JPH09260599A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH09260599A
JPH09260599A JP8061179A JP6117996A JPH09260599A JP H09260599 A JPH09260599 A JP H09260599A JP 8061179 A JP8061179 A JP 8061179A JP 6117996 A JP6117996 A JP 6117996A JP H09260599 A JPH09260599 A JP H09260599A
Authority
JP
Japan
Prior art keywords
resist film
film
electrode
oxide film
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8061179A
Other languages
Japanese (ja)
Inventor
Masaaki Nasu
雅明 那須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP8061179A priority Critical patent/JPH09260599A/en
Publication of JPH09260599A publication Critical patent/JPH09260599A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enlarge the electrode surface area and realize as desired electrode configuration by forming a lower electrode by depositing an electrode material in an upper surface of an oxide film wherein an exposed surface, that is, an uneven inner wall of a semiconductor board is deposited on the uppermost layer. SOLUTION: A resist film 7 is formed into a pattern in a lower wiring 1 and a resist film is set by ultraviolet ray irradiation and high temperature baking treatment. An oxide film 8 is deposited in a region except the resist film 7. The resist film 7 of a desired film thickness is formed into a pattern on a resist film of a lower layer changing an opening size. An oxide film 8 is deposited as thick as the resist film 7 and the resist film 7 and the oxide film 8 are laminated one by on. Therefore, a width and a depth of an electrode configuration can be designed freely and a capacitor of a large capacity and a large electrode surface area can be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、所望形状の下部電
極を形成することからなる半導体の製造方法に関し、よ
り詳しくは、DRAM等のキャパシタを形成する際、レ
ジスト膜に対して選択成長できる酸化膜を用いることで
大容量キャパシタの製造を可能にする下部電極を形成す
ることからなる半導体装置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor, which comprises forming a lower electrode having a desired shape. More specifically, when forming a capacitor such as a DRAM, an oxidation that can be selectively grown on a resist film is performed. The present invention relates to a method for manufacturing a semiconductor device, which includes forming a lower electrode that enables manufacturing of a large-capacity capacitor by using a film.

【0002】[0002]

【従来の技術】MOS型の半導体メモリ(DRAM)
は、約3年で4倍の割合で集積度を増しており、大容量
DRAMを実現するには、より小さなメモリセル内に容
量の大きなキャパシタを形成する必要がある。これを満
たすためにスタック型等の3次元キャパシタが開発され
ている。しかしながら、スタック型では電極表面積を大
きくするために電極の高さを増した場合、メモリセル部
と周辺部に大きな段差が生じ、フォトリソグラフィー等
の後工程が困難になる。
2. Description of the Related Art MOS type semiconductor memory (DRAM)
Has increased in integration rate four times in about three years, and in order to realize a large capacity DRAM, it is necessary to form a large capacity capacitor in a smaller memory cell. In order to satisfy this, a stack type three-dimensional capacitor has been developed. However, in the stack type, when the height of the electrode is increased to increase the surface area of the electrode, a large step is generated between the memory cell portion and the peripheral portion, which makes post-processes such as photolithography difficult.

【0003】この対策として電極形状自体を工夫して表
面積を大きくする構造が考えられている。例として、シ
リンダー型キャパシタを図7(a)(b)に示す。この
キャパシタは、拡散層からなる下部配線1に接続するシ
リンダ型の下部電極31及び、その表面の誘電体材料4
とこれらの全面を覆う上部電極32からなる。更に、こ
のシリンダー型電極表面に対して微細な凹凸をもつHS
G(hemi-spherical-grain,半球状粒子)シリコンを堆
積することにより電極表面積を増す方法も開発されてい
る(月間Semiconductor World 1993.7)。
As a countermeasure against this, a structure in which the electrode shape itself is devised to increase the surface area is considered. As an example, a cylinder type capacitor is shown in FIGS. This capacitor has a cylindrical lower electrode 31 connected to a lower wiring 1 made of a diffusion layer and a dielectric material 4 on the surface thereof.
And an upper electrode 32 that covers the entire surfaces thereof. In addition, HS with fine irregularities on the surface of this cylinder type electrode
A method of increasing the electrode surface area by depositing G (hemi-spherical-grain) silicon has also been developed (Monthly Semiconductor World 1993.7).

【0004】しかし、1G以上の高集積度のDRAMで
は、更にキャパシタ形成領域が小さくなるため、電極自
体を凹凸に形成することにより、電極表面積を大きくす
る必要がある。例えば、特開平05−206400号公
報には、キャパシタ電極を凹凸形状にする方法が開示さ
れている。この方法によれば、2種の膜を交互に堆積
し、膜のエッチング速度の違いを利用して膜表面に凹凸
を形成し、その上から電極材料を堆積し下部電極とす
る。その後、誘導体材料、電極材料の順に堆積、加工す
ることで凹凸のあるキャパシタを形成する。その製造方
法を図8(a)〜(c)、図9(d)〜(f)及び図1
0(a)(b)に示す。
However, in a highly integrated DRAM of 1 G or more, the capacitor forming area becomes smaller, so that it is necessary to increase the electrode surface area by forming the electrodes themselves in a concavo-convex shape. For example, Japanese Patent Application Laid-Open No. 05-206400 discloses a method of forming a capacitor electrode in an uneven shape. According to this method, two kinds of films are alternately deposited, unevenness is formed on the film surface by utilizing the difference in etching rate of the films, and an electrode material is deposited on the unevenness to form a lower electrode. After that, a dielectric material and an electrode material are deposited and processed in this order to form a capacitor having irregularities. The manufacturing method is shown in FIGS. 8 (a) to 8 (c), 9 (d) to 9 (f) and FIG.
0 (a) (b).

【0005】図8(a)はSiO2 膜2上のキャパシタ
に接続する下部配線1上面に2種類の膜(SiN膜5及
びSiO2 膜6)を多層に堆積させていることを示して
いる。次に2種類の膜5、6をレジスト膜7をマスクに
異方性エッチングし(図8(b))、等方性エッチング
によりエッチング速度の違いを利用して膜を凹凸形状に
する(図8(c))。その後、電極材料(ドーピングさ
れたポリシリコン膜)3を堆積することにより凹凸形状
のキャパシタの下部電極部31を形成させ(図9
(d))、それを加工し、凹凸形状の2種類の膜5、6
を除去し(図9(e))、誘導体材料4を堆積させ(図
9(f))、上部電極32としてドーピングされたポリ
シリコンを順次、堆積、加工を行うことにより、キャパ
シタを形成する(図10(a)(b))。
FIG. 8A shows that two kinds of films (SiN film 5 and SiO 2 film 6) are deposited in multiple layers on the upper surface of the lower wiring 1 connected to the capacitor on the SiO 2 film 2. . Next, the two types of films 5 and 6 are anisotropically etched using the resist film 7 as a mask (FIG. 8B), and the films are made into an uneven shape by utilizing the difference in etching rate by isotropic etching (FIG. 8B). 8 (c)). After that, the electrode material (doped polysilicon film) 3 is deposited to form the lower electrode portion 31 of the capacitor having an uneven shape (FIG. 9).
(D)), it is processed to form two types of films 5 and 6 having uneven shapes
Are removed (FIG. 9E), the derivative material 4 is deposited (FIG. 9F), and doped polysilicon is sequentially deposited and processed as the upper electrode 32 to form a capacitor ( 10 (a) (b)).

【0006】しかしながら、この2種類の膜5、6のエ
ッチング速度の違いを利用して凹凸を形成する方法で
は、上記例のように、SiN膜5とSiO2 膜6のよう
なエッチングの選択比の大きな膜を用いなければ、寸法
精度の良い凹凸形状を形成することができない。またS
iN膜5とSiO2 膜6のようなエッチングの選択比の
大きな膜を用いて多層構造にした場合、キャパシタの形
成時に、これらの多層膜を取り除かなければならない
が、エッチングの選択比が異なるため膜の除去工程が複
雑になる。
However, in the method of forming the unevenness by utilizing the difference in the etching rates of the two kinds of films 5 and 6, as in the above-mentioned example, the selection ratio of the etching of the SiN film 5 and the SiO 2 film 6 is increased. If a film having a large size is not used, it is not possible to form an uneven shape with good dimensional accuracy. Also S
When a film having a large etching selection ratio such as the iN film 5 and the SiO 2 film 6 is used to form a multilayer structure, these multilayer films must be removed when the capacitor is formed, but the etching selection ratio is different. The film removal process becomes complicated.

【0007】また、特開平5−206400号公報の別
の実施例には、キャパシタ電極を形成する領域にレジス
ト膜を形成し、レジスト膜の側面を定在波で凹凸形状と
し、このレジスト膜のパターンに対し、選択的に酸化膜
を成長させた後、レジスト膜のパターンを除去し、側面
に凹凸のある絶縁膜とし、その後、前記のように下部電
極を形成する方法が開示されている。この場合凹凸の大
きさは、波長と光の強度で決まる。一般に実用的には露
光光として、g線やi線等の特定の波長の光を用いてい
るが、光の強度を変えるとレジスト膜に対し、充分な露
光量を与えられない恐れもあり、好ましくない。
Further, in another example of Japanese Patent Laid-Open No. 5-206400, a resist film is formed in a region where a capacitor electrode is formed, and the side surface of the resist film is made into an uneven shape by a standing wave. A method is disclosed in which an oxide film is selectively grown with respect to a pattern, the resist film pattern is removed to form an insulating film having unevenness on the side surface, and then the lower electrode is formed as described above. In this case, the size of the unevenness is determined by the wavelength and the light intensity. Generally, as the exposure light, light having a specific wavelength such as g-line or i-line is generally used. However, if the intensity of the light is changed, there is a possibility that a sufficient exposure amount cannot be given to the resist film. Not preferable.

【0008】例えば、ステッパーの水銀ランプのi線
(365nm)あるいはg線(435nm)を利用すると波
長が決まるため、凹凸の周期、即ち幅が決まり、また凹
凸の深さは光の強度で決まるため自由に凹凸の寸法を変
えることはできない。図11は、露光光である定在波1
0と凹凸の周期f及び深さdとの関係を表す。また水銀
ランプの波長をi線、g線以外のものを利用するにして
も現実的には強度が弱いためレジスト膜を効率よく露光
することができない。
For example, when the i-line (365 nm) or g-line (435 nm) of a mercury lamp of a stepper is used, the wavelength is determined, and thus the cycle of unevenness, that is, the width is determined, and the depth of unevenness is determined by the intensity of light. It is not possible to freely change the dimensions of the unevenness. FIG. 11 shows a standing wave 1 that is exposure light.
The relationship between 0 and the period f and the depth d of the unevenness is shown. Further, even if a wavelength other than i-line and g-line is used as the wavelength of the mercury lamp, the intensity is weak in reality and the resist film cannot be efficiently exposed.

【0009】[0009]

【発明が解決しようとする課題】DRAMの高集積化に
伴うメモリーセル面積の縮小化が進むと電極面積を大き
くするためキャパシタを立体化しなければならないが、
そのために、メモリーセル部と周辺部に大きな段差が生
じ、フォトリソグラフィー等の後工程が困難になる。こ
のため、キャパシタ電極形状を工夫することにより電極
表面積を増し改善を図ることが行われている。しかし、
従来法では、所望の電極形状にすることが困難であり、
なかなか電極表面積を大きくすることができなかった。
As the area of the memory cell is reduced with the high integration of DRAM, the capacitor must be three-dimensionalized in order to increase the electrode area.
As a result, a large step is generated between the memory cell portion and the peripheral portion, which makes post-processes such as photolithography difficult. For this reason, the electrode surface area has been increased and improved by devising the shape of the capacitor electrode. But,
With the conventional method, it is difficult to form the desired electrode shape,
It was difficult to increase the electrode surface area.

【0010】[0010]

【課題を解決するための手段】かくして、半導体基板上
に所望の膜厚のレジスト膜をパターン形成し、該レジス
ト膜以外の領域に該レジスト膜の膜厚と同じ厚さの酸化
膜を選択的に堆積させ、再度前記レジスト膜上に前記レ
ジスト膜とサイズの異なるレジスト膜をパターン形成
し、該レジスト膜以外の領域に該レジスト膜の膜厚と同
じ厚さの酸化膜を選択的に堆積させる工程を繰り返し、
次いで積層されたレジスト膜を剥離し半導体基板を露出
させ、前記半導体基板の露出面、該半導体基板の垂直方
向に積層された酸化膜の凹凸を有する内壁及び最上層に
積層された酸化膜の上面に電極材料を堆積させることに
よって下部電極を形成することからなる半導体装置の製
造方法が提供される。
Thus, a resist film having a desired film thickness is patterned on a semiconductor substrate, and an oxide film having the same film thickness as the resist film is selectively formed in a region other than the resist film. , A resist film different in size from the resist film is patterned again on the resist film, and an oxide film having the same thickness as the resist film is selectively deposited in a region other than the resist film. Repeat the process,
Next, the laminated resist film is peeled off to expose the semiconductor substrate, and the exposed surface of the semiconductor substrate, the inner wall having the unevenness of the oxide film laminated in the vertical direction of the semiconductor substrate and the upper surface of the oxide film laminated on the uppermost layer. A method for manufacturing a semiconductor device is provided, which comprises forming a lower electrode by depositing an electrode material on the substrate.

【0011】[0011]

【発明の実施の形態】本発明の半導体の製造方法により
下部電極を形成し、次いで誘導体材料、上部電極の順で
堆積及び加工することにより、電極表面積の大きな大容
量のキャパシタを形成することができる。本発明におけ
る所望の膜厚とは、大容量DRAMのキャパシタの形成
に要求される電極表面積を得るための重要な要素であ
る。この膜厚は電極表面の凹凸の幅を決定し、具体的に
は1000〜2000Å程度が好ましい。更にこの電極
表面の凹凸の深さは、レジスト膜と酸化膜の形成サイズ
の差により決定され、具体的には1000〜3000Å
程度が好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION A lower electrode is formed by the semiconductor manufacturing method of the present invention, and then a dielectric material and an upper electrode are deposited and processed in this order to form a large-capacity capacitor having a large electrode surface area. it can. The desired film thickness in the present invention is an important factor for obtaining the electrode surface area required for forming a capacitor of large capacity DRAM. This film thickness determines the width of the irregularities on the electrode surface, and specifically, it is preferably about 1000 to 2000Å. Further, the depth of the irregularities on the surface of the electrode is determined by the difference in the formation size of the resist film and the oxide film.
The degree is preferred.

【0012】以下、本発明について図面を参照し説明す
る。図2(a)〜(b)、図3(d)〜(f)及び図4
(g)(h)は、本発明による半導体装置の製造方法の
一例を示す工程説明図である。この例では、円筒型の電
極について説明する。レジスト膜7は、ポジ型レジスト
を使用した場合、下部配線1に、フォトリソグラフィー
等により所望の膜厚のレジスト膜7をパターン形成し、
硬化させて形成することができる。硬化方法としては、
公知の方法を用いることができ、例えば紫外線照射と高
温ベーク処理が挙げられる。また、ネガ型レジストを用
いた場合は、特に前記のような硬化処理は必要としな
い。次いで前記レジスト膜以外の領域に酸化膜8を前記
レジスト膜7の膜厚と同じ厚さまで選択的に堆積させる
(図2(a))。酸化膜としては、LPD酸化膜が挙げ
られる。特にLPD酸化膜が好ましい。更に、先にパタ
ーン形成したレジスト膜7上に該レジスト膜とサイズの
異なるレジスト膜7を形成する前に、レジスト膜と酸化
膜との全面にO2 プラズマ処理9を行う(図2
(b))。これによりレジスト膜7上への酸化膜8の堆
積を容易にすることができる。O2 プラズマ処理は、O
2 流量:500sccm、圧力:70Pa、RPパワ
ー:700W、照射時間:数分間の条件により行うこと
が好ましい。
The present invention will be described below with reference to the drawings. 2 (a)-(b), 3 (d)-(f) and FIG.
(G) (h) is process explanatory drawing which shows an example of the manufacturing method of the semiconductor device by this invention. In this example, a cylindrical electrode will be described. As the resist film 7, when a positive resist is used, a resist film 7 having a desired film thickness is patterned on the lower wiring 1 by photolithography or the like,
It can be formed by curing. As a curing method,
Known methods can be used, and examples include ultraviolet irradiation and high temperature baking. Further, when a negative resist is used, the curing treatment as described above is not particularly required. Next, the oxide film 8 is selectively deposited in a region other than the resist film to the same thickness as the resist film 7 (FIG. 2A). An LPD oxide film may be used as the oxide film. The LPD oxide film is particularly preferable. Further, before the resist film 7 having a different size from the resist film 7 is formed on the previously patterned resist film 7, an O 2 plasma treatment 9 is performed on the entire surface of the resist film and the oxide film (FIG. 2).
(B)). This can facilitate the deposition of the oxide film 8 on the resist film 7. O 2 plasma treatment is
2 Flow rate: 500 sccm, pressure: 70 Pa, RP power: 700 W, irradiation time: several minutes is preferable.

【0013】更に、その上から再度、フォトリソグラフ
ィーによって下層のレジスト膜上に所望の膜厚のレジス
ト膜7を、開口サイズを変えてパターン形成し、それ以
外の領域に酸化膜8をレジスト膜7の膜厚と同じ厚さま
で選択的に堆積させる(図2(c))。レジスト膜7の
開口サイズの幅は、最下層のレジスト膜7を基準とし
て、その40〜80%の範囲が好ましい。図2(a)〜
(c)までの処理を繰り返すことにより、図3(d)に
示すようにレジスト膜7と酸化膜8とを順次、積層す
る。処理の繰り返しは、1回以上であればよく、従って
積層数は2層以上であればよい。大容量DRAMのキャ
パシタの形成に要求される電極表面積を得るためには、
電極の高さは、4000〜6000Å程度が好ましく、
前述のレジスト膜7の膜厚から換算して、3〜5層程度
が好ましい。
Further, a resist film 7 having a desired film thickness is patterned again on the lower resist film by photolithography from above, and an oxide film 8 is formed in the other region on the resist film 7 with a different opening size. Is selectively deposited up to the same thickness as that of (FIG. 2 (c)). The width of the opening size of the resist film 7 is preferably in the range of 40 to 80% of the lowermost resist film 7 as a reference. FIG.
By repeating the processes up to (c), the resist film 7 and the oxide film 8 are sequentially laminated as shown in FIG. The treatment may be repeated once or more, and thus the number of layers may be two or more. In order to obtain the electrode surface area required for the formation of a large capacity DRAM capacitor,
The height of the electrode is preferably about 4000 to 6000Å,
Converting from the thickness of the resist film 7 described above, about 3 to 5 layers are preferable.

【0014】この後、レジスト膜7をO2 アッシャー等
により除去し(図3(e))、下部配線1と接続するた
めに、電極材料3であるドーピングされたポリシリコン
を堆積し(図3(f))、その加工を行い、酸化膜8の
除去を行う(図4(g))。電極材料3の堆積の厚さ
は、具体的には300〜500Å程度が好ましい。更に
誘電体材料4を堆積させる(図4(h))。誘電体材料
4の厚さは、具体的には30〜100Å程度が好まし
い。更に上部電極32になるドーピングされたポリシリ
コンを堆積し加工することにより、電極形状がシリンダ
ー型で側面に凹凸形状を持つキャパシタ構造を形成する
(図1(a)(b))。
After that, the resist film 7 is removed by an O 2 asher or the like (FIG. 3E), and doped polysilicon, which is the electrode material 3, is deposited to connect with the lower wiring 1 (FIG. 3E). (F)), the processing is performed to remove the oxide film 8 (FIG. 4G). Specifically, the deposition thickness of the electrode material 3 is preferably about 300 to 500 Å. Further, the dielectric material 4 is deposited (FIG. 4 (h)). Specifically, the thickness of the dielectric material 4 is preferably about 30 to 100Å. Further, doped polysilicon which becomes the upper electrode 32 is deposited and processed to form a capacitor structure having a cylindrical electrode shape and an uneven shape on the side surface (FIGS. 1A and 1B).

【0015】[0015]

【実施例】以下、本発明の実施例について図面を参照し
説明する。図2(a)〜(b)、図3(d)〜(f)及
び図4(g)(h)は、本発明による半導体装置の製造
方法の一実施例を示す工程説明図である。この実施例で
は、円筒型の電極について説明する。
Embodiments of the present invention will be described below with reference to the drawings. 2A to 2B, 3D to 3F, and 4G to 4H are process explanatory views showing an embodiment of the method for manufacturing a semiconductor device according to the present invention. In this example, a cylindrical electrode will be described.

【0016】レジスト膜は、ポジ型レジストを使用し、
下部配線1にフォトリソグラフィーにより膜厚1000
Åのレジスト膜7をパターン形成し、紫外線照射と高温
ベーク処理を行うことにより、レジスト膜を硬化させて
形成した。次いでレジスト膜7以外の領域に酸化膜8を
レジスト膜7の膜厚と同じ厚さまで選択的に堆積させた
(図2(a))。酸化膜としては、35℃のケイフッ化
水素酸水溶液(H2 SiF6 )に反応促進剤となるアル
ミ板を添加し、通常約300〜500Å/hのデポレー
トでLPD酸化膜を形成した。再度レジスト膜7上に該
レジスト膜7とサイズの異なるレジスト膜7を形成する
前に、レジスト膜7と酸化膜8との全面にO2 プラズマ
処理9を行った(図2(b))。O2 プラズマ処理は、
2 流量:500sccm、圧力:70Pa、RPパワ
ー:700W、照射時間:数分間の条件により行った。
As the resist film, a positive type resist is used,
A film thickness of 1000 is formed on the lower wiring 1 by photolithography.
The resist film 7 of Å was patterned, and the resist film was cured by performing ultraviolet irradiation and high temperature baking. Next, an oxide film 8 was selectively deposited in a region other than the resist film 7 up to the same thickness as the resist film 7 (FIG. 2A). As the oxide film, an aluminum plate serving as a reaction accelerator was added to a hydrosilicofluoric acid aqueous solution (H 2 SiF 6 ) at 35 ° C., and an LPD oxide film was formed at a depo rate of usually about 300 to 500 Å / h. Before the resist film 7 having a different size from the resist film 7 was formed on the resist film 7 again, O 2 plasma treatment 9 was performed on the entire surfaces of the resist film 7 and the oxide film 8 (FIG. 2B). O 2 plasma treatment is
O 2 flow rate: 500 sccm, pressure: 70 Pa, RP power: 700 W, irradiation time: several minutes.

【0017】更に、その上から再度、フォトリソグラフ
ィーによって下層のレジスト膜上に膜厚1000Åのレ
ジスト膜7を、開口サイズを変えてパターン形成し、そ
れ以外の領域に酸化膜8をレジスト膜7の膜厚と同じ厚
さまで選択的に堆積させた(図2(c))。レジスト膜
7の開口サイズの幅は、最下層のレジスト膜7を基準と
して、その60%とした。図2(a)〜(c)までの処
理を繰り返すことにより、図3(d)に示すようにレジ
スト膜7と酸化膜8とが順次、積層された高さ5000
Åの所望の電極形状を形成した。
Further, from above again, a resist film 7 having a film thickness of 1000 Å is formed by patterning on the lower resist film by photolithography with different opening sizes, and an oxide film 8 is formed on the other region of the resist film 7. It was selectively deposited to the same thickness as the film thickness (FIG. 2 (c)). The width of the opening size of the resist film 7 was set to 60% based on the resist film 7 of the lowermost layer. By repeating the processes shown in FIGS. 2A to 2C, a resist film 7 and an oxide film 8 are sequentially stacked to form a height 5000 as shown in FIG. 3D.
The desired electrode shape of Å was formed.

【0018】この後、O2 アッシャーによりレジスト膜
7を除去し(図3(e))、下部配線1を接続するため
に、電極材料3であるドーピングされたポリシリコンを
堆積し(図3(f))、その加工を行い、酸化膜8の除
去を行った(図4(g))。更に膜厚約50Åの誘電体
材料4を堆積させ(図4(h))、上部電極32になる
ドーピングされたポリシリコンを堆積し加工することに
より、電極形状がシリンダー型で側面に凹凸形状を持つ
キャパシタ構造を形成した(図1(a)(b))。
After that, the resist film 7 is removed by O 2 asher (FIG. 3E), and doped polysilicon, which is the electrode material 3, is deposited to connect the lower wiring 1 (FIG. 3 (E)). f)), the processing was performed, and the oxide film 8 was removed (FIG. 4G). Further, a dielectric material 4 having a film thickness of about 50 Å is deposited (FIG. 4 (h)), and doped polysilicon to be the upper electrode 32 is deposited and processed, whereby the electrode shape is a cylinder type and a concavo-convex shape is formed on the side surface. A capacitor structure having the same was formed (FIGS. 1A and 1B).

【0019】上記実施例は円筒型について記したが、レ
ジスト膜の形成パターンは、矩形、楕円などの任意の形
状にすることができる。図5(a)(b)に簡単な矩形
型の例を示す。また本発明による半導体の製造方法で電
極面積が増加することを計算例により示す。図5におい
て各部の寸法は以下のように定義した。 a:キャパシタの幅 b:キャパシタの厚さ c:側壁凸部の高さ x:側壁凹部の深さ y:側壁凹部の高さ
Although the above embodiment describes a cylindrical type, the formation pattern of the resist film can be any shape such as a rectangle or an ellipse. FIGS. 5A and 5B show examples of simple rectangular shapes. Further, calculation examples show that the electrode area increases in the semiconductor manufacturing method according to the present invention. In FIG. 5, the dimensions of each part are defined as follows. a: width of the capacitor b: thickness of the capacitor c: height of the side wall convex portion x: depth of the side wall concave portion y: height of the side wall concave portion

【0020】この図を用いて、本発明の半導体装置の製
造方法により矩形型スタックキャパシタを形成した場合
の表面積Sを算出した。表面積Sは、図5(a)のよう
に〜に分割して次式から求めた。 上面 S1 =a2 −(a−2b)2 側面(外)S2 =ac×4×2=8ac 側面(外)S3 =y×(a−2x)×4=4y(a−2x) 側面(外)S4 =[a2 −(a−2x)2 ]×2=8ax−8x2 側面(内)S5 =(c−b)×(a−2b)×4×2 =8(c−b)×(a−2b) 側面(内)S6 ={(a−2b)2 −[a−2(x+b)]2 }×2 =8ax−8x2 −16bx 側面(内)S7 =(y+2b)×[a−2(x+b)]×4 =4ay−8xy−8by+8ab−16bx−16b2 下面 S8 =(a−2b)2 S=S1 +S2 +S3 +S4 +S5 +S6 +S7 +S8 =x(−16x−16y+16a−32b) +(a2 +16ac+8ay−16bc−8by) ここで表面積Sが最大となるxの値は、次式となる。 0=−16x−16y+16a−32b−16x 32x=16a−16y−32b x=(a−y+2b)/2 ここでa=1.0μm、b=0.1μm、c=0.3μ
m、y=0.15μmの場合の側壁凹部の深さxと表面
積Sの関係を表1及び図6に示す。
Using this figure, the surface area S when a rectangular stack capacitor was formed by the method for manufacturing a semiconductor device of the present invention was calculated. The surface area S was obtained from the following equation by dividing into surface areas as shown in FIG. Upper surface S 1 = a 2- (a-2b) 2 Side surface (outer) S 2 = ac × 4 × 2 = 8ac Side surface (outer) S 3 = y × (a-2x) × 4 = 4y (a-2x) Side surface (outer) S 4 = [a 2- (a-2x) 2 ] × 2 = 8ax-8x 2 Side surface (inner) S 5 = (cb) × (a-2b) × 4 × 2 = 8 ( c−b) × (a−2b) side face (inside) S 6 = {(a−2b) 2 − [a−2 (x + b)] 2 } × 2 = 8ax−8x 2 −16bx side face (inside) S 7 = (Y + 2b) × [a-2 (x + b)] × 4 = 4ay-8xy-8by + 8ab-16bx-16b 2 lower surface S 8 = (a-2b) 2 S = S 1 + S 2 + S 3 + S 4 + S 5 + S 6 + value of S 7 + S 8 = x ( -16x-16y + 16a-32b) + (a 2 + 16ac + 8ay-16bc-8by) where the surface area S is maximum x is represented by the following equation. 0 = −16x−16y + 16a−32b−16x 32x = 16a−16y−32b x = (a−y + 2b) / 2 where a = 1.0 μm, b = 0.1 μm, c = 0.3 μ
The relationship between the depth x of the sidewall recess and the surface area S when m and y = 0.15 μm is shown in Table 1 and FIG.

【0021】[0021]

【表1】 [Table 1]

【0022】この例では側壁に凹凸がない場合に比べ
て、表面積は最大26.4%増加している。
In this example, the surface area is increased by a maximum of 26.4% as compared with the case where the side wall has no unevenness.

【0023】[0023]

【発明の効果】本発明の半導体装置の製造方法は、レジ
スト膜をキャパシタの電極形状にパターン形成し、酸化
膜を選択成長させることにより、エッチングを用いず所
望の電極形状を形成することができる。具体的には、こ
の電極形状は幅や深さを自由に設計することができる。
この電極を下部電極として、次いで誘導体材料、上部電
極の順で堆積及び加工することにより、DRAMのメモ
リーセル占有面積を増大させることなく、電極表面積の
大きな大容量のキャパシタを形成することができる。し
かもキャパシタ部の高さを増す必要がないため周辺段差
部との差を低減することが可能となり、フォトリソグラ
フィー等の後工程が容易になる。
According to the method of manufacturing a semiconductor device of the present invention, a desired electrode shape can be formed without etching by patterning a resist film into an electrode shape of a capacitor and selectively growing an oxide film. . Specifically, this electrode shape can be designed freely in width and depth.
By using this electrode as a lower electrode, and then depositing and processing a dielectric material and an upper electrode in this order, a large-capacity capacitor having a large electrode surface area can be formed without increasing the memory cell occupied area of the DRAM. Moreover, since it is not necessary to increase the height of the capacitor portion, it is possible to reduce the difference from the peripheral step portion, and the post-process such as photolithography becomes easy.

【0024】更に、レジスト膜と酸化膜との全面にO2
プラズマ処理9を行うことによりレジスト膜7上への酸
化膜8の堆積を容易にすることができる。よって、本発
明によれば、電極表面積の大きなキャパシタが形成で
き、メモリーセルの縮小化に対しても、十分なキャパシ
タ容量を確保でき、信頼性の高いDRAMを製作するこ
とができる。
Further, O 2 is formed on the entire surface of the resist film and the oxide film.
By performing the plasma treatment 9, the oxide film 8 can be easily deposited on the resist film 7. Therefore, according to the present invention, a capacitor having a large electrode surface area can be formed, sufficient capacitance of the capacitor can be ensured even when the memory cell is downsized, and a highly reliable DRAM can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法により製造された半導体装置の概
略断面図及び概略斜視図である。
FIG. 1 is a schematic sectional view and a schematic perspective view of a semiconductor device manufactured by a method of the present invention.

【図2】実施例に示した本発明の半導体装置の製造方法
の概略工程断面図である。
FIG. 2 is a schematic process sectional view of a method for manufacturing a semiconductor device of the present invention shown in an embodiment.

【図3】実施例に示した本発明の半導体装置の製造方法
の概略工程断面図である。
FIG. 3 is a schematic process sectional view of a method for manufacturing a semiconductor device of the present invention shown in an embodiment.

【図4】実施例に示した本発明の半導体装置の製造方法
の概略工程断面図である。
FIG. 4 is a schematic process sectional view of a method for manufacturing a semiconductor device of the present invention shown in an embodiment.

【図5】本発明の半導体装置の電極表面積を算出するた
めにモデル化した断面図及び斜視図である。
5A and 5B are a cross-sectional view and a perspective view modeled to calculate an electrode surface area of a semiconductor device of the present invention.

【図6】図5から算出した側壁凹部深さと表面積の関係
を示すグラフである。
FIG. 6 is a graph showing the relationship between the sidewall recess depth calculated from FIG. 5 and the surface area.

【図7】従来の半導体装置の概略断面図及び概略斜視図
である。
FIG. 7 is a schematic cross-sectional view and a schematic perspective view of a conventional semiconductor device.

【図8】従来の半導体装置の製造方法の概略工程断面図
である。
FIG. 8 is a schematic process sectional view of a conventional method for manufacturing a semiconductor device.

【図9】従来の半導体装置の製造方法の概略工程断面図
である。
FIG. 9 is a schematic process cross-sectional view of a conventional semiconductor device manufacturing method.

【図10】図9の方法により製造された半導体装置の概
略断面図及び概略斜視図である。
10 is a schematic cross-sectional view and a schematic perspective view of a semiconductor device manufactured by the method of FIG.

【図11】従来の半導体装置の製造方法に用いられる定
在波の模式図である。
FIG. 11 is a schematic diagram of a standing wave used in a conventional semiconductor device manufacturing method.

【符号の説明】[Explanation of symbols]

1 下部配線 2 SiO2 膜 3 電極材料(ドーピングされたポリシリコン膜) 31 下部電極 32 上部電極 4 誘電体材料 5 SiN膜 6 SiO2 膜 7 レジスト膜 8 酸化膜 9 O2 プラズマ照射 10 定在波1 Lower Wiring 2 SiO 2 Film 3 Electrode Material (Doped Polysilicon Film) 31 Lower Electrode 32 Upper Electrode 4 Dielectric Material 5 SiN Film 6 SiO 2 Film 7 Resist Film 8 Oxide Film 9 O 2 Plasma Irradiation 10 Standing Wave

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年3月28日[Submission date] March 28, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0012】以下、本発明について図面を参照し説明す
る。図2(a)〜(b)、図3(d)〜(f)及び図4
(g)(h)は、本発明による半導体装置の製造方法の
一例を示す工程説明図である。この例では、円筒型の電
極について説明する。レジスト膜7は、ポジ型レジスト
を使用した場合、下部配線1に、フォトリソグラフィー
等により所望の膜厚のレジスト膜7をパターン形成し、
硬化させて形成することができる。硬化方法としては、
公知の方法を用いることができ、例えば紫外線照射と高
温ベーク処理が挙げられる。また、ネガ型レジストを用
いた場合は、特に前記のような硬化処理は必要としな
い。次いで前記レジスト膜以外の領域に酸化膜8を前記
レジスト膜7の膜厚と同じ厚さまで選択的に堆積させる
(図2(a))。酸化膜としては、LPD酸化膜が挙げ
られる。特にLPD酸化膜が好ましい。更に、先にパタ
ーン形成したレジスト膜7上に該レジスト膜とサイズの
異なるレジスト膜7を形成する前に、レジスト膜と酸化
膜との全面にO2 プラズマ処理9を行う(図2
(b))。これによりレジスト膜7上への酸化膜8の堆
積を容易にすることができる。O2 プラズマ処理は、O
2 流量:500sccm、圧力:70Pa、RFパワ
:700W、照射時間:数分間の条件により行うこと
が好ましい。
The present invention will be described below with reference to the drawings. 2 (a)-(b), 3 (d)-(f) and FIG.
(G) (h) is process explanatory drawing which shows an example of the manufacturing method of the semiconductor device by this invention. In this example, a cylindrical electrode will be described. As the resist film 7, when a positive resist is used, a resist film 7 having a desired film thickness is patterned on the lower wiring 1 by photolithography or the like,
It can be formed by curing. As a curing method,
Known methods can be used, and examples include ultraviolet irradiation and high temperature baking. Further, when a negative resist is used, the curing treatment as described above is not particularly required. Next, the oxide film 8 is selectively deposited in a region other than the resist film to the same thickness as the resist film 7 (FIG. 2A). An LPD oxide film may be used as the oxide film. The LPD oxide film is particularly preferable. Further, before the resist film 7 having a different size from the resist film 7 is formed on the previously patterned resist film 7, an O 2 plasma treatment 9 is performed on the entire surface of the resist film and the oxide film (FIG. 2).
(B)). This can facilitate the deposition of the oxide film 8 on the resist film 7. O 2 plasma treatment is
2 Flow rate: 500 sccm, pressure: 70 Pa, RF power
- : It is preferable to carry out under the conditions of 700 W and irradiation time: several minutes.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0016】レジスト膜は、ポジ型レジストを使用し、
下部配線1にフォトリソグラフィーにより膜厚1000
Åのレジスト膜7をパターン形成し、紫外線照射と高温
ベーク処理を行うことにより、レジスト膜を硬化させて
形成した。次いでレジスト膜7以外の領域に酸化膜8を
レジスト膜7の膜厚と同じ厚さまで選択的に堆積させた
(図2(a))。酸化膜としては、35℃のケイフッ化
水素酸水溶液(H2 SiF6 )に反応促進剤となるアル
ミ板を添加し、通常約300〜500Å/hのデポレー
トでLPD酸化膜を形成した。再度レジスト膜7上に該
レジスト膜7とサイズの異なるレジスト膜7を形成する
前に、レジスト膜7と酸化膜8との全面にO2 プラズマ
処理9を行った(図2(b))。O2 プラズマ処理は、
2 流量:500sccm、圧力:70Pa、RFパワ
:700W、照射時間:数分間の条件により行った。
As the resist film, a positive type resist is used,
A film thickness of 1000 is formed on the lower wiring 1 by photolithography.
The resist film 7 of Å was patterned, and the resist film was cured by performing ultraviolet irradiation and high temperature baking. Next, an oxide film 8 was selectively deposited in a region other than the resist film 7 up to the same thickness as the resist film 7 (FIG. 2A). As the oxide film, an aluminum plate serving as a reaction accelerator was added to a hydrosilicofluoric acid aqueous solution (H 2 SiF 6 ) at 35 ° C., and an LPD oxide film was formed at a depo rate of usually about 300 to 500 Å / h. Before the resist film 7 having a different size from the resist film 7 was formed on the resist film 7 again, O 2 plasma treatment 9 was performed on the entire surfaces of the resist film 7 and the oxide film 8 (FIG. 2B). O 2 plasma treatment is
O 2 flow rate: 500 sccm, pressure: 70 Pa, RF power
- : 700 W, irradiation time: several minutes.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0020】この図を用いて、本発明の半導体装置の製
造方法により矩形型スタックキャパシタを形成した場合
の表面積Sを算出した。表面積Sは、図5(a)のよう
に〜に分割して次式から求めた。 上面 S1 =a2 −(a−2b)2 側面(外)S2 =ac×4×2=8ac 側面(外)S3 =y×(a−2x)×4=4y(a−2x) 側面(外)S4 =[a2 −(a−2x)2 ]×2=8ax−8x2 側面(内)S5 =(c−b)×(a−2b)×4×2 =8(c−b)×(a−2b) 側面(内)S6 ={(a−2b)2 −[a−2(x+b)]2 }×2 =8ax−8x2 −16bx 側面(内)S7 =(y+2b)×[a−2(x+b)]×4 =4ay−8xy−8by+8ab−16bx−16b2 下面 S8 =(a−2b)2 S=S1 +S2 +S3 +S4 +S5 +S6 +S7 +S8 =x(−16x−16y+16a−32b) +(a2 +16ac+8ay−16bc−8by) ここで表面積Sが最大となるxの値は、次式となる。 0=−16x−16y+16a−32b−16x 32x=16a−16y−32bx=(a−y−2b)/2 ここでa=1.0μm、b=0.1μm、c=0.3μ
m、y=0.15μmの場合の側壁凹部の深さxと表面
積Sの関係を表1及び図6に示す。
Using this figure, the surface area S when a rectangular stack capacitor was formed by the method for manufacturing a semiconductor device of the present invention was calculated. The surface area S was obtained from the following equation by dividing into surface areas as shown in FIG. Upper surface S 1 = a 2- (a-2b) 2 Side surface (outer) S 2 = ac × 4 × 2 = 8ac Side surface (outer) S 3 = y × (a-2x) × 4 = 4y (a-2x) Side surface (outer) S 4 = [a 2- (a-2x) 2 ] × 2 = 8ax-8x 2 Side surface (inner) S 5 = (cb) × (a-2b) × 4 × 2 = 8 ( c−b) × (a−2b) side face (inside) S 6 = {(a−2b) 2 − [a−2 (x + b)] 2 } × 2 = 8ax−8x 2 −16bx side face (inside) S 7 = (Y + 2b) × [a-2 (x + b)] × 4 = 4ay-8xy-8by + 8ab-16bx-16b 2 lower surface S 8 = (a-2b) 2 S = S 1 + S 2 + S 3 + S 4 + S 5 + S 6 + value of S 7 + S 8 = x ( -16x-16y + 16a-32b) + (a 2 + 16ac + 8ay-16bc-8by) where the surface area S is maximum x is represented by the following equation. 0 = −16x−16y + 16a−32b−16x 32x = 16a−16y−32b x = (a−y−2b) / 2 where a = 1.0 μm, b = 0.1 μm, c = 0.3 μ
The relationship between the depth x of the sidewall recess and the surface area S when m and y = 0.15 μm is shown in Table 1 and FIG.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に所望の膜厚のレジスト膜
をパターン形成し、該レジスト膜以外の領域に該レジス
ト膜の膜厚と同じ厚さの酸化膜を選択的に堆積させ、再
度前記レジスト膜上に前記レジスト膜とサイズの異なる
レジスト膜をパターン形成し、該レジスト膜以外の領域
に該レジスト膜の膜厚と同じ厚さの酸化膜を選択的に堆
積させる工程を繰り返し、次いで積層されたレジスト膜
を剥離し半導体基板を露出させ、前記半導体基板の露出
面、該半導体基板の垂直方向に積層された酸化膜の凹凸
を有する内壁及び最上層に積層された酸化膜の上面に電
極材料を堆積させることによって下部電極を形成するこ
とからなる半導体装置の製造方法。
1. A resist film having a desired film thickness is patterned on a semiconductor substrate, and an oxide film having the same thickness as the resist film is selectively deposited in a region other than the resist film, and the resist film is again formed. The step of pattern-forming a resist film having a size different from that of the resist film on the resist film, and selectively depositing an oxide film having the same thickness as the resist film in a region other than the resist film is repeated, and then stacked. The exposed resist film is peeled off to expose the semiconductor substrate, and an electrode is provided on the exposed surface of the semiconductor substrate, the inner wall having irregularities of the oxide film stacked in the vertical direction of the semiconductor substrate and the upper surface of the oxide film stacked on the uppermost layer. A method of manufacturing a semiconductor device, comprising forming a lower electrode by depositing a material.
【請求項2】 再度レジスト膜上に該レジスト膜とサイ
ズの異なるレジスト膜を形成する前に、レジスト膜と酸
化膜との全面にO2 プラズマ処理を繰り返し行う請求項
1記載の半導体装置の製造方法。
2. The manufacturing of a semiconductor device according to claim 1, wherein O 2 plasma treatment is repeatedly performed on the entire surface of the resist film and the oxide film before the resist film having a different size from the resist film is formed on the resist film again. Method.
JP8061179A 1996-03-18 1996-03-18 Manufacture of semiconductor device Pending JPH09260599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8061179A JPH09260599A (en) 1996-03-18 1996-03-18 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8061179A JPH09260599A (en) 1996-03-18 1996-03-18 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH09260599A true JPH09260599A (en) 1997-10-03

Family

ID=13163685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8061179A Pending JPH09260599A (en) 1996-03-18 1996-03-18 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH09260599A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085636A (en) * 1999-08-25 2001-03-30 Samsung Electronics Co Ltd Fabrication method of capacitor having high capacity and fabrication method of semiconductor device utilizing it
JP2006013516A (en) * 2004-06-24 2006-01-12 Samsung Electronics Co Ltd Manufacturing method of semiconductor memory device
JP2013219301A (en) * 2012-04-12 2013-10-24 Nippon Telegr & Teleph Corp <Ntt> Electrode formation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085636A (en) * 1999-08-25 2001-03-30 Samsung Electronics Co Ltd Fabrication method of capacitor having high capacity and fabrication method of semiconductor device utilizing it
JP2006013516A (en) * 2004-06-24 2006-01-12 Samsung Electronics Co Ltd Manufacturing method of semiconductor memory device
JP2013219301A (en) * 2012-04-12 2013-10-24 Nippon Telegr & Teleph Corp <Ntt> Electrode formation method

Similar Documents

Publication Publication Date Title
TWI620995B (en) Methods of forming etch masks for sub-resolution substrate patterning
TWI651809B (en) Feature size reduction
TWI625764B (en) Methods of forming etch masks for sub-resolution substrate patterning
US6875703B1 (en) Method for forming quadruple density sidewall image transfer (SIT) structures
TWI224829B (en) Method for reducing pitch in semiconductor fabrication
JP5236996B2 (en) Triple frequency using spacer mask with intervening area
US20080286449A1 (en) Template for Nano Imprint Lithography Process and Method of Manufacturing Semiconductor Device Using the Same
JPH01307228A (en) Pattern forming method
JPH03270227A (en) Formation of fine pattern
TW201338016A (en) Methods for single exposure-self-aligned double, triple, and quadruple patterning
TW200845121A (en) Method for forming fine pattern of semiconductor device
TWI237321B (en) Semiconductor device manufacture method and etching system
JPH09260599A (en) Manufacture of semiconductor device
US6680163B2 (en) Method of forming opening in wafer layer
JPH02252233A (en) Fine pattern forming method
WO2022188310A1 (en) Semiconductor structure manufacturing method and semiconductor structure
CN115602536A (en) Method for improving etching stop layer depression in side wall etching
CN108550522A (en) A kind of repeatedly patterned method
TW202249250A (en) Method for fabricating dynamic random access memory devices
JPH0774087A (en) Mlr pattern formation
TWI771167B (en) Manufacturing method of semiconductor device
JPH0369162A (en) Manufacture of semiconductor device
JPH05304267A (en) Manufacture of semiconductor integrated circuit device
TW405256B (en) Manufacture method of storage node
JP2503850B2 (en) Method for manufacturing semiconductor device