JPH09260517A - Non-volatile semiconductor storage device - Google Patents

Non-volatile semiconductor storage device

Info

Publication number
JPH09260517A
JPH09260517A JP8090629A JP9062996A JPH09260517A JP H09260517 A JPH09260517 A JP H09260517A JP 8090629 A JP8090629 A JP 8090629A JP 9062996 A JP9062996 A JP 9062996A JP H09260517 A JPH09260517 A JP H09260517A
Authority
JP
Japan
Prior art keywords
film
polycrystalline
type
sio
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8090629A
Other languages
Japanese (ja)
Other versions
JP3402058B2 (en
Inventor
Toyotaka Kataoka
豊隆 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP09062996A priority Critical patent/JP3402058B2/en
Publication of JPH09260517A publication Critical patent/JPH09260517A/en
Application granted granted Critical
Publication of JP3402058B2 publication Critical patent/JP3402058B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-volatile semiconductor storage device where erasing voltage is low and storage holding capacity is high. SOLUTION: An SiO2 film 33 being a tunnel insulating film, a P-type polycrystalline Si film 34, an N-type polycrystalline Si film 35, an SiO2 film 36 being an insulating film for capacitive coupling and a tungsten polycide layer 41 being a gate electrode are sequentially stacked on an Si substrate 31. Electrons accumulated in the polycrystalline Si film 35 are not discharged to the Si substrate 31 through the SiO2 film 33 even if the SiO2 film 33 is such a thin one that tunneling can directly be executed owing to a potential barrier by means of P-N junction between the polycrystalline Si films 34 and 35 and even if voltage is not applied to the gate electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、EEPROMと称
されており電気的に書き込み消去可能な不揮発性半導体
記憶装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrically writable and erasable nonvolatile semiconductor memory device called an EEPROM.

【0002】[0002]

【従来の技術】図6は、EEPROMの第1従来例であ
る浮遊ゲート型不揮発性半導体記憶装置を示している。
この第1従来例では、図6(a)(b)に示す様に、S
i基板11上に膜厚が5nm程度でファウラ−ノルドハ
イムトンネリング用のSiO2膜12と浮遊ゲートであ
る多結晶Si膜13と容量結合用のSiO2 膜14と制
御ゲートである多結晶Si膜15とが順次に積層されて
おり、多結晶Si膜13、15等の両側のSi基板11
中にソース/ドレインとしての拡散層16が形成されて
いる。
2. Description of the Related Art FIG. 6 shows a floating gate type nonvolatile semiconductor memory device which is a first conventional example of an EEPROM.
In this first conventional example, as shown in FIGS.
An SiO 2 film 12 for Fowler-Nordheim tunneling, a polycrystalline Si film 13 as a floating gate, an SiO 2 film 14 for capacitive coupling, and a polycrystalline Si film as a control gate with a film thickness of about 5 nm are formed on an i substrate 11. 15 are sequentially laminated, and the Si substrates 11 on both sides of the polycrystalline Si films 13, 15 and the like are laminated.
A diffusion layer 16 as a source / drain is formed therein.

【0003】図6(a)は多結晶Si膜13に電子が蓄
積されていない初期状態を示しており、この初期状態で
多結晶Si膜15に電圧VCGを印加するとチャネル領域
に電子が誘起されて、図6(c)中のaに示す様にドレ
イン電流ID が流れる。従って、このときの閾値電圧は
1Vである。
FIG. 6 (a) shows an initial state in which electrons are not accumulated in the polycrystalline Si film 13, and when a voltage V CG is applied to the polycrystalline Si film 15 in this initial state, electrons are induced in the channel region. As a result, the drain current I D flows as indicated by a in FIG. Therefore, the threshold voltage at this time is 1V.

【0004】一方、Si基板11に対して正の高電圧を
多結晶Si膜15に印加すると、図6(b)に示す様
に、Si基板11からSiO2 膜12を介して多結晶S
i膜13に電子が注入され、この多結晶Si膜13中に
電子が蓄積されて書き込み状態になる。図6(d)はエ
ネルギーバンド図を示しており、多結晶Si膜13の伝
導帯17に電子が蓄積される。
On the other hand, when a positive high voltage is applied to the polycrystalline Si film 15 with respect to the Si substrate 11, as shown in FIG. 6B, the polycrystalline S film is transferred from the Si substrate 11 via the SiO 2 film 12.
Electrons are injected into the i film 13, electrons are accumulated in the polycrystalline Si film 13, and a write state is set. FIG. 6D shows an energy band diagram, in which electrons are accumulated in the conduction band 17 of the polycrystalline Si film 13.

【0005】この書き込み状態で多結晶Si膜15に電
圧VCGを印加すると、1Vではチャネル領域に電子が誘
起されなくてドレイン電流ID が流れず、図6(c)中
のbに示す様にドレイン電流ID が流れる。従って、こ
のときの閾値電圧は5Vである。
When a voltage V CG is applied to the polycrystalline Si film 15 in this written state, no electrons are induced in the channel region and the drain current I D does not flow at 1 V, as shown by b in FIG. 6 (c). A drain current I D flows through. Therefore, the threshold voltage at this time is 5V.

【0006】図6(b)の書き込み状態から図6(a)
の初期状態へ戻すための消去を行うためには、Si基板
11に対して負の高電圧を多結晶Si膜15に印加し
て、多結晶Si膜13からSiO2 膜12を介してSi
基板11へ電子を放出させる。
From the writing state of FIG. 6B to FIG.
In order to perform the erasing for returning to the initial state, the negative high voltage is applied to the poly-Si film 15 to the poly-Si film 13 so that the poly-Si film 13 and the Si 2 film 12 pass through Si.
Electrons are emitted to the substrate 11.

【0007】図7は、EEPROMの第2従来例である
MONOS型不揮発性半導体記憶装置を示している。こ
の第2従来例では、図7(a)に示す様に、Si基板2
1上に膜厚が2nm程度で直接トンネリング用のSiO
2 膜22とSiN膜23と容量結合用のSiO2 膜24
とゲート電極である多結晶Si膜25とが順次に積層さ
れており、多結晶Si膜25等の両側のSi基板21中
にソース/ドレインとしての拡散層26が形成されてい
る。
FIG. 7 shows a MONOS type non-volatile semiconductor memory device which is a second conventional example of an EEPROM. In this second conventional example, as shown in FIG.
SiO 2 for direct tunneling with a film thickness of about 2 nm on
2 film 22, SiN film 23 and SiO 2 film 24 for capacitive coupling
And a polycrystalline Si film 25 which is a gate electrode are sequentially laminated, and a diffusion layer 26 as a source / drain is formed in the Si substrate 21 on both sides of the polycrystalline Si film 25 and the like.

【0008】図7(b)はエネルギーバンド図を示して
おり、Si基板21からSiO2 膜22を介してSiN
膜23に注入された電子は、SiN膜23中を伝導して
行き、このSiN膜23中の捕獲準位27またはSiN
膜23とSiO2 膜24との間の界面準位に捕獲されて
蓄積される。
FIG. 7 (b) shows an energy band diagram, in which SiN is transferred from the Si substrate 21 through the SiO 2 film 22.
The electrons injected into the film 23 are conducted in the SiN film 23, and the trap level 27 or SiN in the SiN film 23 is conducted.
It is trapped and accumulated in the interface state between the film 23 and the SiO 2 film 24.

【0009】[0009]

【発明が解決しようとする課題】ところが、図6に示し
た浮遊ゲート型の第1従来例では、膜厚が5nm程度の
トンネル用のSiO2 膜12を介して電子の注入及び放
出を行うので、10V以上の高い書き込み消去電圧が必
要であり、低電圧駆動を行うことができない。一方、図
7に示したMONOS型の第2従来例では、トンネル用
のSiO2 膜22の膜厚が2nm程度と薄いので、書き
込み消去電圧が低くてもよい。しかし、SiO2 膜22
の膜厚が2nm程度と薄いこと等のために、記憶保持能
力が低い。
However, in the first example of the floating gate type shown in FIG. 6, electrons are injected and emitted through the SiO 2 film 12 for tunneling having a film thickness of about 5 nm. A high write / erase voltage of 10 V or higher is required, and low voltage driving cannot be performed. On the other hand, in the second conventional example of the MONOS type shown in FIG. 7, since the SiO 2 film 22 for tunnel is as thin as about 2 nm, the write / erase voltage may be low. However, the SiO 2 film 22
The memory retention capacity is low because the film thickness is as thin as about 2 nm.

【0010】つまり、従来のEEPROMでは書き込み
消去電圧を低くすることと記憶保持能力を高めることと
を両立させることが困難で、従来は、書き込み消去電圧
が低く且つ記憶保持能力が高いEEPROMを提供する
ことが困難であった。
In other words, it is difficult for the conventional EEPROM to make both the write / erase voltage low and the memory retention ability high, and conventionally, an EEPROM having a low write / erase voltage and a high memory retention ability is provided. Was difficult.

【0011】[0011]

【課題を解決するための手段】請求項1の不揮発性半導
体記憶装置は、トンネル用絶縁膜と、第1導電型半導体
膜と、第2導電型半導体膜と、容量結合用絶縁膜と、ゲ
ート電極とが、半導体基板上に順次に積層されているこ
とを特徴としている。
A nonvolatile semiconductor memory device according to claim 1, wherein a tunnel insulating film, a first conductive type semiconductor film, a second conductive type semiconductor film, a capacitive coupling insulating film, and a gate. The electrodes are sequentially laminated on the semiconductor substrate.

【0012】請求項2の不揮発性半導体記憶装置は、請
求項1の不揮発性半導体記憶装置において、前記第1導
電型がP型であり、前記第2導電型がN型であることを
特徴としている。
According to a second aspect of the present invention, there is provided the non-volatile semiconductor memory device according to the first aspect, wherein the first conductivity type is P type and the second conductivity type is N type. There is.

【0013】請求項3の不揮発性半導体記憶装置は、請
求項1の不揮発性半導体記憶装置において、前記第1導
電型がN型であり、前記第2導電型がP型であることを
特徴としている。
A non-volatile semiconductor memory device according to a third aspect is the non-volatile semiconductor memory device according to the first aspect, wherein the first conductivity type is N type and the second conductivity type is P type. There is.

【0014】請求項4の不揮発性半導体記憶装置は、請
求項1の不揮発性半導体記憶装置において、前記半導体
膜が多結晶Si膜であることを特徴としている。
A non-volatile semiconductor memory device according to a fourth aspect is the non-volatile semiconductor memory device according to the first aspect, wherein the semiconductor film is a polycrystalline Si film.

【0015】請求項5の不揮発性半導体記憶装置は、請
求項1の不揮発性半導体記憶装置において、前記半導体
膜がSiN膜であることを特徴としている。
A non-volatile semiconductor memory device according to a fifth aspect is the non-volatile semiconductor memory device according to the first aspect, characterized in that the semiconductor film is a SiN film.

【0016】本発明による不揮発性半導体記憶装置で
は、トンネル用絶縁膜側の第1導電型半導体膜と容量結
合用絶縁膜側の第2導電型半導体膜とのPN接合によっ
て電位障壁が形成されている。
In the nonvolatile semiconductor memory device according to the present invention, the potential barrier is formed by the PN junction between the first conductivity type semiconductor film on the tunnel insulating film side and the second conductivity type semiconductor film on the capacitive coupling insulating film side. There is.

【0017】このため、第1及び第2導電型半導体膜中
における第2導電型キャリアは、ゲート電極に電圧が印
加されていない状態でも容量結合用絶縁膜側の第2導電
型半導体膜中に蓄積され、直接トンネリングが可能なほ
どにトンネル用絶縁膜が薄くてもこのトンネル用絶縁膜
を通過して半導体基板へ放出されない。
Therefore, the second-conductivity-type carriers in the first and second-conductivity-type semiconductor films exist in the second-conductivity-type semiconductor film on the capacitive coupling insulating film side even when no voltage is applied to the gate electrode. Even if the tunnel insulating film is accumulated and is thin enough to allow direct tunneling, the tunnel insulating film does not pass through the tunnel insulating film and is not discharged to the semiconductor substrate.

【0018】[0018]

【発明の実施の形態】以下、本発明の第1〜第3実施形
態を、図1〜5を参照しながら説明する。第1実施形態
の不揮発性半導体記憶装置を製造するためには、図2
(a)に示す様に、Si基板31にLOCOS法で素子
分離用のSiO2 膜32を形成し、図2(b)に示す様
に、下記の条件の高速熱酸化で、直接トンネリングが可
能なSiO2 膜33を素子活性領域の表面に形成する。 O2 :2SLM 温度 :800℃
DETAILED DESCRIPTION OF THE INVENTION First to third embodiments of the present invention will be described below with reference to FIGS. In order to manufacture the nonvolatile semiconductor memory device of the first embodiment,
As shown in (a), the SiO 2 film 32 for element isolation is formed on the Si substrate 31 by the LOCOS method, and as shown in FIG. 2 (b), direct tunneling is possible by rapid thermal oxidation under the following conditions. A different SiO 2 film 33 is formed on the surface of the element active region. O 2 : 2SLM Temperature: 800 ° C

【0019】次に、図2(c)に示す様に、下記の条件
の熱CVDで、膜厚が100nm程度の多結晶Si膜3
4を堆積させる。 SiH4 :100SCCM He :400SCCM N2 :200SCCM 圧力 :70Pa 温度 :610℃
Next, as shown in FIG. 2C, a polycrystalline Si film 3 having a thickness of about 100 nm is formed by thermal CVD under the following conditions.
4 is deposited. SiH 4 : 100SCCM He: 400SCCM N 2 : 200SCCM Pressure: 70Pa Temperature: 610 ° C

【0020】次に、図2(d)に示す様に、下記の条件
のイオン注入で、多結晶Si膜34をP型にする。 イオン種 :BF2 + エネルギー :30keV ドーズ量 :4.0×1012原子/cm2
Next, as shown in FIG. 2D, the polycrystalline Si film 34 is made into a P type by ion implantation under the following conditions. Ion species: BF 2 + energy: 30 keV Dose amount: 4.0 × 10 12 atoms / cm 2

【0021】次に、図2(e)に示す様に、多結晶Si
膜34の場合と同じ条件の熱CVDで多結晶Si膜35
を堆積させ、図3(a)に示す様に、下記の条件のイオ
ン注入で、多結晶Si膜35をN型にする。 イオン種 :As+ エネルギー :20keV ドーズ量 :3.0×1012原子/cm2
Next, as shown in FIG. 2 (e), polycrystalline Si
The polycrystalline Si film 35 is formed by thermal CVD under the same conditions as the case of the film 34.
Is deposited, and as shown in FIG. 3A, the polycrystalline Si film 35 is made N-type by ion implantation under the following conditions. Ion species: As + energy: 20 keV Dose amount: 3.0 × 10 12 atoms / cm 2

【0022】次に、図3(b)に示す様に、下記の条件
の熱CVDで、膜厚が6nm程度のSiO2 膜36を堆
積させる。 SiH4 :5SCCM O2 :10SCCM 圧力 :1Pa 温度 :850℃
Next, as shown in FIG. 3B, a SiO 2 film 36 having a film thickness of about 6 nm is deposited by thermal CVD under the following conditions. SiH 4 : 5SCCM O 2 : 10SCCM Pressure: 1Pa Temperature: 850 ° C

【0023】次に、図3(c)に示す様に、N型の多結
晶Si膜37を堆積させ、図3(d)に示す様に、WS
i膜38を堆積させて、多結晶Si膜37とWSi膜3
8とでタングステンポリサイド層41を形成する。そし
て、図3(e)に示す様に、タングステンポリサイド層
41、SiO2 膜36及び多結晶Si膜35、34をド
ライエッチングでゲート電極のパターンに加工する。
Next, as shown in FIG. 3C, an N-type polycrystalline Si film 37 is deposited, and as shown in FIG. 3D, WS is deposited.
By depositing the i film 38, the polycrystalline Si film 37 and the WSi film 3 are deposited.
And 8 form a tungsten polycide layer 41. Then, as shown in FIG. 3E, the tungsten polycide layer 41, the SiO 2 film 36, and the polycrystalline Si films 35 and 34 are processed into a gate electrode pattern by dry etching.

【0024】次に、図4(a)に示す様に、タングステ
ンポリサイド層41等とSiO2 膜32とをマスクにし
た不純物のイオン注入で、LDD構造用の低濃度の拡散
層42をSi基板31に形成する。そして、図4(b)
に示す様に、多結晶Si膜34、35及びタングステン
ポリサイド層41にSiO2 膜43等から成る側壁スペ
ーサを形成する。
Next, as shown in FIG. 4A, the low concentration diffusion layer 42 for the LDD structure is formed into Si by ion implantation of impurities using the tungsten polycide layer 41 and the like and the SiO 2 film 32 as a mask. It is formed on the substrate 31. Then, FIG.
As shown in FIG. 5, sidewall spacers made of SiO 2 film 43 or the like are formed on the polycrystalline Si films 34 and 35 and the tungsten polycide layer 41.

【0025】次に、図4(c)に示す様に、タングステ
ンポリサイド層41等とSiO2 膜32、43とをマス
クにした不純物のイオン注入で、ソース/ドレインとし
ての高濃度の拡散層44をSi基板31に形成する。そ
して、図4(d)に示す様に、層間絶縁膜としてのSi
2 膜45を堆積させる。
Next, as shown in FIG. 4C, a high-concentration diffusion layer as a source / drain is formed by ion implantation of impurities using the tungsten polycide layer 41 and the like and the SiO 2 films 32 and 43 as masks. 44 is formed on the Si substrate 31. Then, as shown in FIG. 4D, Si as an interlayer insulating film is formed.
The O 2 film 45 is deposited.

【0026】次に、図5(a)に示す様に、SiO2
45等にコンタクト孔46を開孔した後、図5(b)に
示す様に、Al膜47を堆積させる。そして、図5
(c)に示す様に、Al膜47を配線のパターンに加工
し、更に、表面保護膜(図示せず)等を形成して、この
第1実施形態を完成させる。
Next, as shown in FIG. 5A, a contact hole 46 is formed in the SiO 2 film 45 or the like, and then an Al film 47 is deposited as shown in FIG. 5B. And FIG.
As shown in (c), the Al film 47 is processed into a wiring pattern, and a surface protective film (not shown) or the like is further formed to complete the first embodiment.

【0027】図1(a)は以上の様にして製造した第1
実施形態の要部を示しており、この第1実施形態の不揮
発性半導体記憶装置にデータを書き込むためには、図1
(b)に示す様に、ゲート電極であるタングステンポリ
サイド層41に正電圧を印加すると共にSi基板31に
負電圧を印加する。この結果、Si基板31からSiO
2 膜33を直接トンネリングによって通過した電子がP
型の多結晶Si膜34に注入される。
FIG. 1A shows the first manufactured as described above.
1 shows an essential part of the embodiment, and in order to write data to the nonvolatile semiconductor memory device of the first embodiment, FIG.
As shown in (b), a positive voltage is applied to the tungsten polycide layer 41, which is the gate electrode, and a negative voltage is applied to the Si substrate 31. As a result, from the Si substrate 31 to SiO
2 The electrons passing through the direct tunneling through the film 33 are P
Type polycrystalline Si film 34.

【0028】この時、多結晶Si膜34、35間のPN
接合は逆方向バイアスされており、このPN接合近傍で
多結晶Si膜34、35の価電子帯から伝導帯へ電子が
励起され、励起された電子はN型の多結晶Si膜35中
を移動してSiO2 膜36との界面近傍に到達して蓄積
される。一方、電子が抜けたことによって発生した正孔
は、P型の多結晶Si膜34中をSi基板31方向へ移
動し、Si基板31からSiO2 膜33を通過してきた
電子と結合して消滅する。
At this time, PN between the polycrystalline Si films 34 and 35
The junction is reverse-biased, electrons are excited from the valence band of the polycrystalline Si films 34 and 35 to the conduction band in the vicinity of the PN junction, and the excited electrons move in the N-type polycrystalline Si film 35. Then, it reaches and accumulates near the interface with the SiO 2 film 36. On the other hand, the holes generated by the elimination of the electrons move in the P-type polycrystalline Si film 34 toward the Si substrate 31 and are combined with the electrons passing through the SiO 2 film 33 from the Si substrate 31 to disappear. To do.

【0029】図1(c)に示す様に、タングステンポリ
サイド層41及びSi基板31への電圧の印加を停止す
ると、Si基板31から多結晶Si膜34への電子の注
入も停止するが、多結晶Si膜34、35間のPN接合
による電位障壁のために、N型の多結晶Si膜35中に
蓄積されている電子はP型の多結晶Si膜34方向へ移
動することなく保持される。
As shown in FIG. 1C, when the application of voltage to the tungsten polycide layer 41 and the Si substrate 31 is stopped, the injection of electrons from the Si substrate 31 to the polycrystalline Si film 34 is also stopped. Due to the potential barrier due to the PN junction between the polycrystalline Si films 34 and 35, the electrons accumulated in the N-type polycrystalline Si film 35 are retained without moving toward the P-type polycrystalline Si film 34. It

【0030】書き込まれているデータを消去するために
は、図1(d)に示す様に、ゲート電極であるタングス
テンポリサイド層41に負電圧を印加すると共にSi基
板31に正電圧を印加する。この結果、多結晶Si膜3
4、35間のPN接合が順方向バイアスされ、N型の多
結晶Si膜35中に蓄積されている電子は、PN接合及
びSiO2 膜33を通過してSi基板31へ放出され
る。
In order to erase the written data, as shown in FIG. 1D, a negative voltage is applied to the tungsten polycide layer 41 which is the gate electrode and a positive voltage is applied to the Si substrate 31. . As a result, the polycrystalline Si film 3
The PN junction between 4 and 35 is forward biased, and the electrons accumulated in the N-type polycrystalline Si film 35 pass through the PN junction and the SiO 2 film 33 and are emitted to the Si substrate 31.

【0031】次に、第2実施形態の不揮発性半導体記憶
装置について説明する。この第2実施形態の不揮発性半
導体記憶装置を製造するためには、下記の条件の熱酸化
で、膜厚が6nm程度のSiO2 膜36を形成すること
を除いて、上述の第1実施形態を製造する場合と実質的
に同様の工程を実行する。 H2 :2SLM O2 :8SLM 温度 :850℃
Next, the nonvolatile semiconductor memory device of the second embodiment will be described. In order to manufacture the nonvolatile semiconductor memory device of the second embodiment, the first embodiment described above is used except that the SiO 2 film 36 having a film thickness of about 6 nm is formed by thermal oxidation under the following conditions. Substantially the same steps as those for manufacturing are performed. H 2: 2SLM O 2: 8SLM temperature: 850 ℃

【0032】次に、第3実施形態の不揮発性半導体記憶
装置について説明する。この第3実施形態の不揮発性半
導体記憶装置を製造するためには、多結晶Si膜34、
35を熱CVDで堆積させる代わりに、下記の条件の熱
CVDで、膜厚が100nm程度ずつのSiN膜を堆積
させることを除いて、上述の第1実施形態を製造する場
合と実質的に同様の工程を実行する。SiN膜でも、S
iの含有率が高くてバンドギャップが狭ければ、半導体
として機能する。
Next, the nonvolatile semiconductor memory device of the third embodiment will be described. In order to manufacture the nonvolatile semiconductor memory device according to the third embodiment, the polycrystalline Si film 34,
35 is substantially the same as the case of manufacturing the above-described first embodiment, except that the SiN film having a thickness of about 100 nm is deposited by thermal CVD under the following conditions instead of depositing 35 by thermal CVD. Perform the process of. Even for SiN film, S
If the content of i is high and the band gap is narrow, it functions as a semiconductor.

【0033】SiH2 Cl2 :50SCCM NH3 :10SCCM N2 :200SCCM 圧力 :70Pa 温度 :760℃SiH 2 Cl 2 : 50SCCM NH 3 : 10SCCM N 2 : 200SCCM Pressure: 70Pa Temperature: 760 ° C.

【0034】なお、以上の第1〜第3実施形態の何れに
おいても、SiO2 膜33側のP型の半導体膜とSiO
2 膜36側のN型の半導体膜とで電子を蓄積している
が、SiO2 膜33側にN型の半導体膜を形成しSiO
2 膜36側にP型の半導体膜を形成すること等によって
正孔を蓄積してもよい。
In any of the above-described first to third embodiments, the P-type semiconductor film on the SiO 2 film 33 side and the SiO 2 film 33 are formed.
Electrons are accumulated with the N-type semiconductor film on the side of the 2nd film 36, but an N-type semiconductor film is formed on the side of the SiO 2 film 33 to form SiO 2.
The holes may be accumulated by forming a P-type semiconductor film on the side of the second film 36.

【0035】また、以上の第1〜第3実施形態の何れに
おいても、逆方向バイアスされている多結晶Si膜3
4、35間のPN接合近傍で価電子帯から伝導帯へ励起
させた電子を蓄積し、電子が抜けたことによって発生し
た正孔はSi基板31からSiO2 膜33を通過してき
た電子と結合させて消滅させているが、逆方向バイアス
を弱めてPN接合近傍で価電子帯から伝導帯へ電子を励
起させず、Si基板31からSiO2 膜33を通過して
きた電子を蓄積してもよい。
Further, in any of the above-described first to third embodiments, the reverse biased polycrystalline Si film 3 is used.
In the vicinity of the PN junction between 4 and 35, electrons excited from the valence band to the conduction band are accumulated, and holes generated by the elimination of the electrons are coupled with the electrons that have passed through the SiO 2 film 33 from the Si substrate 31. However, the reverse bias is weakened to excite electrons from the valence band to the conduction band in the vicinity of the PN junction, and the electrons that have passed through the SiO 2 film 33 from the Si substrate 31 may be accumulated. .

【0036】[0036]

【発明の効果】本発明による不揮発性半導体記憶装置で
は、第1及び第2導電型半導体膜中における第2導電型
キャリアは、ゲート電極に電圧が印加されていない状態
でも容量結合用絶縁膜側の第2導電型半導体膜中に蓄積
され、直接トンネリングが可能なほどにトンネル用絶縁
膜が薄くてもこのトンネル用絶縁膜を通過して半導体基
板へ放出されないので、書き込み消去電圧が低く且つ記
憶保持能力が高い。
In the nonvolatile semiconductor memory device according to the present invention, the second conductivity type carriers in the first and second conductivity type semiconductor films are on the side of the capacitive coupling insulating film even when the voltage is not applied to the gate electrode. Even if the tunnel insulating film is so thin that it is accumulated in the second conductive type semiconductor film and can be directly tunneled, it does not pass through the tunnel insulating film and is not emitted to the semiconductor substrate. High retention capacity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施形態を示しており、(a)は
要部の側断面図、(b)(c)(d)は夫々データの書
き込み時、保持時及び消去時におけるエネルギーバンド
図である。
FIG. 1 shows a first embodiment of the present invention, in which (a) is a side sectional view of a main part, and (b), (c), and (d) are energies at the time of writing, holding and erasing data, respectively. It is a band figure.

【図2】第1実施形態を製造するための最初の工程を順
次に示す側断面図である。
FIG. 2 is a side sectional view sequentially showing a first step for manufacturing the first embodiment.

【図3】図2に続く工程を順次に示す側断面図である。FIG. 3 is a side sectional view sequentially showing a step following FIG.

【図4】図3に続く工程を順次に示す側断面図である。FIG. 4 is a side sectional view sequentially showing a step following FIG.

【図5】図4に続く工程を順次に示す側断面図である。FIG. 5 is a side sectional view sequentially showing a step following FIG.

【図6】本発明の第1従来例を示しており、(a)は初
期状態における側断面図、(b)は書き込み状態におけ
る側断面図、(c)は初期状態と書き込み状態とにおけ
る閾値電圧を示すグラフ、(d)はエネルギーバンド図
である。
FIG. 6 shows a first conventional example of the present invention, in which (a) is a side sectional view in an initial state, (b) is a side sectional view in a written state, and (c) is a threshold value in an initial state and a written state. A graph showing voltage, (d) is an energy band diagram.

【図7】本発明の第2従来例を示しており、(a)は側
断面図、(b)はエネルギーバンド図である。
FIG. 7 shows a second conventional example of the present invention, in which (a) is a side sectional view and (b) is an energy band diagram.

【符号の説明】[Explanation of symbols]

31 Si基板 33 SiO2 膜 34 多
結晶Si膜 35 多結晶Si膜 36 SiO2 膜 41 タングステンポリサイド層
31 Si Substrate 33 SiO 2 Film 34 Polycrystalline Si Film 35 Polycrystalline Si Film 36 SiO 2 Film 41 Tungsten Polycide Layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 トンネル用絶縁膜と、第1導電型半導体
膜と、第2導電型半導体膜と、容量結合用絶縁膜と、ゲ
ート電極とが、半導体基板上に順次に積層されているこ
とを特徴とする不揮発性半導体記憶装置。
1. A tunnel insulating film, a first conductive type semiconductor film, a second conductive type semiconductor film, a capacitive coupling insulating film, and a gate electrode are sequentially stacked on a semiconductor substrate. And a nonvolatile semiconductor memory device.
【請求項2】 前記第1導電型がP型であり、前記第2
導電型がN型であることを特徴とする請求項1記載の不
揮発性半導体記憶装置。
2. The first conductivity type is P-type, and the second conductivity type is P-type.
The nonvolatile semiconductor memory device according to claim 1, wherein the conductivity type is N type.
【請求項3】 前記第1導電型がN型であり、前記第2
導電型がP型であることを特徴とする請求項1記載の不
揮発性半導体記憶装置。
3. The first conductivity type is N-type, and the second conductivity type is N-type.
The nonvolatile semiconductor memory device according to claim 1, wherein the conductivity type is P type.
【請求項4】 前記半導体膜が多結晶Si膜であること
を特徴とする請求項1記載の不揮発性半導体記憶装置。
4. The nonvolatile semiconductor memory device according to claim 1, wherein the semiconductor film is a polycrystalline Si film.
【請求項5】 前記半導体膜がSiN膜であることを特
徴とする請求項1記載の不揮発性半導体記憶装置。
5. The nonvolatile semiconductor memory device according to claim 1, wherein the semiconductor film is a SiN film.
JP09062996A 1996-03-19 1996-03-19 Nonvolatile semiconductor memory device Expired - Fee Related JP3402058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09062996A JP3402058B2 (en) 1996-03-19 1996-03-19 Nonvolatile semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09062996A JP3402058B2 (en) 1996-03-19 1996-03-19 Nonvolatile semiconductor memory device

Publications (2)

Publication Number Publication Date
JPH09260517A true JPH09260517A (en) 1997-10-03
JP3402058B2 JP3402058B2 (en) 2003-04-28

Family

ID=14003785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09062996A Expired - Fee Related JP3402058B2 (en) 1996-03-19 1996-03-19 Nonvolatile semiconductor memory device

Country Status (1)

Country Link
JP (1) JP3402058B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150680A (en) * 1998-11-12 2000-05-30 Fujitsu Ltd Semiconductor memory
WO2001041199A1 (en) 1999-12-03 2001-06-07 Intel Corporation Integrated memory cell and method of fabrication
JP2001168213A (en) * 1999-12-03 2001-06-22 Fujitsu Ltd Semiconductor storage device and its manufacturing method
US6445617B1 (en) 1999-02-19 2002-09-03 Mitsubishi Denki Kabushiki Kaisha Non-volatile semiconductor memory and methods of driving, operating, and manufacturing this memory
KR100624925B1 (en) * 1999-11-09 2006-09-14 주식회사 하이닉스반도체 Poly gate inversion transistor
JP2007053171A (en) * 2005-08-16 2007-03-01 Toshiba Corp Nonvolatile semiconductor memory device
EP2068350A1 (en) * 2007-12-03 2009-06-10 Interuniversitair Microelektronica Centrum vzw Multiple layer floating gate non-volatile memory device
EP2068351A1 (en) * 2007-12-03 2009-06-10 INTERUNIVERSITAIR MICROELEKTRONICA CENTRUM vzw (IMEC) Floating gate non-volatile memory device and method for manufacturing same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150680A (en) * 1998-11-12 2000-05-30 Fujitsu Ltd Semiconductor memory
US6711060B2 (en) 1999-02-19 2004-03-23 Renesas Technology Corp. Non-volatile semiconductor memory and methods of driving, operating, and manufacturing this memory
US6445617B1 (en) 1999-02-19 2002-09-03 Mitsubishi Denki Kabushiki Kaisha Non-volatile semiconductor memory and methods of driving, operating, and manufacturing this memory
KR100357644B1 (en) * 1999-02-19 2002-10-25 미쓰비시덴키 가부시키가이샤 Non-volatile semiconductor memory and methods of driving operating, and manufacturing this memory
KR100624925B1 (en) * 1999-11-09 2006-09-14 주식회사 하이닉스반도체 Poly gate inversion transistor
US6518618B1 (en) 1999-12-03 2003-02-11 Intel Corporation Integrated memory cell and method of fabrication
WO2001041199A1 (en) 1999-12-03 2001-06-07 Intel Corporation Integrated memory cell and method of fabrication
US6943071B2 (en) 1999-12-03 2005-09-13 Intel Corporation Integrated memory cell and method of fabrication
JP2001168213A (en) * 1999-12-03 2001-06-22 Fujitsu Ltd Semiconductor storage device and its manufacturing method
JP2007053171A (en) * 2005-08-16 2007-03-01 Toshiba Corp Nonvolatile semiconductor memory device
US7550801B2 (en) 2005-08-16 2009-06-23 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device
US7968933B2 (en) 2005-08-16 2011-06-28 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device
EP2068350A1 (en) * 2007-12-03 2009-06-10 Interuniversitair Microelektronica Centrum vzw Multiple layer floating gate non-volatile memory device
EP2068351A1 (en) * 2007-12-03 2009-06-10 INTERUNIVERSITAIR MICROELEKTRONICA CENTRUM vzw (IMEC) Floating gate non-volatile memory device and method for manufacturing same
US7906806B2 (en) 2007-12-03 2011-03-15 Imec Multiple layer floating gate non-volatile memory device

Also Published As

Publication number Publication date
JP3402058B2 (en) 2003-04-28

Similar Documents

Publication Publication Date Title
US6914293B2 (en) Nonvolatile semiconductor memory device and method for manufacturing same
US7371631B2 (en) Method of manufacturing a nonvolatile semiconductor memory device, and a nonvolatile semiconductor memory device
KR100468745B1 (en) Non-volatile memory cell having a silicon-oxide-nitride-oxide-silicon gate structure and fabrication method of such cell
WO2008059768A1 (en) Semiconductor device
JP2008277530A (en) Nonvolatile semiconductor memory device
JP3389112B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
US6087230A (en) Method of fabricating an SOI device having a channel with variable thickness
JP4792620B2 (en) Nonvolatile semiconductor memory device and manufacturing method thereof
JP4665368B2 (en) Nonvolatile semiconductor memory device, method of operating the same, and method of manufacturing semiconductor device
JP5118887B2 (en) Semiconductor device and manufacturing method thereof
JP3402058B2 (en) Nonvolatile semiconductor memory device
JPH07226449A (en) Semiconductor memory device capable of electrically writing and erasing and its manufacture and memory recognition
JP2004221448A (en) Non-volatile semiconductor memory device and its manufacturing method
JP2008053553A (en) Semiconductor device and manufacturing method thereof
JP2882389B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
JP2004111749A (en) Semiconductor device and its manufacturing method
JP2007158093A (en) Nonvolatile semiconductor memory device, and manufacturing method thereof
JP3430086B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
JP2885134B2 (en) Method for manufacturing semiconductor memory device
JP3054530B2 (en) Manufacturing method of nonvolatile semiconductor memory device
JPH11238815A (en) Nonvolatile semiconductor storage device and its manufacture
JP2004103902A (en) Nonvolatile semiconductor storage device and its manufacturing method
JP2010123591A (en) Nonvolatile semiconductor storage device and method of manufacturing same
JPH05129632A (en) Charge trap film
JP2966221B2 (en) Semiconductor storage device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees