JPH09261799A - Nonlinear distortion measuring method - Google Patents

Nonlinear distortion measuring method

Info

Publication number
JPH09261799A
JPH09261799A JP6557896A JP6557896A JPH09261799A JP H09261799 A JPH09261799 A JP H09261799A JP 6557896 A JP6557896 A JP 6557896A JP 6557896 A JP6557896 A JP 6557896A JP H09261799 A JPH09261799 A JP H09261799A
Authority
JP
Japan
Prior art keywords
signal
energy
distortion
noise
measuring method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6557896A
Other languages
Japanese (ja)
Other versions
JP3346524B2 (en
Inventor
Yutaka Kaneda
豊 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP06557896A priority Critical patent/JP3346524B2/en
Publication of JPH09261799A publication Critical patent/JPH09261799A/en
Application granted granted Critical
Publication of JP3346524B2 publication Critical patent/JP3346524B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate the need for averaging operation and greatly decrease an arithmetic quantity by measuring a nonlinear distortion quantity by using an M-series signal as a determinant signal. SOLUTION: One maximum period array signal M-series signal m(k) of a binary dummy irregular signal is generated by an M-series signal generation part 24 and supplied to the input terminal 22 of a measured system 21, and a signal outputted from the output terminal 23 is digitized by an AD converter 25 to obtain a signal y(k). Then a convolution part 26 convolutes an M-seris signal m(-k) having the time base inverted to obtain a signal h'(k). Then a signal energy calculation part 27 calculates signal energy E's and noise energy and distortion energy (E'd+E'a). Lastly, a noise and distortion quantity calculation part 29 calculates a noise and a distortion quantity Ds. Thus, when the determinant signal is used, averaging operation for obtaining a measured value is unneeded unlike a measuring method which uses a statistical signal like a white noise and the arithmetic quantity can greatly be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、スピーカ出力などに含
まれる非線形歪の歪量を測定する方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the amount of non-linear distortion included in a speaker output or the like.

【0002】[0002]

【従来の技術】スピーカから大きな音を発生させた時、
非線形歪が発生する。この非線形歪は、聴感上の音色劣
化や、音響信号処理系の性能(例えば、音響エコーキャ
ンセラのエコー消去性能)劣化などの原因となる。従っ
て、使用するスピーカから発生している歪の大きさを定
量的に把握しておくことは重要である。
2. Description of the Related Art When a loud sound is generated from a speaker,
Non-linear distortion occurs. This non-linear distortion causes deterioration of timbre on the auditory sense and deterioration of performance of the acoustic signal processing system (for example, echo canceling performance of the acoustic echo canceller). Therefore, it is important to quantitatively grasp the magnitude of the distortion generated from the speaker used.

【0003】正弦波入力に対する高調波歪は測定法が確
立されている。しかし、広帯域信号入力に対する非線形
歪は、これを直接的に測定することはできない。
A method for measuring harmonic distortion with respect to a sine wave input has been established. However, non-linear distortion for wideband signal inputs cannot be measured directly.

【0004】[0004]

【発明が解決しようとする課題】そこで従来、広帯域信
号入力に対する非線形歪は、コヒーレンス関数などの統
計的手法を用いて推定を行ってきた。しかし、統計的手
法では、精度向上のために多数回の平均計算が必要とな
り、演算量が多大となるという問題点があった。
Therefore, conventionally, the nonlinear distortion with respect to a wideband signal input has been estimated using a statistical method such as a coherence function. However, the statistical method has a problem that a large number of calculations are required to improve accuracy and the amount of calculation becomes large.

【0005】本発明は、上記の問題点、即ち、被測定系
の出力に含まれる非線形歪を精度良く測定するために、
多大な演算量が必要となる、という従来の問題を解決す
ることを目的とする。
According to the present invention, in order to accurately measure the above-mentioned problem, that is, the nonlinear distortion included in the output of the system under measurement,
The object is to solve the conventional problem that a large amount of calculation is required.

【0006】[0006]

【課題を解決するための手段】本発明では、確定的な擬
似ランダム信号であるM系列信号を用いた非線形歪の測
定方法を案出することで、上記問題点の解決を図った。
以下に、その方法の基本原理を説明する。
In the present invention, the above problems are solved by devising a method for measuring non-linear distortion using an M-sequence signal which is a deterministic pseudo-random signal.
The basic principle of the method will be described below.

【0007】まず最初に、測定すべき歪量の定義を行
う。非線形性を含む線形系に、信号x(k)を入力した
時の出力信号y(k)は、次式のように表すことができ
る。
First, the amount of strain to be measured is defined. The output signal y (k) when the signal x (k) is input to the linear system including nonlinearity can be expressed as the following equation.

【0008】[0008]

【数1】 ただし、h(k)はインパルス応答、*は畳み込みを表
す。また、右辺のh(k)*x(k)は線形な応答を、
d(k)は非線形応答成分を、n(k)は定常な背景雑
音を表し、それぞれは無相関な信号であるものとする。
[Equation 1] However, h (k) represents an impulse response and * represents convolution. In addition, h (k) * x (k) on the right side has a linear response,
It is assumed that d (k) represents a non-linear response component and n (k) represents stationary background noise, which are uncorrelated signals.

【0009】この時、‘雑音・歪量’DN 、および、歪
量Dを次のように定義する。
[0009] At this time, 'noise-strain quantity' D N, and defining the amount of distortion D as follows.

【0010】[0010]

【数2】 [Equation 2]

【0011】[0011]

【数3】 ただし、Es ,Ed ,En はそれぞれ、式(1)の右辺
各項、h(k)*x(k),d(k),n(k)のエネ
ルギー(2乗和)を表す。
(Equation 3) However, each of E s, E d, E n is terms right side of the equation (1), h (k) * x (k), represents the d (k), the energy of the n (k) (2 sum of squares) .

【0012】さて、DN およびDの値を測定するために
は、Es ,Ed ,En の値を別個に測定することが必要
である。M系列信号を入力とすれば、このことが可能と
なることを以下に説明する。
In order to measure the values of D N and D, it is necessary to measure the values of E s , E d , and E n separately. It will be described below that this is possible by inputting an M-sequence signal.

【0013】ここで、M系列信号とは二値疑似不規則信
号(Binary pseudo-random signal)の中の一つである
最大周期列信号(Maximum period sequence)のことで
ある。このM系列信号を測定に使用する場合には、値は
1か−1の二値をとる信号とする。M系列信号の周期L
は、2 p−1(ただし、pは整数)とする。M系列信号
はその周波数スペクトルが白色であるという性質を持
ち、発生に再現性があって発生方法も簡単なため、各種
のシミュレーションや測定用信号として広く利用されて
いる。
Here, the M-sequence signal is a maximum period sequence signal which is one of the binary pseudo-random signals. When this M-sequence signal is used for measurement, the value is a binary signal of 1 or -1. Period L of M-sequence signal
Is 2 p −1 (where p is an integer). The M-sequence signal has a property that its frequency spectrum is white, has reproducibility in generation, and is easy in generation method, and is therefore widely used as various simulation and measurement signals.

【0014】式(1)の入力信号x(k)として、周期
的に発生させたM系列信号m(k)を用いる。そして、
その時の出力信号y(k)に、m(k)の時間軸を反転
させた信号m(−k)を畳み込む。この手順はインパル
ス応答測定手順と同一である。畳み込みの結果を、時刻
0から一周期Lまでの区間で切り出した信号をh’
(k)(0≦k<L)と表すと、式(1)より、
As the input signal x (k) of the equation (1), an M series signal m (k) which is periodically generated is used. And
The output signal y (k) at that time is convolved with the signal m (-k) obtained by inverting the time axis of m (k). This procedure is the same as the impulse response measurement procedure. A signal obtained by cutting out the result of the convolution in the section from time 0 to one cycle L is h ′.
When expressed as (k) (0 ≦ k <L), from Expression (1),

【0015】[0015]

【数4】 となる。但し、x(k)(=m(k))とm(−k)の
畳み込みは単位パルスになることを利用した。また、
h’(k)は、長さがLの信号として得られるので、以
降、Lを測定区間長と呼ぶ。
(Equation 4) Becomes However, it was used that the convolution of x (k) (= m (k)) and m (-k) becomes a unit pulse. Also,
Since h ′ (k) is obtained as a signal having a length of L, L will be referred to as a measurement section length hereinafter.

【0016】ここで、式(4)の右辺各項のエネルギー
をそれぞれE’s ,E’d ,E’nと表す。m(−k)
の畳み込み演算は各項の持つエネルギーの比を変化させ
ない。従って、式(2),(3)は次のように表され
る。
[0016] Here, it represents the energy of the terms right side of the equation (4), respectively E 's, E' d, and E 'n. m (-k)
The convolution operation of does not change the energy ratio of each term. Therefore, the expressions (2) and (3) are expressed as follows.

【0017】[0017]

【数5】 (Equation 5)

【0018】[0018]

【数6】 〔E’s の測定〕E’s はE’d +E’n より十分に
(例えば20dB程度)大きな量であって、
(Equation 6) [E 'measured in s] E' s is sufficiently (for example, about 20 dB) than the E 'd + E' n a large amount,

【0019】[0019]

【数7】 が成立するものと仮定する。この式の右辺は、式(4)
のh’(k)のエネルギーであるので、E’s は次式に
よって測定される。
(Equation 7) Is assumed to hold. The right side of this equation is the equation (4)
'Since the energy of the (k), E' of h s is determined by the following equation.

【0020】[0020]

【数8】 〔E’d +E’n およびDN 測定〕通常の線形系のイン
パルス応答は減衰波形となっているため、ある程度の継
続時間以降は、その値がほぼ零であるとみなすことがで
きる。そこで、インパルス応答h(k)の継続長に比べ
てM系列の周期Lを十分に長く選べば、式(4)のh’
(k)の波形は図1のようになる。図1において、横軸
は時間、縦軸は振幅を表わす。図1に示すようにインパ
ルス応答h(k)のエネルギーE’s は時間軸の原点近
くに集中し、測定結果の後半部においては、E’s の値
は十分に減衰しているため無視できる。一方、式(4)
の右辺第2,3項のエネルギーは全時間区間にほぼ一様
に分布したものとなる[参考文献:C.Dunn et.al.,J.Au
dio Eng.Soc. 41,5,pp.314-335,1993 May.]。従って、
測定結果の後半部には非線形項と雑音項のみが現れてお
り、次式により、E’d +E’n の値が測定できる。
(Equation 8) [Measurement of E ′ d + E ′ n and D N ] Since the impulse response of a normal linear system has an attenuation waveform, it can be considered that the value is almost zero after a certain duration. Therefore, if the period L of the M sequence is selected to be sufficiently longer than the duration of the impulse response h (k), then h ′ in equation (4)
The waveform of (k) is as shown in FIG. In FIG. 1, the horizontal axis represents time and the vertical axis represents amplitude. Energy E of the impulse response h (k) as shown in FIG. 1 's are concentrated near the origin of the time axis, in the second half of the measurement results, E' can be ignored because the value of s is sufficiently attenuated .. On the other hand, equation (4)
The energies of the second and third terms on the right side of are distributed almost uniformly over the entire time interval [Reference: C. Dunn et.al., J. Au.
dio Eng. Soc. 41,5, pp.314-335, 1993 May.]. Therefore,
Only the nonlinear term and the noise term appear in the latter half of the measurement result, and the value of E ′ d + E ′ n can be measured by the following equation.

【0021】[0021]

【数9】 式(5),(8),(9)よりDN の測定値が得られ
る。
[Equation 9] The measured value of D N can be obtained from the equations (5), (8) and (9).

【0022】なお、式(9)では、後ろ半分の区間のエ
ネルギーを2倍してE’d +E’nの値を求めたが、こ
のエネルギー計算区間は、後ろ半分に限定されるもので
はなく、「インパルス応答のエネルギーE’s の値が無
視できる区間」であればよい。即ち、「E’s の値が無
視できる区間」において、波形の2乗平均値を求めて、
測定区間長Lを乗ずれば、E’d +E’n の測定値が得
られる。
[0022] In the formula (9), it has been determined the value of E 'd + E' n energy behind half-section twice to this energy calculation section is not intended to be limited to the rear half , “Impulse response energy E ′ s value can be ignored”. That is, in "interval negligible value of E 's", seeking mean square value of the waveform,
By multiplying by the measurement section length L, the measured value of E ′ d + E ′ n can be obtained.

【0023】さて、式(2),(3)からわかるよう
に、背景雑音が十分に小さく(即ち、Ed 》En )、E
d +En ≒Ed とみなせるという条件下では、‘雑音・
歪量’DN は歪量Dと一致する。一般には、測定結果に
含まれる非線形歪成分と雑音成分を分離することは困難
なので、この条件を仮定し、‘雑音・歪量’DN を歪量
Dとみなすことが、通例である。従って、本発明の目的
もDN が測定できれば達成できる。
As can be seen from the equations (2) and (3), the background noise is sufficiently small (that is, E d >> E n ), E
Under the condition that d + E n ≈E d ,
The strain amount'D N matches the strain amount D. In general, since it is difficult to separate the non-linear distortion and noise components included in the measurement results, assuming this condition, it is regarded as a distortion amount D a 'noise-strain quantity' D N, is customary. Therefore, the object of the present invention can also be achieved if D N can be measured.

【0024】また、M系列信号として、音声の平均的な
スペクトルを有するフィルタを通したものを用いるもの
である。
As the M-sequence signal, a signal having a filter having an average spectrum of voice is used.

【0025】[0025]

【作用】本発明においては、M系列信号m(k)を被測
定系に入力信号として入力し、そのとき出力y(k)に
対して、M系列信号m(−k)を畳み込み、この結果得
られた信号h´(k)の測定区間長LのエネルギーE1
と、畳み込み出力h´(k)における被測定系のインパ
ルス応答の存在が無視できる時間区間のパワーを求め、
このパワーにh´(k)の測定区間長Lを乗じてエネル
ギーE2を求め、D=E2/E1から歪量Dを測定す
る。
In the present invention, the M-sequence signal m (k) is input to the system under test as an input signal, and then the output y (k) is convolved with the M-sequence signal m (-k). Energy E1 of the measurement section length L of the obtained signal h ′ (k)
And the power of the convolutional output h ′ (k) in the time interval in which the presence of the impulse response of the measured system can be ignored,
This power is multiplied by the measurement section length L of h '(k) to obtain the energy E2, and the strain amount D is measured from D = E2 / E1.

【0026】また、M系列信号として、音声の平均的な
スペクトルを有するフィルタを通すことにより、音声信
号に対して正しい歪量の測定を可能とする。
Further, by passing a filter having an average spectrum of voice as the M-sequence signal, it is possible to measure the correct distortion amount for the voice signal.

【0027】[0027]

【実施例】図2は、本発明の測定方法を実施する装置の
一実施例を示したブロック図である。この図において、
21は被測定系、22はこの被測定系21の入力端子、
23は同じく出力端子、24はM系列信号発生部、25
はAD変換器、26は畳み込み部、27は信号エネルギ
ー計算部、28は雑音・歪エネルギー計算部、29は雑
音・歪量計算部を表す。
EXAMPLE FIG. 2 is a block diagram showing an example of an apparatus for carrying out the measuring method of the present invention. In this figure,
21 is the system under test, 22 is the input terminal of the system under test 21,
23 is the same output terminal, 24 is an M-sequence signal generator, 25
Is an AD converter, 26 is a convolution unit, 27 is a signal energy calculation unit, 28 is a noise / distortion energy calculation unit, and 29 is a noise / distortion amount calculation unit.

【0028】この実施例の動作は以下のようである。ま
ず、M系列信号発生部24から発生させたM系列信号m
(k)を被測定系21の入力端子22に供給する。そし
て、被測定系21の出力端子23から出た信号は、AD
変換器25によって、ディジタル化され、信号y(k)
を得る。次に、畳み込み部26において、y(k)と、
時間軸を反転させたM系列信号m(−k)を、式(4)
に示すように、畳み込んで、信号h’(k)を得る。次
に、信号エネルギー計算部27において、式(8)に基
づいて、信号エネルギーE’s を計算する。また、同時
に雑音・歪エネルギー計算部28において、式(9)に
基づいて、雑音・歪エネルギー(E’d+E’n )を計
算する。最後に、雑音・歪量計算部29において、式
(5)に基づいて雑音・歪量DN を計算する。以上の操
作によって、本発明が実行される。
The operation of this embodiment is as follows. First, the M-sequence signal m generated from the M-sequence signal generator 24
(K) is supplied to the input terminal 22 of the measured system 21. The signal output from the output terminal 23 of the measured system 21 is AD
The signal y (k) digitized by the converter 25
Get. Next, in the convolution unit 26, y (k)
The M-sequence signal m (−k) with the time axis inverted is given by equation (4)
And convolve to obtain the signal h '(k), as shown in. Next, the signal energy calculation unit 27 calculates the signal energy E ′ s based on the equation (8). At the same time, the noise / distortion energy calculation unit 28 calculates the noise / distortion energy (E ′ d + E ′ n ) based on the equation (9). Finally, the noise / distortion amount calculation unit 29 calculates the noise / distortion amount D N based on the equation (5). The present invention is implemented by the above operations.

【0029】以上説明した本測定方法で用いるM系列信
号は確定的信号であるので、白色雑音などのような統計
的信号を用いる従来の測定法とは異なり、測定値を得る
ための平均化操作を行う必要がない。従って、以上の演
算操作を1回行うだけで求める非線形歪量が計算でき
る。その結果、複数回の演算結果を平均化する必要のあ
る従来法と比べて、演算量が大幅に低減できる。
Since the M-sequence signal used in the present measuring method described above is a deterministic signal, unlike the conventional measuring method using a statistical signal such as white noise, an averaging operation for obtaining a measured value is performed. You don't have to. Therefore, the non-linear distortion amount to be calculated can be calculated only by performing the above calculation operation once. As a result, the amount of calculation can be significantly reduced as compared with the conventional method that requires averaging the calculation results of a plurality of times.

【0030】次に本発明の他の実施例について説明す
る。非線形歪は入力信号に対する周波数成分依存性があ
るものと考えられる。一方、上記した方法は、スペクト
ルが白色信号であるM系列信号に対する歪量であった。
従って、音声信号などの有色入力信号に対する歪量が多
少異なってくるものと考えられる。しかし、この問題は
次のように解決が可能である。即ち、音声信号など、あ
る特定の有色入力信号に対する歪量は、その有色スペク
トルを持つフィルタ、つまり、音声の平均的なスペクト
ルを有するフィルタでM系列信号を有色化した後、歪の
評価を行えばよい。
Next, another embodiment of the present invention will be described. It is considered that the non-linear distortion has frequency component dependence on the input signal. On the other hand, the above method is the amount of distortion for the M-sequence signal whose spectrum is a white signal.
Therefore, it is considered that the amount of distortion with respect to a color input signal such as an audio signal is slightly different. However, this problem can be solved as follows. That is, the distortion amount with respect to a specific colored input signal such as a voice signal is evaluated after the M-sequence signal is colored with a filter having the color spectrum, that is, a filter having an average spectrum of the voice. I'll do it.

【0031】[0031]

【発明の効果】以上説明したように、本発明は、確定的
信号であるM系列信号を用いて、非線形歪量の測定を行
う方法である。確定的信号を用いた場合は、白色雑音な
どのような統計的信号を用いる従来の測定法とな異な
り、測定値を得るための平均化操作を行う必要がない。
その結果、複数回の演算結果を平均化する必要のある従
来法と比べて、演算量が大幅に低減できるという長所を
有する。
As described above, the present invention is a method for measuring a non-linear distortion amount using an M-sequence signal which is a deterministic signal. When using a deterministic signal, unlike the conventional measurement method using a statistical signal such as white noise, it is not necessary to perform an averaging operation to obtain a measurement value.
As a result, it has an advantage that the amount of calculation can be significantly reduced as compared with the conventional method that requires averaging the calculation results of a plurality of times.

【0032】また、M系列信号を音声の平均的なスペク
トルを有するフィルタを通すようにしたので、音声信号
に対しても正確な歪量の測定が可能である。
Further, since the M-sequence signal is passed through the filter having the average spectrum of the voice, it is possible to accurately measure the distortion amount for the voice signal.

【図面の簡単な説明】[Brief description of drawings]

【図1】式(4)のh’(k)の波形を示す図である。FIG. 1 is a diagram showing a waveform of h ′ (k) in expression (4).

【図2】本発明の実施例を示すブロック図である。FIG. 2 is a block diagram showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

21 被測定系 22 入力端子 23 出力端子 24 M系列信号発生部 25 AD変換器 26 畳み込み部 27 信号エネルギー計算部 28 雑音・歪エネルギー計算部 29 雑音・歪量計算部 21 system under test 22 input terminal 23 output terminal 24 M sequence signal generation section 25 AD converter 26 convolution section 27 signal energy calculation section 28 noise / distortion energy calculation section 29 noise / distortion amount calculation section

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被測定系に含まれる非線形歪の歪量を測
定する方法であって、前記被測定系にM系列信号m
(k)を入力し、そのときの出力y(k)に対して時間
軸を反転したM系列信号m(−k)を畳み込み、畳み込
みの結果として得られた信号h’(k)の測定区間長L
のエネルギーE1を計算し、前記畳み込み信号h’
(k)において被測定系のインパルス応答の存在が無視
できる時間区間のパワーを計算し、計算したパワーに畳
み込み信号h’(k)の測定区間長Lを乗じてエネルギ
ーE2を計算し、D=E2/E1として歪量Dを測定す
ることを特徴とする非線形歪測定方法。
1. A method for measuring the amount of non-linear distortion included in a system under test, wherein the M system signal m is supplied to the system under test.
(K) is input, the time series is inverted with respect to the output y (k) at that time, the M-sequence signal m (−k) is convoluted, and the measurement interval of the signal h ′ (k) obtained as a result of convolution Long L
Energy E1 of the convolutional signal h ′ is calculated.
In (k), the power of the time interval in which the presence of the impulse response of the measured system can be ignored is calculated, and the energy E2 is calculated by multiplying the calculated power by the measurement interval length L of the convolutional signal h ′ (k), and D = A non-linear strain measuring method characterized by measuring a strain amount D as E2 / E1.
【請求項2】 請求項1の非線形歪測定方法において、
前記M系列信号m(k)は、音声の平均的なスペクトル
を有するフィルタを通したものであることを特徴とする
非線形歪測定方法。
2. The nonlinear distortion measuring method according to claim 1, wherein
The non-linear distortion measuring method, wherein the M-sequence signal m (k) is passed through a filter having an average speech spectrum.
JP06557896A 1996-03-22 1996-03-22 Nonlinear distortion measurement method Expired - Fee Related JP3346524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06557896A JP3346524B2 (en) 1996-03-22 1996-03-22 Nonlinear distortion measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06557896A JP3346524B2 (en) 1996-03-22 1996-03-22 Nonlinear distortion measurement method

Publications (2)

Publication Number Publication Date
JPH09261799A true JPH09261799A (en) 1997-10-03
JP3346524B2 JP3346524B2 (en) 2002-11-18

Family

ID=13291038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06557896A Expired - Fee Related JP3346524B2 (en) 1996-03-22 1996-03-22 Nonlinear distortion measurement method

Country Status (1)

Country Link
JP (1) JP3346524B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008541654A (en) * 2005-05-18 2008-11-20 リアル サウンド ラボ,エスアイエー Method for correcting acoustic parameters of electroacoustic transducer and apparatus for realizing the same
JP2010268028A (en) * 2009-05-12 2010-11-25 Hitachi Ltd Acoustic output system and method of outputting sound
JP6644213B1 (en) * 2019-07-12 2020-02-12 三菱電機株式会社 Acoustic signal processing device, acoustic system, acoustic signal processing method, and acoustic signal processing program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008541654A (en) * 2005-05-18 2008-11-20 リアル サウンド ラボ,エスアイエー Method for correcting acoustic parameters of electroacoustic transducer and apparatus for realizing the same
JP2010268028A (en) * 2009-05-12 2010-11-25 Hitachi Ltd Acoustic output system and method of outputting sound
JP6644213B1 (en) * 2019-07-12 2020-02-12 三菱電機株式会社 Acoustic signal processing device, acoustic system, acoustic signal processing method, and acoustic signal processing program
WO2021009799A1 (en) * 2019-07-12 2021-01-21 三菱電機株式会社 Acoustic signal processing device, acoustic system, acoustic signal processing method, and acoustic signal processing program

Also Published As

Publication number Publication date
JP3346524B2 (en) 2002-11-18

Similar Documents

Publication Publication Date Title
Vanderkooy Aspects of MLS measuring systems
CN108200526B (en) Sound debugging method and device based on reliability curve
CN108495227A (en) Active denoising method, active noise reduction system and earphone
JP2017090888A (en) Method for modeling characteristic of instrument
Carini et al. A room impulse response measurement method robust towards nonlinearities based on orthogonal periodic sequences
JP2865842B2 (en) Digital signal weighting processor
JP3346524B2 (en) Nonlinear distortion measurement method
JP2654724B2 (en) Automatic masking apparatus for optical receiver and method for compensating for transient response distortion of optical receiver
JPS63234699A (en) Sound field correcting device
Carini et al. On room impulse response measurement using perfect sequences for Wiener nonlinear filters
Burrascano et al. A Swept-Sine-Type Single Measurement to Estimate Intermodulation Distortion in a Dynamic Range of Audio Signal Amplitudes
Branstetter et al. Time and frequency metrics related to auditory masking of a 10 kHz tone in bottlenose dolphins (Tursiops truncatus)
JP3489282B2 (en) Sound source search method
JP3613943B2 (en) Sound source characteristic recognition method and apparatus
JP2867417B2 (en) Passive sonar signal simulator
Drotz Approach for frequency response-calibration for microphone arrays
Burrascano et al. A pulse compression procedure for an effective measurement of intermodulation distortion
JP3341811B2 (en) Reverberation distortion reduction microphone device
Raheem et al. Subband Adaptive Filter in Signal Processing Application
Oldham et al. Computer applications in building and environmental acoustics
JPH1048308A (en) Apparatus and method for detecting object position
Downes et al. The measurement of the free field impulse response of microphones in a laboratory environment
Välimäki et al. Measurement and analysis of acoustic tubes using signal processing techniques
RU2244314C2 (en) Method for statistical evaluation of nonlinear distortions and device for realization of said method
Łuczyński et al. Active cancellation of the tonal component with synthesized compensation component and processing time compensation

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20070906

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080906

LAPS Cancellation because of no payment of annual fees