected to the attenuation rate storage unit 12 and the X-ray generation control unit 14, respectively. The attenuation rate data ρ and the X-ray imaging condition E (also referred to as “X-ray energy”) represented by the following equation. )) To calculate the attenuation amount F of the X-ray compensation filter.
E = kVnit (Formula 1)
E: X-ray energy, k: constant, V: tube voltage [kV], i: tube current [mA]
t: X-ray irradiation time [second], n: power multiplier related to tube voltage (2 ≦ n ≦ 5)
(Excerpted from the Japanese Radiologists Association, “Revised Supplemental Medical Radiation Data Book”, published in September 1984, Magblos Publishing, page 32.)
F = ρE (in the case of linear attenuation) (Expression 2)
The X-ray generation control unit 14 is electrically connected to the high-voltage generation unit 15 and controls X-ray imaging conditions such as tube voltage, tube current, and X-ray irradiation time applied to the X-ray generation unit 3. The high voltage generation unit 15 is electrically connected to the X-ray generation unit 3 and supplies the X-ray generation unit 3 with an amount of electric power based on the X-ray imaging conditions. The input operation unit 16 allows the central processing unit 17 and the operator to input various information such as X-ray imaging conditions. The central controller 15 includes the X-ray compensation filter 4, I.I. I. 5, TV camera 6, image display processing unit 7, perspective image storage unit 9, insertion region calculation unit 10, filter control unit 11, attenuation amount storage unit 12, attenuation amount calculation unit 13, and X-ray generation control unit 14 They are electrically connected and controlled based on the information.
[0011]
In addition, as shown in FIG. 2, the X-ray compensation filter 4 includes four parts including a U part located at the top of the drawing, a D part located below, an L part located on the left side, and an R part located on the right side. The blades U, D, L, and R are each moved in parallel by moving back and forth or left and right around the display area of the fluoroscopic image indicated by the circle in the drawing, or by rotating and moving the four pieces. The size of the opening formed by the blades is adjusted.
[0012]
In addition, as shown in (Equation 1), the tube voltage and the relative value of the X-ray energy absorption (I.I.5 are typical materials for fluorescent screens) that have the greatest influence on the X-ray imaging conditions. When the tube voltage of cesium iodide (chemical formula: CsI), particularly when a human body or the like is used as a subject, only a portion of 40 to 120 [kV] is extracted, the characteristic is represented by a dotted line in FIG. When the case of passing through an X-ray compensation filter with an attenuation ratio ρ is measured by the same method, if expressed using ρ, the characteristic shown by the dotted line is multiplied by 1-ρ, and the characteristic shown in FIG. The inventor verified that it is represented by a solid line.
[0013]
Next, the operation of the X-ray image diagnostic apparatus according to the first embodiment will be described.
X-rays irradiated to the subject 1 from the X-ray generation unit 3 through the X-ray compensation filter 4 pass through the subject 1 and pass through the subject 1. I. 5 is converted into an optical image. The optical image is captured by the television camera 6 and stored in the perspective image storage unit 9. The insertion region calculation unit 10 calculates a pixel region that covers a pixel region that is equal to or greater than a preset threshold value with the X-ray compensation filter 4. The filter control unit 11 inserts the X-ray compensation filter 4 in the pixel area above the threshold value according to the shape and position of the pixel area, and retracts it from the pixel area below the threshold value.
Here, in order to explain more specifically, the case where the X-ray compensation filter 4 is inserted as shown in FIG. 4 (b) from the case where it is inserted as shown in FIG. 4 (a). An example of moving to Here, in order to simplify the description, one of the blades of each of U, D, L, and R is used.
First, the central processing unit 17 detects the insertion position of the X-ray compensation filter 4 on the fluoroscopic image data when the X-ray compensation filter 4 is arranged at a position corresponding to FIG. Under such X-ray compensation filter arrangement conditions, for example, the tube voltage is 70 kV, the tube current and the X-ray irradiation time are constant (the same applies to the following imaging), and fluoroscopic image data is obtained under the X-ray imaging conditions. . The image data is displayed and output to the display output unit 9 through the image display processing unit 8 as shown in FIG.
Next, since the subject moves and becomes thicker to transmit X-rays, sufficient transmission X-rays cannot be obtained under the X-ray generation condition of tube voltage 70 [kV]. For example, tube voltage 80 [kV] ] Is adjusted by increasing the X-ray imaging conditions. Further, as shown in FIG. 3, if the tube voltage is increased, the amount of X-ray absorption is reduced, and the same can be said for the vane-type attenuation member constituting the X-ray compensation filter. Under the radiographic conditions, the halation phenomenon has not occurred before, so that the X-ray compensation filter 4 under the X-ray radiographing conditions is set to the threshold value in order to properly display the pixel area below the threshold value. It is necessary to insert the X-ray compensation filter 4 to the above pixel region, that is, to narrow the opening formed by the X-ray compensation filter 4 from the current position.
Therefore, when the thickness of the subject is increased, the X-ray attenuation due to insertion of the X-ray compensation filter 4 is read, and the attenuation rate by the attenuation member of the X-ray compensation filter stored from the attenuation rate storage unit 12 is read. Using the attenuation amount calculated by the attenuation amount calculation unit 13, the fluoroscopic image data when there is no X-ray compensation filter 4 is calculated. The insertion position calculation unit 10 calculates the position of the X-ray compensation filter 4 based on a preset threshold value under a new X-ray imaging condition 80 [kV] using the fluoroscopic image data and the current The movement amount of the blade is calculated from the difference from the position. The filter control unit 11 moves the X-ray compensation filter 4 based on the amount of movement to narrow the opening. Under such X-ray compensation filter arrangement conditions, fluoroscopic image data is obtained under X-ray imaging conditions with a tube voltage of 80 [kV]. The image data is displayed and output to the display output unit 9 through the image display processing unit 8 as shown in FIG.
Further, the thickness of the X-ray transmission through the subject is reduced, and the X-ray generation condition of the tube voltage of 70 [kV] is not suitable in terms of the X-ray exposure dose given to the subject. For example, the X-ray imaging conditions are lowered and adjusted to a tube voltage of 60 [kV]. Also, as shown in FIG. 3, if the tube voltage is lowered, the amount of X-ray absorption increases, and the same can be said for the vane-type attenuation member constituting the X-ray compensation filter. The X-ray imaging may be used to display a pixel region below the threshold value without interposing the X-ray compensation filter. Under certain conditions, the X-ray compensation filter 4 needs to be retracted to a pixel area equal to or greater than a threshold value, that is, the opening needs to be expanded from the current position. In this case, the difference is only whether the opening is narrowed or widened, and the description thereof is omitted.
[0014]
Since the X-ray diagnostic imaging apparatus according to the first embodiment is configured as described above, the pixels other than the pixel region adapted to the diagnosis target by tracking the X-ray compensation filter 4 according to changes in the X-ray imaging conditions. Insertion control can be performed at a position covering the area.
[0015]
Next, a second embodiment will be described with reference to FIGS.
2 to 4 have been described in the embodiment of the first invention, the description thereof will be omitted. FIG. 5 is a block diagram showing a configuration example of the second embodiment of the X-ray diagnostic imaging apparatus of the present invention.
[0016]
The X-ray diagnostic imaging apparatus according to the second embodiment includes a bed 2, an X-ray generator 3, an X-ray compensation filter 4, an I.D. I. 5, TV camera 6, image display processing unit 7, display output unit 8, fluoroscopic image storage unit 9, insertion position calculation unit 10, filter control unit 11, attenuation amount conversion storage unit 18, X-ray generation control unit 14, and high pressure generation A unit 15, an input operation unit 16, and a central processing unit 17.
A bed 2, an X-ray generator 3, an X-ray compensation filter 4, and an I.S. I. 5, TV camera 6, image display processing unit 7, display output unit 8, fluoroscopic image storage unit 9, insertion position calculation unit 10, filter control unit 11, X-ray generation control unit 14, high pressure generation unit 15, and input operation unit 16. Since it was explained in the embodiment of the first invention, its explanation is omitted. The attenuation amount conversion storage unit 18 has the functions of the attenuation rate storage unit 12 and the attenuation amount calculation unit 13, and is electrically connected to the insertion position calculation unit 11 and the X-ray generation control unit 14. Therefore, the attenuation amount F of the X-ray compensation filter is calculated in advance from the attenuation rate data ρ indicating how much the X-ray attenuation member such as aluminum or copper forming the X-ray compensation filter attenuates. It is converted from (Expression 1) and (Expression 2) and stored. The central controller 15 includes the X-ray compensation filter 4, I.I. I. 5, the TV camera 6, the image display processing unit 7, the fluoroscopic image storage unit 9, the filter insertion area calculation unit 10, the filter control unit 11, the attenuation amount conversion storage unit 18, and the X-ray generation control unit 14 are electrically connected to each other. Each is controlled based on the information.
[0017]
Next, the operation of the X-ray image diagnostic apparatus according to the second embodiment will be described.
First, the display output of the X-ray fluoroscopic image in the X-ray compensation filter at the position corresponding to FIG. 4A is the same as that in the first embodiment, and thus the description thereof is omitted.
Next, the thickness of the X-ray compensation filter stored in the attenuation amount conversion storage unit 18 is reduced by the X-ray attenuation due to the insertion of the X-ray compensation filter 4 by increasing the thickness through which the subject moves and transmits X-rays. The amount of attenuation by the member is read, and the fluoroscopic image data when the calculation unit included in the central processing unit 17 or the image display processing unit 8 does not have the X-ray compensation filter 4 is calculated. The insertion position calculation unit 10 calculates the position of the X-ray compensation filter 4 based on a preset threshold value under a new X-ray imaging condition 80 [kV] using the fluoroscopic image data and the current The amount of movement of each part of the blades U, D, L, R is calculated from the difference from the position. The filter control unit 11 moves the X-ray compensation filter 4 based on the movement amount calculated for each blade to narrow the opening. Under such X-ray compensation filter arrangement conditions, fluoroscopic image data is obtained under X-ray imaging conditions with a tube voltage of 80 [kV]. The image data is displayed and output to the display output unit 9 through the image display processing unit 8 as shown in FIG.
[0018]
Since the X-ray diagnostic imaging apparatus according to the second embodiment is configured as described above, the pixels other than the pixel region adapted to the diagnosis target by tracking the X-ray compensation filter 4 according to changes in the X-ray imaging conditions. Insertion control can be performed at a position that covers the region, and calculation by the attenuation amount calculation unit described in the first embodiment is unnecessary, so that changes in X-ray imaging conditions can be followed more quickly. In addition, since only the attenuation amount conversion storage unit is required instead of the attenuation rate storage unit and the attenuation amount calculation unit, it is possible to follow changes in X-ray imaging conditions with a simpler structure.
[0019]
In addition, as an X-ray image diagnostic apparatus according to the third embodiment, control is performed in which the blades constituting the X compensation filter described in FIG. 2 are multiplexed in the X-ray irradiation direction to follow changes in X-ray imaging conditions. May be. FIG. 6 shows a configuration diagram of an X-ray compensation filter having two blades. Each of these two blades has a pixel area where halation occurs, and a pixel area where halation does not occur but when the tube voltage is boosted, the halation occurs immediately (hereinafter, the pixel where halation is likely to occur). Use them to cover each area). For example, two blades are inserted in a pixel region where halation is occurring, and one of the two blades is inserted in a pixel region where halation is likely to occur. For example, U, D, L, and R blades are made of a material having a relatively low X-ray absorption rate, and U1, D1, L1, and R1 are made of a material having a high absorption rate. That is, only an X-ray compensation filter composed of U, D, L, and R is inserted into a pixel region where halation is likely to occur, and U1, D1, L1, and R1 are inserted into the pixel region where halation is occurring. insert. Further, when the tube voltage is further increased, U and U1, D and D1, L and L1, and R and R1 may be inserted in an overlapping manner.
[0020]
Since the X-ray image diagnostic apparatus according to the third embodiment is configured as described above, the pixels other than the pixel region adapted to the diagnosis target by tracking the X-ray compensation filter 4 in accordance with changes in the X-ray imaging conditions. Insertion control can be performed at a position that covers the region, and changes in X-ray imaging conditions can be finely followed by a plurality of blades, as compared with the first and second embodiments.
[0021]
Regardless of how the above-described embodiments are combined, the X-ray compensation filter 4 can be inserted and controlled at a position covering a pixel area other than the pixel area suitable for the diagnosis target following the change in the X-ray imaging conditions. Needless to say.
[0022]
【The invention's effect】
The present invention provides the X-ray attenuation amount when the X-ray compensation filter is inserted at the insertion position of the X-ray compensation filter based on the X-ray imaging condition arbitrarily changed by the X-ray attenuation amount calculation means. The X-ray compensation filter insertion region calculation means calculates the pixel region based on the attenuation amount, and the X-ray compensation filter control means calculates the X-ray compensation filter by the pixel region based on the attenuation amount. Since insertion or retraction is performed, the X-ray compensation filter can be controlled to follow the change in X-ray imaging conditions and cover a pixel area other than the pixel area suitable for the diagnosis target. There is an effect that an X-ray image diagnostic apparatus which is an appropriate position and can obtain an X-ray fluoroscopic image suitable for diagnosis can be provided.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration example of a first embodiment of an X-ray image diagnostic apparatus according to the present invention.
FIG. 2 is a structural diagram showing a configuration example of the X-ray compensation filter of FIG. 1;
FIG. 3 is a graph showing a curve indicating the characteristics of tube voltage and X-ray energy absorption (relative value) among X-ray imaging conditions.
4 is a diagram showing a display example of an image before and after the X-ray compensation filter 4 of FIG. 2 moves on a fluoroscopic image.
FIG. 5 is a block diagram showing a configuration example of a second embodiment of the X-ray image diagnostic apparatus of the present invention.
FIG. 6 is a configuration diagram of an X-ray compensation filter having two blades each.
[Explanation of symbols]
11 Filter Control Unit 12 Attenuation Rate Storage Unit 13 Attenuation Amount Calculation Unit 18 Attenuation Amount Conversion Storage Unit

Claims (1)

X線を発生するX線発生部と、
このX線発生部によって発生されるX線のエネルギーを制御するX線制御手段と、
このX線制御手段によって制御されたX線エネルギーに対応して前記X線透視画像のハレーション現象がおこる画素値をしきい値として記憶するしきい値記憶手段と、
前記X線発生部のX線が照射される側に配置され前記X線を減弱する部材から形成されるX線補償フィルタと、
被検体を挟み前記X線発生部と対向して配置され前記被検体を透過した前記X線を受けて光学画像に変換するイメージ・インテンシファイアと、このイメージ・インテンシファイアによって変換された前記光学画像を撮影し透視画像を出力するテレビカメラと、
このテレビカメラによって出力された透視画像を前記しきい値記憶手段に記憶されたしきい値以上の画素領域を前記X線補償フィルタの挿入領域として算出する挿入領域算出手段と、
この挿入領域算出手段によって算出された挿入領域に前記X線補償フィルタを挿入するフィルタ制御手段と、
を備えるX線画像診断装置において、あらかじめ定められたX線エネルギーで測定された前記X線補償フィルタの減弱率を記憶する減弱率記憶手段と、この減弱率記憶手段に記憶された減弱率と前記X線制御手段により制御されたX線エネルギーから前記X線補償フィルタの減弱量を計算する減弱量計算手段とを備え、前記フィルタ制御手段は前記減弱量演算部により計算され減弱量に基づき前記X線補償フィルタを制御することを特徴とするX線画像診断装置。
An X-ray generator for generating X-rays;
X-ray control means for controlling the energy of X-rays generated by the X-ray generator,
Threshold storage means for storing, as a threshold value, a pixel value at which the halation phenomenon of the fluoroscopic image occurs corresponding to the X-ray energy controlled by the X-ray control means;
An X-ray compensation filter formed from a member that is disposed on the X-ray generation side of the X-ray generation unit and attenuates the X-ray;
An image intensifier that is disposed opposite to the X-ray generation unit with the subject interposed therebetween and receives the X-ray transmitted through the subject and converts it into an optical image, and the image intensifier converted by the image intensifier A television camera that captures optical images and outputs perspective images;
An insertion area calculating means for calculating a fluoroscopic image output by the television camera as a pixel area equal to or greater than a threshold stored in the threshold storage means as an insertion area of the X-ray compensation filter;
Filter control means for inserting the X-ray compensation filter into the insertion area calculated by the insertion area calculation means;
In an X-ray diagnostic imaging apparatus comprising: an attenuation rate storage unit that stores an attenuation rate of the X-ray compensation filter measured with a predetermined X-ray energy; an attenuation rate stored in the attenuation rate storage unit; and a attenuation amount calculating means from a controlled X-ray energy by the X-ray control means for calculating the attenuation of the X-ray compensation filter, said filter control means based on the attenuation amount calculated by the attenuation amount calculation section the An X-ray image diagnostic apparatus characterized by controlling an X-ray compensation filter.
JP09967196A 1996-03-29 1996-03-29 X-ray diagnostic imaging equipment Expired - Fee Related JP3623308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09967196A JP3623308B2 (en) 1996-03-29 1996-03-29 X-ray diagnostic imaging equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09967196A JP3623308B2 (en) 1996-03-29 1996-03-29 X-ray diagnostic imaging equipment

Publications (2)

Publication Number Publication Date
JPH09262227A JPH09262227A (en) 1997-10-07
JP3623308B2 true JP3623308B2 (en) 2005-02-23

Family

ID=14253505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09967196A Expired - Fee Related JP3623308B2 (en) 1996-03-29 1996-03-29 X-ray diagnostic imaging equipment

Country Status (1)

Country Link
JP (1) JP3623308B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002102217A (en) * 2000-09-28 2002-04-09 Ge Medical Systems Global Technology Co Llc X-ray ct system, gantory apparatus, console terminal and controlling method therefor, and storage medium

Also Published As

Publication number Publication date
JPH09262227A (en) 1997-10-07

Similar Documents

Publication Publication Date Title
Tesic et al. Digital radiography of the chest: design features and considerations for a prototype unit.
US20040131145A1 (en) Mammography apparatus
JP5042887B2 (en) Radiation imaging equipment
Krohmer Radiography and fluoroscopy, 1920 to the present.
US6426996B1 (en) X-ray radiographic/fluoroscopic apparatus, X-ray radiographic method and X-ray radiographic/fluoroscopic method
EP0648466B1 (en) Radiographic imaging apparatus
US6108403A (en) X-ray equalization filter
US20040161075A1 (en) Radiographing apparatus
Geise Fluoroscopy: recording of fluoroscopic images and automatic exposure control
JP3623308B2 (en) X-ray diagnostic imaging equipment
Webster X rays in diagnostic radiology
JP2005296277A (en) X-ray diagnostic apparatus and diagnostic method using the same
Balter Fluoroscopic technology from 1895 to 2019 drivers: Physics and physiology
Hynes et al. Clinical experience with combined videofluorography and pulsed fluoroscopy.
JP2871053B2 (en) X-ray tomography equipment
JP5044457B2 (en) Radiation imaging apparatus and imaging condition setting method
JP3741508B2 (en) X-ray diagnostic imaging equipment
Rowlands et al. System for digital acquisition of gastrointestinal images
Hynes et al. Radiographic, photofluorographic, and television imaging systems: an evaluation
Frost et al. Digital acquisition system for photo-electronic radiology-a performance overview
Rossi et al. A variable aperture fluoroscopic unit for reduced patient exposure
JPH1147122A (en) X-ray image diagnostic device
Hynes et al. Use Of A Multiformat Camera For Recording Fluoroscopic Images
Sashin et al. Electronic radiography for spot-filming in gastrointestinal fluoroscopy
JPH04292144A (en) X-ray fluoro-radiographic equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees