JPH09260450A - Carbon density measurement of silicon crystal and carbon-free standard sample therefor - Google Patents

Carbon density measurement of silicon crystal and carbon-free standard sample therefor

Info

Publication number
JPH09260450A
JPH09260450A JP9613096A JP9613096A JPH09260450A JP H09260450 A JPH09260450 A JP H09260450A JP 9613096 A JP9613096 A JP 9613096A JP 9613096 A JP9613096 A JP 9613096A JP H09260450 A JPH09260450 A JP H09260450A
Authority
JP
Japan
Prior art keywords
carbon
resistivity
silicon
ωcm
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9613096A
Other languages
Japanese (ja)
Inventor
Hiroyuki Saito
広幸 斉藤
Hiroshi Shirai
宏 白井
Hiroyuki Goto
浩之 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP9613096A priority Critical patent/JPH09260450A/en
Publication of JPH09260450A publication Critical patent/JPH09260450A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable measurement of even a low density of carbon with high precision, by adjusting and controlling the resistivity of a carbon-free standard sample in response to the resistivity of a silicon crystal to be measured. SOLUTION: In measurement of the carbon density in a silicon crystal by a Fourier transform infrared spectroscopy, the resistivity of a carbon-free standard sample is adjusted and controlled in response to the resistivity of a silicon crystal to be measured. Thus, since the carbon-free standard sample used as a reference is controlled in doping so as to have a resistivity corresponding to the resistivity of the silicon crystal to be measured, infrared absorption other than infrared absorption by carbon appearing around 600cm<-1> may be offset and the base line may be horizontally stabilized. Thus, the carbon density in the silicon crystal to be measured may be measured with high precision from an infrared absorption peak to a low density.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、シリコン結晶炭素
濃度測定法及びそのためのカーボンフリー標準試料に関
し、更に詳しくはフーリエ変換赤外分光(FT−IR)
法を用い、従来よりシリコン結晶中の炭素濃度をより低
濃度まで測定可能とするシリコン結晶炭素濃度測定法及
びそのためのカーボンフリー標準試料に関する。
TECHNICAL FIELD The present invention relates to a method for measuring a silicon crystal carbon concentration and a carbon-free standard sample therefor, more specifically, Fourier transform infrared spectroscopy (FT-IR).
TECHNICAL FIELD The present invention relates to a silicon crystal carbon concentration measuring method capable of measuring a carbon concentration in a silicon crystal to a lower concentration than ever before using a method and a carbon-free standard sample therefor.

【0002】[0002]

【従来の技術】半導体素子の基板を構成するシリコン単
結晶は、高純度が要求されできる限り不純物の含有が排
除されている。半導体においては、不純物含量が極微量
でも最終的な性能に多大な影響を及ぼすことがあり、特
に、近年の超高集積化に伴い、基板となるシリコン単結
晶の高純度化の要求も著しく厳格なものとなっている。
しかし、製造工程の各種操作や装置等からの極微量の不
純物の混入は避けることができないのが現状である。そ
のため、半導体基板用のシリコン結晶中に含まれる不純
物の種類及びその含有量を予め測定し、その測定結果に
基づき各種の処理を適宜選択することや、得られる素子
の性能を予測することも行われている。このためシリコ
ン結晶中の不純物測定のために各種の測定機器の改良や
測定精度の向上等が提案され、また、常に、要望もされ
ている。
2. Description of the Related Art A silicon single crystal forming a substrate of a semiconductor device is free from impurities as long as high purity is required. In semiconductors, even if the amount of impurities is extremely small, the final performance may be greatly affected. Especially, with the recent trend toward ultra-high integration, the demand for high-purity silicon single crystal as a substrate is extremely strict. It has become.
However, in the present circumstances, it is inevitable that various operations in the manufacturing process and the inclusion of an extremely small amount of impurities from the apparatus and the like cannot be avoided. Therefore, it is also possible to preliminarily measure the type and content of impurities contained in a silicon crystal for a semiconductor substrate, appropriately select various treatments based on the measurement result, and predict the performance of the obtained device. It is being appreciated. For this reason, improvements in various measuring instruments and improvements in measurement accuracy have been proposed for measuring impurities in silicon crystals, and there is always a demand for them.

【0003】[0003]

【発明が解決しようとする課題】上記したような状況の
下において、発明者らは、シリコン結晶中の置換型炭素
が、特に半導体素子性能の電気的特性の良否に関連する
ことから、その含有量を正確に測定することを目的に検
討した。発明者らは、先ず従来のFT−IR法によるシ
リコン結晶中の置換型炭素濃度の測定方法を基本的に見
直すことにした。従来から行われているFT−IR法に
よる置換型炭素濃度測定は、他の化合物中の成分と同様
に、不純物フリーとしての標準試料との相対的比較で概
ね次のように行われる。即ち、炭素濃度を測定する被
測定シリコン結晶を厚さ約2mmのディスク状の測定試
料に形成する。測定試料を厚さ方向に対して垂直入射
測定で赤外線の透過光量を測定する。次に、同様に厚
さ2mmのディスク状のカーボンフリー(カーボン含有
量約1×1015atoms/cm3 未満)の標準試料に
ついて、同様に厚さ方向に対し垂直入射測定で赤外線の
透過光量を測定する。両者の透過光量の差から差吸光
度スペクトルを求める。差吸光度スペクトルの604
cm-1の置換型炭素による赤外吸収のピークから被測定
シリコン結晶の炭素濃度を求める。
Under the circumstances as described above, the inventors of the present invention have found that the substitutional carbon in the silicon crystal is related to whether or not the electrical characteristics of the semiconductor element are good or bad. The purpose was to accurately measure the amount. The inventors first decided to fundamentally review the conventional method of measuring the concentration of substitutional carbon in a silicon crystal by the FT-IR method. The substitutional carbon concentration measurement by the FT-IR method that has been conventionally performed is performed as follows in a relative comparison with a standard sample that is free from impurities, like the components in other compounds. That is, a silicon crystal to be measured for measuring carbon concentration is formed on a disk-shaped measurement sample having a thickness of about 2 mm. The amount of transmitted infrared light is measured by measuring the measurement sample at a normal incidence in the thickness direction. Next, similarly, regarding a disk-like carbon-free standard sample (carbon content of less than about 1 × 10 15 atoms / cm 3 ) having a thickness of 2 mm, the amount of infrared transmitted light was similarly measured by normal incidence measurement in the thickness direction. taking measurement. A difference absorbance spectrum is obtained from the difference in the amount of transmitted light between the two. Difference absorbance spectrum 604
The carbon concentration of the silicon crystal to be measured is determined from the infrared absorption peak of the substitutional carbon at cm -1 .

【0004】発明者らによれば、上記したような従来の
FT−IR法においては、604cm-1のカーボン吸収
ピークは、その近傍にシリコン格子振動による吸収ピー
ク(615cm-1)が存在すること、また、シリコン格
子振動による吸収が強いためにキャリアの吸収が影響さ
れることにより、ベースラインが的確に定めることが難
しく、カーボン吸収ピークによる濃度測定が正確でな
く、特に低濃度の場合に正確を期すことが難しいことが
確認された。そのため、発明者らは、すでに多くの実績
があるFT−IR法を用いてシリコン結晶中の置換炭素
濃度を簡便且つ低濃度でもより正確に測定できる方法を
見出すべく検討した。その結果、チョクラルスキー(C
Z)法により引き上げられた単結晶シリコンは、n型ま
たはp型半導体に対応するために添加されるリン、ひ素
またはボロン等の元素を含有して抵抗率が所定以下であ
る場合に、カーボン赤外吸収ピークが現れる波数600
cm-1近傍にシリコンの格子振動ピーク付近で凹みが生
じることから、ベースラインを特定することができなく
なり、炭素濃度が精度よく測定できないことが知見され
た。即ち、前記シリコンの格子振動による吸収が極めて
大きいこと、これに対しキャリアによる吸収は比較的小
さいこと、垂直入射法における多重反射の影響等により
差吸光度スペクトルの610〜630cm-1近傍で凹み
が発生しカーボン赤外吸収ピークのベースラインが特定
できなくなる。発明者らは、この知見を基に更に600
cm-1近傍の赤外吸収について検討し、従来レファレン
スとして用いられていたフローティングゾーン(FZ)
法によって製造されたシリコン単結晶から製造されるド
ーパント無添加の高純度のカーボンフリー標準試料(通
常は約1kΩcmの抵抗率を有する)に替えて、被測定
シリコン結晶が有する抵抗率に相応するように所定にド
ーピング制御されたCZ法により引き上げられた、カー
ボンフリーのシリコン単結晶をレファレンスとして使用
することにより、精度よく低濃度の炭素まで測定できる
ことを見出し、本発明をするに至った。
[0004] According to the inventors, the conventional FT-IR method as described above, carbon absorption peak of 604cm -1 is the absorption peak due to a silicon lattice vibrations (615 cm -1) is present in the vicinity thereof Also, since the absorption of carriers is affected by the strong absorption due to silicon lattice vibration, it is difficult to accurately determine the baseline, and the concentration measurement by the carbon absorption peak is not accurate, especially when the concentration is low. It was confirmed that it was difficult to meet the requirements. Therefore, the inventors have studied to find a method that can easily and more accurately measure the substitutional carbon concentration in a silicon crystal by using the FT-IR method, which has already been widely used. As a result, Czochralski (C
The single crystal silicon pulled up by the Z) method contains elements such as phosphorus, arsenic, and boron added to correspond to an n-type or p-type semiconductor and has a resistivity of not more than a predetermined value. Wave number 600 where the external absorption peak appears
It was found that the base line cannot be specified because the dent occurs near the lattice vibration peak of silicon in the vicinity of cm -1 , and the carbon concentration cannot be measured accurately. That is, the absorption due to the lattice vibration of the silicon is extremely large, while the absorption due to the carrier is comparatively small, and a dent occurs near 610 to 630 cm -1 of the differential absorption spectrum due to the influence of multiple reflection in the vertical incidence method. However, the baseline of the carbon infrared absorption peak cannot be specified. Based on this finding, the inventors
Floating zone (FZ), which was used as a reference, was investigated by examining infrared absorption near cm -1.
Replace with a high-purity, carbon-free standard sample with no dopant added (usually having a resistivity of about 1 kΩcm) produced from a silicon single crystal produced by the method, and make it correspond to the resistivity of the measured silicon crystal. The inventors have found that by using a carbon-free silicon single crystal pulled up by the CZ method in which the doping is controlled to a predetermined value as a reference, it is possible to accurately measure even a low concentration of carbon, and the present invention has been completed.

【0005】[0005]

【課題を解決するための手段】本発明によれば、フーリ
エ変換赤外分光法によるシリコン結晶中の炭素濃度の測
定において、被測定シリコン結晶が有する抵抗率に相応
して、カーボンフリー標準試料の抵抗率を調整制御して
測定することを特徴とするシリコン結晶炭素濃度測定法
が提供される。本発明のシリコン結晶炭素濃度測定法に
おいて、カーボンフリー標準試料の抵抗率がドーピング
され調整制御されることが好ましい。
According to the present invention, in the measurement of carbon concentration in a silicon crystal by Fourier transform infrared spectroscopy, a carbon-free standard sample of a carbon-free standard sample is obtained in accordance with the resistivity of the silicon crystal to be measured. There is provided a silicon crystalline carbon concentration measuring method characterized by adjusting and controlling a resistivity. In the silicon crystalline carbon concentration measuring method of the present invention, it is preferable that the resistivity of the carbon-free standard sample be doped and adjusted and controlled.

【0006】また、本発明によれば、フーリエ変換赤外
分光法によるシリコン結晶炭素濃度測定用カーボンフリ
ー標準試料であって、被測定シリコン結晶のn型または
p型及びその抵抗率に相応してドーピング制御されてな
るシリコン結晶炭素濃度測定用のカーボンフリー標準試
料が提供される。本発明のシリコン結晶炭素濃度測定用
のカーボンフリー標準試料において、前記カーボンフリ
ー標準試料のドーピング制御が、前記被測定シリコン結
晶がn型であって、その抵抗率が1.5Ωcm以上では
ノンドーピングに、1.5未満〜1.0Ωcmではn型
で1.5Ωcmになるように、1.0未満〜0.5Ωc
mではn型で1.0Ωcmになるように、それぞれ制御
されてなることが好ましく、また、前記被測定シリコン
結晶がp型であって、その抵抗率が20Ωcm以上では
ノンドーピングに、20未満〜15Ωcmではp型で2
0Ωcmになるように、15未満〜10Ωcmではp型
で15Ωcmになるように、10未満〜5Ωcmではp
型で10Ωcmになるように、5未満〜1.5Ωcmで
はp型で5Ωcmになるように、1.5未満〜1.0Ω
cmではp型で1.5Ωcmになるように、1.0未満
〜0.5Ωcmではp型で1.0Ωcmになるように、
それぞれ制御されてなることが好ましい。
According to the present invention, a carbon-free standard sample for measuring silicon crystal carbon concentration by Fourier transform infrared spectroscopy, which corresponds to the n-type or p-type of a silicon crystal to be measured and its resistivity. A carbon-free standard sample for measuring the concentration of silicon crystalline carbon, which is controlled in doping, is provided. In the carbon-free standard sample for measuring the silicon crystal carbon concentration of the present invention, the doping control of the carbon-free standard sample is such that when the measured silicon crystal is n-type and the resistivity thereof is 1.5 Ωcm or more, non-doping is performed. , Less than 1.5 to 1.0 Ωcm, less than 1.0 to 0.5 Ωc so that n type has a resistance of 1.5 Ωcm.
m is preferably controlled so that the n-type becomes 1.0 Ωcm, and when the silicon crystal to be measured is p-type and the resistivity thereof is 20 Ωcm or more, non-doping is less than 20. 2 at p type at 15 Ωcm
0 Ωcm, less than 15 to 10 Ωcm p-type at 15 Ωcm, less than 10 to 5 Ωcm p
Less than 1.5 to less than 1.0 Ω, less than 5 to less than 1.5 Ωcm for p-type less than 1.5 to less than 1.0 Ω
cm, p-type has a resistance of 1.5 Ωcm, and less than 1.0 to 0.5 Ωcm has a p-type of 1.0 Ωcm.
Each is preferably controlled.

【0007】本発明は上記のように構成され、リファレ
ンスとして用いるカーボンフリーの標準試料が、被測定
シリコン結晶の抵抗率に相応する抵抗率を有するように
ドーピング制御されることから、600cm-1近傍に現
れる炭素による赤外吸収以外の赤外吸収を相殺すること
ができベースラインが水平に安定され、被測定シリコン
結晶中の炭素濃度を炭素の赤外吸収ピークから精度よく
低濃度まで測定することができる。また、上記のよう
に、FT−IR法によりシリコン結晶中の置換型炭素濃
度を精度よく低濃度まで測定するためには、被測定シリ
コン結晶のn型またはp型及びその抵抗率に相応するn
またはp型と抵抗率を有するレファレンスを要し、本発
明の所定にドーピング制御されたカーボンフリー標準試
料は、被測定シリコン結晶のn型またはp型に対応して
抵抗率値を所定の範囲に区分し、各範囲に対応する抵抗
率を有するように予め用意できることから、各種抵抗率
のシリコン結晶中の炭素濃度をFT−IR法で簡便に測
定することができる。
[0007] The present invention is configured as described above, standard samples of carbon-free use as references, from being doped controlled to have a resistivity corresponding to the resistivity of the measured silicon crystal, 600 cm -1 vicinity The infrared absorption other than the infrared absorption caused by carbon can be canceled out, the baseline is stabilized horizontally, and the carbon concentration in the measured silicon crystal can be accurately measured from the infrared absorption peak of carbon to a low concentration. You can Further, as described above, in order to accurately measure the substitutional carbon concentration in the silicon crystal to a low concentration by the FT-IR method, n-type or p-type of the measured silicon crystal and n corresponding to the resistivity thereof are measured.
Alternatively, the predetermined doping-controlled carbon-free standard sample of the present invention, which requires a reference having p-type and resistivity, has a resistivity value within a predetermined range corresponding to the n-type or p-type of the silicon crystal to be measured. Since it can be classified and prepared in advance so as to have the resistivity corresponding to each range, the carbon concentration in the silicon crystal of various resistivity can be easily measured by the FT-IR method.

【0008】[0008]

【発明の実施の形態】先ず、発明者らが、いかに被測定
シリコン結晶の抵抗率に対応させカーボンフリー標準試
料の抵抗率をドーピング制御する本発明に到ったか説明
する。カーボンの赤外吸収ピークが604cm-1である
ことはよく知られており、その近傍に現れる吸収ピーク
の影響を受けることは容易に推測された。そのため、先
ずシリコン単結晶の赤外吸収スペクトルにおいて600
cm-1近傍で赤外吸収を発生する要素を検討し、主に下
記の3要素(i)キャリアによる赤外吸収、(ii)シリ
コン結晶の格子振動による赤外吸収、及び(iii) 置換型
炭素による赤外吸収により支配されていることを基本に
して検討した。また、各要素は下記のような特性を有す
ることが確認された。
BEST MODE FOR CARRYING OUT THE INVENTION First, it will be described how the inventors have reached the present invention in which the resistivity of a carbon-free standard sample is controlled by doping in accordance with the resistivity of a silicon crystal to be measured. It is well known that the infrared absorption peak of carbon is 604 cm -1 , and it was easily presumed that it is affected by the absorption peak appearing in the vicinity thereof. Therefore, firstly, in the infrared absorption spectrum of the silicon single crystal, 600
The elements that generate infrared absorption in the vicinity of cm -1 were examined. The following three elements were mainly used: (i) infrared absorption by carriers, (ii) infrared absorption by lattice vibration of silicon crystals, and (iii) substitution type The study was based on the fact that it is dominated by infrared absorption by carbon. In addition, it was confirmed that each element has the following characteristics.

【0009】(i)キャリアによる赤外吸収(αe ) 半導体用のシリコン単結晶は、通常、電気抵抗率を変化
させるため、上記のようにリン、ひ素、ボロン等の3族
または5族の元素をドーパントとして微量添加して、n
型やp型の半導体に対応させている。添加されたドーパ
ントのキャリアによる赤外吸収はそのキャリア濃度によ
って下記の数式1で計算することができる。なお下記数
式1において、各係数はそれぞれαe(ν):キャリアの
吸収係数、ν:波数、к:シリコンの比誘電率、N:キ
ャリア濃度、μ:キャリア移動度、m* :キャリアの有
効質量、ε0 :真空誘電率、c:真空中の光速、δ0
電気伝導度を表わす。
(I) Infrared absorption by carrier (α e ) Since a silicon single crystal for semiconductors usually changes electric resistivity, as described above, it belongs to a group 3 or 5 group such as phosphorus, arsenic and boron. Adding a small amount of an element as a dopant,
Type and p-type semiconductors. The infrared absorption by the carrier of the added dopant can be calculated by the following formula 1 according to the carrier concentration. In the following formula 1, each coefficient is α e (ν): absorption coefficient of carrier, ν: wave number, κ: relative permittivity of silicon, N: carrier concentration, μ: carrier mobility, m * : effective carrier Mass, ε 0 : vacuum permittivity, c: speed of light in vacuum, δ 0 :
Indicates electrical conductivity.

【0010】[0010]

【数1】 [Equation 1]

【0011】上記数式1において、シリコン結晶抵抗率
が1Ωcmと1KΩcmの場合について、それぞれ吸収
係数αe(ν)と波数ν(cm-1)を算出しその関係を図
1に示した。この結果、キャリアによる赤外吸収は、シ
リコン単結晶中のキャリア濃度が大きくなるほど大きく
なる。即ち、抵抗率が低くなるほど大きくなり、また、
低波数ほど吸収が大きいことが明らかとなった。
In the above equation 1, the absorption coefficient α e (ν) and the wave number ν (cm -1 ) were calculated for the cases where the silicon crystal resistivity is 1 Ωcm and 1 KΩcm, and the relationship is shown in FIG. As a result, the infrared absorption by the carrier increases as the carrier concentration in the silicon single crystal increases. That is, the lower the resistivity, the greater it becomes.
It became clear that the lower the wave number, the greater the absorption.

【0012】(ii)シリコン結晶格子振動による赤外吸
収(αp ) シリコン結晶の格子振動による赤外吸収係数αp(ν)を
測定し、その結果を図2に示した。これからもシリコン
結晶が、周知の通り614cm-1付近を中心に大きなピ
ークを持つ赤外吸収が発生することが確認された。
(Ii) Infrared absorption due to silicon crystal lattice vibration (α p ) The infrared absorption coefficient α p (ν) due to the lattice vibration of silicon crystal was measured, and the result is shown in FIG. It was also confirmed from this that, as is well known, infrared absorption having a large peak centered around 614 cm −1 occurs, as is well known.

【0013】(iii)シリコン結晶中の置換型炭素による
赤外吸収(αc ) 置換型炭素の赤外吸収係数αc(ν)は、604cm-1
ピークを持ち、シリコン結晶の格子振動による赤外吸収
係数αp(ν)に比し、極めて小さいことは、既によく知
られている。
(Iii) Infrared absorption by substitutional carbon in silicon crystal (α c ) The infrared absorption coefficient α c (ν) of substitutional carbon has a peak at 604 cm −1 , which depends on the lattice vibration of the silicon crystal. It is already well known that the infrared absorption coefficient is extremely smaller than the infrared absorption coefficient α p (ν).

【0014】半導体用シリコン単結晶の赤外吸収スペク
トルにおける600cm-1近傍での赤外吸収は、上記3
要素が主であり、赤外吸収スペクトルの測定において
は、各要素の赤外吸収係数の和α=αe(ν)+αp(ν)
+αc(ν)が関与することになる。一方、CZ法で製造
したシリコン単結晶を2mm厚さのディスク状に形成し
た測定用試料に赤外光を垂直入射させて透過光量を測定
すると、透過光量(I)は、表面での多重反射が生じる
ため下記数式2で表わされる。数式2において、Iは透
過光量、I0 は入射光量、dはサンプルの厚さ、Rはシ
リコンの反射率をそれぞれ表わす。
The infrared absorption spectrum near 600 cm -1 in the infrared absorption spectrum of the silicon single crystal for semiconductor has the above-mentioned 3
The elements are mainly, and in the measurement of infrared absorption spectrum, the sum of the infrared absorption coefficients of each element α = α e (ν) + α p (ν)
+ Α c (ν) will be involved. On the other hand, when the amount of transmitted light is measured by vertically injecting infrared light into a measurement sample in which a silicon single crystal manufactured by the CZ method is formed into a disc shape with a thickness of 2 mm, the amount of transmitted light (I) is the multiple reflection on the surface. Therefore, it is represented by the following mathematical formula 2. In Formula 2, I represents the amount of transmitted light, I 0 represents the amount of incident light, d represents the thickness of the sample, and R represents the reflectance of silicon.

【0015】[0015]

【数2】 [Equation 2]

【0016】また、差吸光度スペクトルAは、被測定シ
リコン結晶試料サンプルと標準試料の炭素フリーレファ
レンスとの透過光量から、次の数式3のように表わすこ
とができる。数式3において、Isam はサンプルの透過
光量、Iref は炭素フリーレファレンスの透過光量をそ
れぞれ表わす。 数式3:A=log(Isam /Iref-1
The differential absorption spectrum A can be expressed by the following expression 3 from the amount of transmitted light between the silicon crystal sample sample to be measured and the carbon free reference of the standard sample. In Equation 3, I sam represents the transmitted light amount of the sample, and I ref represents the transmitted light amount of the carbon free reference. Formula 3: A = log (I sam / I ref ) −1

【0017】次いで、上記赤外吸収の3要素の変化の影
響について検討した。即ち、CZ法によるシリコン単結
晶中のキャリアによる赤外吸収のメカニズムについて、
600cm-1近傍の赤外吸収を上記3要素の赤外吸収係
数の和α=αe(ν)+αp(ν)+αc(ν)であるとみな
し、そのシミュレーションを行って考察した。また、サ
ンプルとカーボンフリーレファレンスの抵抗率を変えた
とき、赤外差吸光度スペクトルAがどのようになるかシ
ミュレートして考察した。即ち、炭素濃度はいずれもフ
リー、即ちゼロで、被測定シリコン単結晶サンプルとし
て、厚さ2mm、抵抗率1Ωcm(リンドープ)のもの
を、標準試料レファレンスとして同様に厚さ2mm、抵
抗率1Ωcm(リンドープ)のものを用いるという条件
で差吸光度スペクトルAについて600cm-1近傍につ
いてシミュレートさせた。その結果は図3に示したよう
にベースラインが水平となることが認められた。
Next, the influence of changes in the three elements of infrared absorption was examined. That is, regarding the mechanism of infrared absorption by carriers in the silicon single crystal by the CZ method,
The infrared absorption in the vicinity of 600 cm −1 was regarded as the sum α = α e (ν) + α p (ν) + α c (ν) of the infrared absorption coefficients of the above three elements, and the simulation was performed and considered. Moreover, when the resistivity of the sample and the carbon-free reference were changed, the infrared absorption spectrum A was simulated and considered. That is, the carbon concentration is free, that is, zero, and a silicon single crystal sample to be measured having a thickness of 2 mm and a resistivity of 1 Ωcm (phosphorus-doped) is similarly used as a standard sample reference having a thickness of 2 mm and a resistivity of 1 Ωcm (phosphorus-doped). The differential absorption spectrum A was simulated in the vicinity of 600 cm −1 under the condition that the above ( 1 ) was used. As a result, it was confirmed that the baseline was horizontal as shown in FIG.

【0018】一方、同様に炭素濃度フリー、厚さ2mm
で、抵抗率1Ωcm(リンドープ)のサンプルと抵抗率
1kΩcm(nタイプ)のレファレンスについて、差吸
光度スペクトルAについて600cm-1近傍についてシ
ミュレートさせ、その結果を多重反射成分を加えた吸光
度(実線)及び多重反射成分を加えない吸光度(破線)
として図4に示した。図4によれば低波数になるほど吸
光度が高くなり、ベースラインが傾くことが明らかにな
り、また、約610cm-1から約620cm-1の領域で
は、多重反射成分を加えた吸光度、即ち赤外吸収に大き
な凹みが生じること、その生じた凹みの結果、多重反射
成分を加えた吸光度が多重反射成分を加えない吸光度と
ほぼ一致することが明らかである。更に、このシミュレ
ーションによる差吸光度の凹みは、前記した実測により
得られたシリコン結晶の赤外吸収スペクトルの図2に示
されたシリコンの格子振動に基づく赤外吸収ピークの大
きな領域に一致することが明らかである。
On the other hand, similarly, the carbon concentration is free and the thickness is 2 mm.
Then, with respect to the reference having the resistivity of 1 Ωcm (phosphorus-doped) and the reference of the resistivity of 1 kΩcm (n type), the differential absorption spectrum A was simulated at about 600 cm −1 , and the result was calculated by measuring the absorbance (solid line) and the multiple reflection component. Absorbance without adding multiple reflection components (dashed line)
Is shown in FIG. According to FIG. 4, it becomes clear that the lower the wave number is, the higher the absorbance becomes, and the baseline is inclined. In addition, in the region of about 610 cm −1 to about 620 cm −1 , the absorbance, that is, the infrared ray including the multiple reflection component, is increased. It is clear that the absorption has a large dent, and as a result of the dent, the absorbance with the multiple reflection component added is almost the same as the absorbance without the multiple reflection component added. Further, the dent of the differential absorbance by this simulation may coincide with the large infrared absorption peak region based on the lattice vibration of silicon shown in FIG. 2 of the infrared absorption spectrum of the silicon crystal obtained by the above-mentioned actual measurement. it is obvious.

【0019】これらのシミュレーション及び実測データ
から、シリコンの格子振動による赤外吸収αp が強く大
きいため、このシリコンの格子振動赤外吸収αp により
支配される610〜620cm-1領域では、多重反射が
抑制され、被測定シリコン結晶のサンプルの格子振動吸
収とドーパントのキャリア吸収とによる多重反射に基づ
く吸収が弱くなるため、多重反射の影響をあまり受けな
いことが明らかとなった。一方、上記領域以外の610
cm-1以下及び620cm-1以上の領域では、シリコン
の格子振動による赤外吸収αp が弱く小さくシリコン格
子振動赤外吸収αp により支配されないため、上記61
0〜620cm-1領域とは逆に、多重反射の効果が高
く、被測定シリコン結晶のサンプル中の多重反射にもと
づく吸収が強くなる。その結果、αp の値が小さい61
0cm-1以下及び620cm-1以上の領域においては、
前記の通り数式1のシミュレートにより、キャリア吸収
αe の吸光度線は低波数にいくほど連続的に吸収が強く
なるという結果から、多重反射成分を加えない吸光度線
に一致するキャリア吸収αe の吸光度線をベースライン
とすれば、610cm-1以下及び620cm-1以上の領
域では、被測定シリコン結晶サンプルのフォノンとキャ
リア吸収による多重反射に基づく吸収分だけ、上記61
0〜620cm-1領域に比し吸光度が強くなることが確
認される。従って、上述の差吸光度スペクトルAの数式
3に、カーボンフリーで抵抗率1kΩcmのレファレン
スの赤外吸収はシリコンのフォノンのみであると仮定し
て、透過光量を代入すると下記数式4になる。
From these simulations and measured data, since the infrared absorption α p due to the lattice vibration of silicon is strong and large, multiple reflection occurs in the 610 to 620 cm −1 region dominated by the lattice vibration infrared absorption α p of this silicon. Is suppressed and the absorption due to the multiple reflection due to the lattice vibration absorption of the sample of the silicon crystal to be measured and the carrier absorption of the dopant becomes weak, so that it is clarified that the multiple reflection is hardly affected. On the other hand, 610 other than the above area
Because cm -1 in the following and 620 cm -1 or more regions not governed by the infrared absorption alpha p is weak smaller silicon lattice vibration infrared absorption alpha p due to lattice vibrations of the silicon, the 61
Contrary to the 0-620 cm −1 region, the effect of multiple reflection is high, and the absorption due to multiple reflection in the sample of the silicon crystal to be measured becomes strong. As a result, the value of α p is small 61
In the region of 0 cm -1 or less and 620 cm -1 or more,
As described above, by simulating Equation 1, the absorption line of the carrier absorption α e becomes continuously stronger as the wave number becomes lower. From the result that the absorption line of the carrier absorption α e that does not add the multiple reflection component if absorbance line and baseline, in 610 cm -1 or less and 620 cm -1 or more areas, only absorption amount based on the multiple reflection by the phonon and carrier absorption of the measured silicon crystal sample, the 61
It is confirmed that the absorbance is stronger than that in the 0 to 620 cm −1 region. Therefore, assuming that the infrared absorption of the carbon-free reference having a resistivity of 1 kΩcm is only the phonon of silicon, the following formula 4 is obtained by substituting the transmitted light amount into the formula 3 of the differential absorption spectrum A.

【0020】[0020]

【数4】 (Equation 4)

【0021】上記数式4においてαp の値が小さくなる
と、右辺第2項の値が大きくなり吸光度の値が大きくな
ることから計算数式上でも、上述の考察が正しいことが
証明される。これらの結果によれば、差吸光度スペクト
ルAの値は、図4に示されるように多重反射成分を加え
ない吸光度曲線をベースラインとすることにより610
cm-1以下と620cm-1以上の領域で吸光度の値が大
きくなるため、即ち、炭素による小さな弱い赤外吸収ピ
ークが現れる604cm-1前後の領域で吸収が強くなり
吸光度の傾きが大きく変化するため、炭素濃度、特に低
い炭素濃度の測定精度が低下することが明らかである。
即ち、炭素濃度を測定する際は、サンプルとレファレン
スの抵抗率を同じか、ごく近い値にすることによって、
サンプルとレファレンスの吸光度の多重反射成分がほぼ
同一の値となり、両者の差をみた場合のベースラインが
直線で近似されるので、炭素濃度の測定精度を向上させ
ることができることが実測データ及び上記各数式による
シミュレーション結果から明らかである。更に、下記の
実施例からもそのことが裏付けられる。本発明で用いる
レファレンスの標準試料は、上記のように被測定シリコ
ン結晶のn型またはp型及びその抵抗率と相応させるも
のであり、被測定シリコン結晶が所定以上の抵抗率を有
する場合は、レファレンスの標準試料にはFZ法で得ら
れたカーボンフリー(1×1015atoms/cm3
満)のシリコン単結晶を用いることができる。一方、被
測定シリコン単結晶が所定未満の抵抗率を有する場合
は、レファレンスの標準試料は、被測定シリコン結晶に
相応する所定のキャリア元素でn型またはp型に調整す
ると共に、相応する抵抗率となるように所定に濃度調整
してドーピングにより調整制御されCZ法で製造された
カーボンフリーのシリコン単結晶を用いることができ
る。この場合、実質的に1×1015atoms/cm3
未満のカーボンフリーとなるように、できる限り炭素が
混入しない環境において引上げられたCZ法で製造され
たシリコン単結晶で、さらに炭素濃度の低くなるヘッド
部分を用いることが好ましい。
When the value of α p in Equation 4 becomes small, the value of the second term on the right side becomes large and the value of absorbance also becomes large. Therefore, it is proved that the above consideration is correct in the calculation equation. According to these results, the value of the differential absorbance spectrum A is 610 by setting the absorbance curve without adding multiple reflection components as the baseline as shown in FIG.
Since the value of the absorbance in cm -1 or less and 620 cm -1 or more areas is increased, i.e., the slope of small weak infrared absorption peak appears 604cm -1 absorbance strong absorption before and after the region by carbon is greatly changed Therefore, it is clear that the measurement accuracy of the carbon concentration, particularly the low carbon concentration, decreases.
That is, when measuring the carbon concentration, by setting the resistivity of the sample and the reference to be the same or very close,
The multiple reflection components of the absorbance of the sample and the reference are almost the same value, and the baseline when looking at the difference between the two is approximated by a straight line, so it is possible to improve the measurement accuracy of the carbon concentration and the measured data and the above It is clear from the simulation result by the mathematical formula. Further, this is supported by the following examples. The reference standard sample used in the present invention is made to correspond to the n-type or p-type of the silicon crystal to be measured and the resistivity thereof as described above, and when the silicon crystal to be measured has a specific resistance or more, As a reference standard sample, a carbon-free (less than 1 × 10 15 atoms / cm 3 ) silicon single crystal obtained by the FZ method can be used. On the other hand, when the silicon single crystal to be measured has a resistivity lower than a predetermined value, the reference standard sample is adjusted to n-type or p-type with a predetermined carrier element corresponding to the silicon crystal to be measured, and has a corresponding resistivity. It is possible to use a carbon-free silicon single crystal that is manufactured by the CZ method, whose concentration is adjusted to a predetermined value so as to be adjusted and controlled by doping. In this case, substantially 1 × 10 15 atoms / cm 3
It is preferable to use a silicon single crystal manufactured by the CZ method that is pulled up in an environment where carbon is not mixed as much as possible so that the carbon content is less than less, and a head portion having a further lower carbon concentration.

【0022】[0022]

【実施例】本発明について実施例に基づき、更に詳細に
説明する。但し、本発明は、下記の実施例に制限される
ものでない。 実施例1 FZ法シリコン単結晶から製造したカーボンフリー(カ
ーボン濃度1×1015atoms/cm3 未満)でノン
ドープの100kΩcmの抵抗率を有するシリコンウエ
ハ(S1)と、CZ法でリン(P)をドーパントとして
添加されたシリコン単結晶から製造したn型のシリコン
ウエハの抵抗率がそれぞれ1.575Ωcm(S2)、
1.46Ωcm(S3)、1.324Ωcm(S4)、
0.851Ωcm(S5)で、置換型カーボン濃度約1
×1015atoms/cm3 〜5×1015atoms/
cm3 のn型シリコンウエハの5枚の試料を準備した。
S1をレファレンスの標準試料として用い、S2、S
3、S4及びS5のシリコンウエハについてそれぞれF
T−IR法で赤外吸収を測定した。得られた各差吸光度
スペクトルを図5〜図8に示した。
EXAMPLES The present invention will be described in more detail based on examples. However, the present invention is not limited to the following examples. Example 1 A carbon-free (carbon concentration of less than 1 × 10 15 atoms / cm 3 ) non-doped silicon wafer (S1) manufactured from an FZ method silicon single crystal and phosphorus (P) by the CZ method were used. The resistivity of an n-type silicon wafer manufactured from a silicon single crystal added as a dopant is 1.575 Ωcm (S2),
1.46 Ωcm (S3), 1.324 Ωcm (S4),
0.851 Ωcm (S5), substitutional carbon concentration of about 1
× 10 15 atoms / cm 3 to 5 × 10 15 atoms /
Five samples of cm 3 n-type silicon wafers were prepared.
S1 is used as a reference standard sample, S2, S
F for silicon wafers S3, S4 and S5 respectively
Infrared absorption was measured by the T-IR method. The obtained differential absorption spectra are shown in FIGS. 5 to 8.

【0023】図5〜図8の結果から明らかなように、S
1及びS2の約1.5Ωcmまでの抵抗率のシリコンウ
エハではシリコンの格子振動の614cm-1付近に凹み
が発生していないが、S3及びS4の1.4Ωcm以下
の抵抗率のシリコンウエハでは次第に凹みが生じている
ことが分かる。このような凹みの発生が観察される抵抗
率を有するシリコンウエハのFT−IR法による赤外吸
収測定においては、前記考察した結果から標準試料のレ
ファレンスとして同等の抵抗率のカーボンフリーのシリ
コンウエハを用いる必要があることが分かる。
As is clear from the results shown in FIGS.
In the silicon wafers with a resistivity of up to about 1.5 Ωcm of 1 and S2, no dent was generated near 614 cm −1 of the lattice vibration of silicon, but with the silicon wafers of S3 and S4 with a resistivity of 1.4 Ωcm or less, it gradually became. It can be seen that there is a dent. In the infrared absorption measurement by the FT-IR method of the silicon wafer having the resistivity in which the generation of such a dent is observed, the carbon-free silicon wafer having the same resistivity as the reference of the standard sample is determined from the above-mentioned results. It turns out that it needs to be used.

【0024】次いで、抵抗率が約0.8Ωcmとなるよ
うにリンをドープさせたCZ法シリコン単結晶のヘッド
部分から切り出してシリコンウエハを製造した。得られ
たカーボンフリーで抵抗率0.874Ωcmのn型シリ
コンウエハをレファレンスに用い、上記S5のシリコン
ウエハについて同様に赤外吸収を測定した。その結果を
図9に示した。図9より明らかなように、レファレンス
にほぼ同等の抵抗率のカーボンフリーのシリコンウエハ
を用いることによりシリコン格子振動吸収領域614c
-1付近の凹みが消滅しベースラインがほぼ水平にな
り、置換型カーボンによる604cm-1の赤外吸収ピー
クがシャープとなりその濃度測定が容易となることが分
かる。
Next, a silicon wafer was manufactured by cutting from a head portion of a CZ method silicon single crystal doped with phosphorus so that the resistivity was about 0.8 Ωcm. Using the obtained carbon-free n-type silicon wafer having a resistivity of 0.874 Ωcm as a reference, infrared absorption was similarly measured for the silicon wafer of S5. The results are shown in Fig. 9. As is clear from FIG. 9, the silicon lattice vibration absorption region 614c can be formed by using a carbon-free silicon wafer having substantially the same resistivity as the reference.
It can be seen that the dent near m −1 disappears, the baseline becomes almost horizontal, the infrared absorption peak at 604 cm −1 by the substitutional carbon becomes sharp, and the concentration measurement becomes easy.

【0025】実施例2 CZ法でボロン(B)をドーパントとして添加されたシ
リコン単結晶から製造したp型のシリコンウエハの抵抗
率がそれぞれ20.4Ωcm(S6)、10.12Ωc
m(S7)で、置換型カーボン濃度約3×1016ato
ms/cm3 のp型シリコンウエハについて、実施例1
と同様にS1をレファレンスとして用いFT−IR法で
赤外吸収を測定した。得られた各差吸光度スペクトルを
図10に示した。図10において、20.4ΩcmのS
6では614cm-1付近に凹みが発生しないが、S7で
は大きな凹みが発生していることが分かる。なお、n型
に比しp型のシリコンウエハの方が、シリコン格子振動
吸収領域の凹みが大きくなるのは、p型のキャリアBの
吸収係数が大きいためである。
Example 2 A p-type silicon wafer manufactured from a silicon single crystal doped with boron (B) as a dopant by the CZ method has a resistivity of 20.4 Ωcm (S6) and 10.12 Ωc, respectively.
m (S7), the substitutional carbon concentration is about 3 × 10 16 ato
Example 1 for a p-type silicon wafer of ms / cm 3
Infrared absorption was measured by the FT-IR method using S1 as a reference similarly to. The obtained differential absorption spectra are shown in FIG. In FIG. 10, S of 20.4 Ωcm
It can be seen that in No. 6, no dent is generated near 614 cm -1 , but in S7, a large dent is generated. The p-type silicon wafer has larger depressions in the silicon lattice vibration absorption region than the n-type because the absorption coefficient of the p-type carrier B is large.

【0026】また、抵抗率が約10Ωcmとなるように
ボロンをドープさせたCZ法シリコン単結晶のヘッド部
分から切り出してシリコンウエハを製造した。得られた
カーボンフリーで抵抗率10.25Ωcmのシリコンウ
エハをレファレンスに用い、上記S7のシリコンウエハ
について同様に赤外吸収を測定した。その結果を図11
に示した。図10及び11の結果から明らかなように、
p型シリコンウエハにおいてもFT−IR法による赤外
吸収カーボン濃度測定のレファレンスに用いる標準試料
の抵抗率を、被測定シリコンウエハの抵抗率とほぼ同様
にすることによりベースラインがほぼ水平化されカーボ
ン赤外吸収ピークを濃度測定に用いることができるよう
になることが分かる。
Further, a silicon wafer was manufactured by cutting out from a head portion of a CZ method silicon single crystal doped with boron so as to have a resistivity of about 10 Ωcm. Using the obtained carbon-free silicon wafer having a resistivity of 10.25 Ωcm as a reference, infrared absorption was similarly measured for the silicon wafer of S7. The result is shown in FIG.
It was shown to. As is clear from the results of FIGS. 10 and 11,
Also in the p-type silicon wafer, the resistivity of the standard sample used for the reference of the infrared absorption carbon concentration measurement by the FT-IR method is made almost the same as the resistivity of the silicon wafer to be measured, so that the baseline is almost leveled and the carbon is leveled. It can be seen that the infrared absorption peak can be used for concentration measurement.

【0027】以上の結果から、シリコンウエハのFT−
IR法による赤外吸収カーボン濃度測定において、被測
定シリコンウエハがn型では約1.5Ωcmまで、p型
シリコンウエハでは約20Ωcmまでの抵抗率を有する
場合は、標準試料としてノンドープの約数kΩcmの高
抵抗率のカーボンフリーシリコンエウハをレファレンス
に用いることができるが、それより低い抵抗率、即ちキ
ャリア濃度が高いシリコンウエハの測定においては、カ
ーボンフリーのシリコンウエハにそれぞれキャリア元素
をドーピングして被測定シリコンウエハとほぼ同等の抵
抗率を有するようにして用いることにより、シリコン格
子振動吸収領域に凹みを発生させることなく、安定した
水平のベースラインを確保できシャープなカーボンピー
クが得られ濃度測定が容易となることが明らかである。
From the above results, the FT- of the silicon wafer
In the infrared absorption carbon concentration measurement by the IR method, when the silicon wafer to be measured has a resistivity of up to about 1.5 Ωcm for the n-type and a resistivity of up to about 20 Ωcm for the p-type silicon wafer, a non-doped sample of about several kΩcm is used as a standard sample. High-resistivity carbon-free silicon wafer can be used as a reference, but in the case of measurement of silicon wafers having lower resistivity, that is, higher carrier concentration, carbon-free silicon wafers are doped with a carrier element respectively. By using the silicon wafer with a resistivity almost equal to that of the measurement silicon wafer, a stable horizontal baseline can be secured without forming a dent in the silicon lattice vibration absorption region, and a sharp carbon peak can be obtained for concentration measurement. Obviously it will be easier.

【0028】[0028]

【発明の効果】本発明のシリコン結晶炭素濃度測定法
は、FT−IR法による赤外吸収カーボンピークから濃
度を定量的に測定する際、被測定シリコン結晶の抵抗率
に相応するように所定の抵抗率を有する標準試料を用い
ることにより、従来法の特定し難かったベースラインを
水平化することができることから、特に低い炭素濃度が
的確に精度よく測定でき、どのような炭素濃度も正確に
測定することができる。また、各シリコン結晶の抵抗率
に相応する所定の抵抗率のカーボンフリーの標準試料を
予め用意できることから、簡便に、且つ、容易にFT−
IR法でシリコン結晶の炭素濃度を測定することができ
る。
According to the method for measuring the concentration of silicon crystal carbon of the present invention, when the concentration is quantitatively measured from the infrared absorption carbon peak by the FT-IR method, a predetermined value is determined so as to correspond to the resistivity of the silicon crystal to be measured. By using a standard sample with resistivity, the baseline, which was difficult to identify in the conventional method, can be leveled, so particularly low carbon concentration can be measured accurately and accurately, and any carbon concentration can be measured accurately. can do. In addition, since a carbon-free standard sample having a predetermined resistivity corresponding to the resistivity of each silicon crystal can be prepared in advance, it is easy and easy to perform FT-
The carbon concentration of silicon crystals can be measured by the IR method.

【図面の簡単な説明】[Brief description of drawings]

【図1】シリコン結晶中のキャリア濃度による赤外吸収
係数と波数とを計算により求めた関係図
FIG. 1 is a relationship diagram obtained by calculating an infrared absorption coefficient and a wave number depending on a carrier concentration in a silicon crystal.

【図2】シリコン格子振動による赤外吸収係数と波数と
の実測関係図
[Fig. 2] Actual measurement relationship diagram between infrared absorption coefficient and wave number due to silicon lattice vibration

【図3】被測定シリコンと標準試料との抵抗率を相応さ
せるようにして600cm-1近傍でシミュレーション結
果の赤外吸光度曲線
FIG. 3 is an infrared absorption curve of a simulation result in the vicinity of 600 cm −1 so that the resistivity of the silicon to be measured is made to correspond to that of the standard sample.

【図4】被測定シリコンと標準試料との抵抗率を相応さ
せることなく多重反射成分を加算または非加算して60
0cm-1近傍でシミュレーション結果の赤外吸光度曲線
FIG. 4 is a diagram in which multiple reflection components are added or not added without making the resistivity of the silicon to be measured and the standard sample correspond to each other.
Infrared absorbance curve of simulation result near 0 cm -1

【図5】本発明の実施例1で測定したシリコンウエハS
2の赤外吸光度曲線
FIG. 5: Silicon wafer S measured in Example 1 of the present invention
2 infrared absorption curve

【図6】本発明の実施例1で測定したシリコンウエハS
3の赤外吸光度曲線
FIG. 6 is a silicon wafer S measured in Example 1 of the present invention.
Infrared absorbance curve of 3

【図7】本発明の実施例1で測定したシリコンウエハS
4の赤外吸光度曲線
FIG. 7: Silicon wafer S measured in Example 1 of the present invention
4 infrared absorption curve

【図8】本発明の実施例1で測定したシリコンウエハS
5の赤外吸光度曲線
FIG. 8 is a silicon wafer S measured in Example 1 of the present invention.
Infrared absorption curve of 5

【図9】標準試料として同等の抵抗率を有するカーボン
フリーのシリコンウエハを用いてn型シリコンウエハを
FT−IR法で測定した赤外吸光度曲線
FIG. 9 is an infrared absorption curve of an n-type silicon wafer measured by the FT-IR method using a carbon-free silicon wafer having the same resistivity as a standard sample.

【図10】被測定p型シリコンの抵抗率を変化させたと
きの赤外吸光度曲線
FIG. 10 is an infrared absorption curve when the resistivity of the p-type silicon to be measured is changed.

【図11】標準試料として同等の抵抗率を有するカーボ
ンフリーのシリコンウエハを用いてp型シリコンウエハ
をFT−IR法で測定した赤外吸光度曲線
FIG. 11 is an infrared absorption curve of a p-type silicon wafer measured by the FT-IR method using a carbon-free silicon wafer having an equivalent resistivity as a standard sample.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 フーリエ変換赤外分光法によるシリコン
結晶中の炭素濃度の測定において、被測定シリコン結晶
が有する抵抗率に相応して、カーボンフリー標準試料の
抵抗率を調整制御して測定することを特徴とするシリコ
ン結晶低炭素濃度測定法。
1. When measuring the carbon concentration in a silicon crystal by Fourier transform infrared spectroscopy, the resistivity of a carbon-free standard sample is adjusted and controlled according to the resistivity of the silicon crystal to be measured. A method for measuring a low carbon concentration in a silicon crystal characterized by:
【請求項2】 前記カーボンフリー標準試料の抵抗率
が、ドーピングにより調整制御される請求項1記載のシ
リコン結晶炭素濃度測定法。
2. The silicon crystalline carbon concentration measuring method according to claim 1, wherein the resistivity of the carbon-free standard sample is adjusted and controlled by doping.
【請求項3】 フーリエ変換赤外分光法によるシリコン
結晶炭素濃度測定用カーボンフリー標準試料であって、
被測定シリコン結晶のn型またはp型及びその抵抗率に
相応して、ドーピング制御されてなるシリコン結晶炭素
濃度測定用のカーボンフリー標準試料。
3. A carbon-free standard sample for measuring silicon crystal carbon concentration by Fourier transform infrared spectroscopy,
A carbon-free standard sample for measuring the silicon crystal carbon concentration, which is controlled in doping according to the n-type or p-type of the measured silicon crystal and its resistivity.
【請求項4】 前記カーボンフリー標準試料のドーピン
グ制御が、前記被測定シリコン結晶がn型であって、そ
の抵抗率が1.5Ωcm以上ではノンドーピング、1.
5未満〜1.0Ωcmではn型で1.5Ωcmになるよ
うに、1.0未満〜0.5Ωcmではn型で1.0Ωc
mになるように、それぞれ制御されてなる請求項3記載
のシリコン結晶炭素濃度測定用のカーボンフリー標準試
料。
4. The doping control of the carbon-free standard sample is performed by non-doping when the measured silicon crystal is n-type and the resistivity thereof is 1.5 Ωcm or more.
If less than 5 to 1.0 Ωcm, n type is 1.5 Ωcm. If less than 1.0 to 0.5 Ωcm, n type is 1.0 Ωc.
The carbon-free standard sample for measuring the silicon crystalline carbon concentration according to claim 3, wherein the carbon-free standard sample is controlled so as to have m.
【請求項5】 前記カーボンフリー標準試料のドーピン
グ制御が、前記被測定シリコン結晶がp型であって、そ
の抵抗率が20Ωcm以上ではノンドーピングに、20
未満〜15Ωcmではp型で20Ωcmになるように、
15未満〜10Ωcmではp型で15Ωcmになるよう
に、10未満〜5Ωcmではp型で10Ωcmになるよ
うに、5未満〜1.5Ωcmではp型で5Ωcmになる
ように、1.5未満〜1.0Ωcmではp型で1.5Ω
cmになるように、1.0未満〜0.5Ωcmではp型
で1.0Ωcmになるように、それぞれ制御されてなる
請求項3記載のシリコン結晶炭素濃度測定用のカーボン
フリー標準試料。
5. The doping control of the carbon-free standard sample is controlled to be non-doping when the measured silicon crystal is p-type and the resistivity thereof is 20 Ωcm or more.
Less than 15 Ωcm, so that the p-type becomes 20 Ωcm,
If it is less than 15 to 10 Ωcm, it becomes 15 Ωcm in p type, if it is less than 10 to 5 Ωcm, it becomes 10 Ωcm in p type, if it is less than 5 to 1.5 Ωcm, it becomes 5 Ωcm in p type, and less than 1.5 to 1 1.5Ω for p-type at 0.0Ωcm
4. The carbon-free standard sample for measuring the silicon crystalline carbon concentration according to claim 3, wherein the carbon-free standard sample is controlled so that it becomes less than 1.0 cm and less than 1.0 Ωcm, and p-type becomes 1.0 Ωcm.
JP9613096A 1996-03-26 1996-03-26 Carbon density measurement of silicon crystal and carbon-free standard sample therefor Pending JPH09260450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9613096A JPH09260450A (en) 1996-03-26 1996-03-26 Carbon density measurement of silicon crystal and carbon-free standard sample therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9613096A JPH09260450A (en) 1996-03-26 1996-03-26 Carbon density measurement of silicon crystal and carbon-free standard sample therefor

Publications (1)

Publication Number Publication Date
JPH09260450A true JPH09260450A (en) 1997-10-03

Family

ID=14156815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9613096A Pending JPH09260450A (en) 1996-03-26 1996-03-26 Carbon density measurement of silicon crystal and carbon-free standard sample therefor

Country Status (1)

Country Link
JP (1) JPH09260450A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162667A (en) * 2008-01-08 2009-07-23 Sumco Techxiv株式会社 Method and apparatus for measuring spectroscopic absorbance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162667A (en) * 2008-01-08 2009-07-23 Sumco Techxiv株式会社 Method and apparatus for measuring spectroscopic absorbance

Similar Documents

Publication Publication Date Title
KR20190042581A (en) Method of manufacturing resistivity standard sample and method of measuring resistivity of epitaxial wafer
Galazka et al. Melt growth and physical properties of bulk LaInO3 single crystals
JPH0449904B2 (en)
Black et al. Infrared techniques for semiconductor characterization
US5598452A (en) Method of evaluating a silicon single crystal
JP2790020B2 (en) Method for measuring substitutional carbon concentration in silicon single crystal and automatic measuring device
JPH09260450A (en) Carbon density measurement of silicon crystal and carbon-free standard sample therefor
US5891242A (en) Apparatus and method for determining an epitaxial layer thickness and transition width
Oates et al. Infrared measurements of interstitial oxygen in heavily doped silicon
Hopkins et al. Raman microprobe determination of local crystal orientation in laser annealed silicon
JP4353121B2 (en) Method for evaluating dopant contamination of semiconductor wafers
Ono et al. Quantitative detection of small amount of nitrogen in Czochralski-grown silicon crystals
US5099122A (en) Method for evaluation of transition region of silicon epitaxial wafer
JPH09283584A (en) Method of measuring carbon concn. measuring method in silicon crystal
JP4992996B2 (en) Nitrogen concentration measurement method and calculation method of proportional conversion factor for nitrogen concentration measurement
Kamiya et al. Optical absorption and Hall effect in (220) and (400) oriented polycrystalline silicon films
Waseda et al. Density measurement of a thin-film by the pressure-of-flotation method
JPS5950217B2 (en) Method for evaluating the amount of impurity doping in semiconductors
JP7218733B2 (en) Oxygen concentration evaluation method for silicon samples
Hwang et al. Measurement of carbon concentration in polycrystalline silicon using FTIR
JP3772587B2 (en) Evaluation method of nitrogen concentration in silicon single crystal wafer
JP3107638B2 (en) Measuring method of metal thin film quality
US5757003A (en) Method to determine the extent of oxygen precipitate in silicon
Goodman et al. Characterization of strained Si structures using SIMS and visible Raman
Holovský et al. Measurement of doping profiles by a contactless method of IR reflectance under grazing incidence

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050131