JPH0925868A - Impeller and fluid driving device using same - Google Patents

Impeller and fluid driving device using same

Info

Publication number
JPH0925868A
JPH0925868A JP7175749A JP17574995A JPH0925868A JP H0925868 A JPH0925868 A JP H0925868A JP 7175749 A JP7175749 A JP 7175749A JP 17574995 A JP17574995 A JP 17574995A JP H0925868 A JPH0925868 A JP H0925868A
Authority
JP
Japan
Prior art keywords
impeller
blade
fluid
drive
power transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7175749A
Other languages
Japanese (ja)
Inventor
Shigeru Iwanaga
茂 岩永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7175749A priority Critical patent/JPH0925868A/en
Publication of JPH0925868A publication Critical patent/JPH0925868A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Abstract

PROBLEM TO BE SOLVED: To realize high safety, high efficiency and low cost in an impeller for a fluid driving device using fluid energy for driving. SOLUTION: Single side open type front blades 61B, 63B are provided on the single sides of impeller base parts 61A, 63A, and single side open type rear blades 61C, 63C and power transmission bodies 67, 68 are provided on the other single sides of the impeller base parts 61A, 63A. Communicating holes 61D, 63D are provided to communicate the front blade 61B, 63B side with the rear blade 61C, 63C side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は集合住宅等の住棟セント
ラル給湯あるいは給湯暖房方式のように各住戸に強制循
環される高温の熱媒を動力源として利用する循環ポンプ
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a circulation pump that uses as a power source a high-temperature heat medium that is forcibly circulated in each dwelling unit such as a central hot water supply system or a hot water supply and heating system of a dwelling such as an apartment house.

【0002】[0002]

【従来の技術】従来の流体を駆動源とするポンプとし
て、例えば特開平3−279521号公報の図15に示
すような構成のものがある。
2. Description of the Related Art As a conventional pump using a fluid as a drive source, there is, for example, a structure shown in FIG. 15 of Japanese Patent Laid-Open No. 3-279521.

【0003】図15は、河川から河川水を取水し、河川
水の流れを利用して揚水するポンプで、軸流ランナ1を
有する横軸チューブラ型の水車2と単段インペラ3を備
えた横軸斜流型のポンプ4とが増速機5を介して一軸上
に結合され、ケーシング6内に収納されている。
FIG. 15 is a pump for taking river water from a river and pumping it by using the flow of the river water. A horizontal turbine equipped with an axial runner 1 and a horizontal turbine 2 and a single-stage impeller 3 are provided. An axial mixed flow type pump 4 is uniaxially connected via a speed increaser 5 and is housed in a casing 6.

【0004】この構成において、取水路上流の河川水は
その落差により吸込管7から流入して水車2を稼働させ
るとともに、増速機5を介して水車2で駆動されるポン
プ4によってその一部が加圧され送水管8を経て送水さ
れ、水車2を稼働させた河川水の大部分は取水路下流へ
放出されて河川下流へ流出する。
In this structure, the river water upstream of the intake channel flows in from the suction pipe 7 due to its head to operate the water turbine 2, and a part of it is driven by the pump 4 driven by the water turbine 2 via the speed increaser 5. Is pressurized and is sent through the water pipe 8, and most of the river water that has operated the water turbine 2 is discharged to the downstream of the intake channel and flows out to the downstream of the river.

【0005】また、従来の流体を駆動源とするポンプの
他の例として、実開昭58−195644号公報の図1
6に示すような構成のものがある。
As another example of a conventional pump using a fluid as a driving source, FIG. 1 of Japanese Utility Model Laid-Open No. 58-195644 is used.
There is a structure as shown in FIG.

【0006】図16は、配管系統を流れる流体の力で水
車を回してローラポンプ等の定量吐出装置を駆動し、微
量の薬液を吸引吐出して上記配管系統に注入するポンプ
で、配管系統9内を流れる流体の流量に比例した回転力
を得る羽根車群10で構成した水車の出力軸11を配管
系統外へ貫通突出させてポンプ部12の駆動軸13とを
連結したもので、出力軸11は軸受14、15で支持さ
れるとともに軸シール部材16でシールを行っている。
FIG. 16 is a pump for rotating a water wheel by the force of a fluid flowing through a pipe system to drive a constant amount discharge device such as a roller pump to suck and discharge a small amount of a chemical solution and inject it into the pipe system. An output shaft 11 of a water turbine composed of an impeller group 10 that obtains a rotational force proportional to the flow rate of a fluid flowing therein, is connected to a drive shaft 13 of a pump unit 12 by penetrating and protruding outside the piping system. 11 is supported by bearings 14 and 15 and is sealed by a shaft seal member 16.

【0007】この構成において、配管系統9内を流れる
流体の力で羽根車群10を流体の流量に比例して回転さ
せて水車を稼働させ、出力軸11を介して直結されたポ
ンプ部12を駆動し、薬液タンク17より薬液18をチ
ューブ19を通して吸引し配管系統内に吐出注入するも
のである。
In this structure, the impeller group 10 is rotated by the force of the fluid flowing in the piping system 9 in proportion to the flow rate of the fluid to operate the water turbine, and the pump portion 12 directly connected via the output shaft 11 is connected. It is driven to suck the chemical solution 18 from the chemical solution tank 17 through the tube 19 and inject it into the piping system.

【0008】また、従来の住棟セントラル用給湯暖房装
置の例としては図17に示すものがある。すなわち、熱
媒(高温湯)を各住戸に向けて循環させ各住戸にて熱媒
と給水管からの低温水とを熱交換し、給湯、暖房するも
ので、住棟セントラル用熱源機20に住棟の各階および
各住戸に向けて熱媒往管21が配設されるとともに、熱
媒往管21の端部にて連結される熱媒復管22が配設さ
れ熱源側熱媒系路23を形成し、この熱源側熱媒系路2
3に熱媒循環ポンプ24を設けている。
FIG. 17 shows an example of a conventional hot water supply / room heating device for central housing. That is, the heat medium (high-temperature hot water) is circulated toward each dwelling unit, and the heat medium and the low-temperature water from the water supply pipe are heat-exchanged at each dwelling unit to heat and heat the hot water. The heat medium outward pipe 21 is arranged toward each floor and each dwelling unit of the dwelling, and the heat medium return pipe 22 connected at the end of the heat medium outward pipe 21 is arranged. 23, and the heat source side heat medium passage 2
3 is provided with a heat medium circulation pump 24.

【0009】各住戸の給湯暖房装置25は、熱媒往管2
1と熱媒給湯往管26を接続し、第一制御弁27と熱媒
給湯復管28を経て熱媒復管22に接続して給湯一次側
系路29を形成し、入口側にて給水管30に連通し出口
側の先端に給湯栓31を有する給湯二次側系路32とを
熱交換関係にした給湯熱交換器33を備えている。熱媒
給湯往管26と熱媒給湯復管28に対して並列に熱媒暖
房往管34、第二制御弁35と熱媒暖房復管36にて形
成する暖房一次側系路37を設け、入口側にてシスター
ン38よりの暖房往管39に連通し出口側に暖房用放熱
器40、暖房復管41の順に配設して循環系路を形成す
る暖房二次側系路42とを熱交換関係にした暖房熱交換
器43を備えている。さらに、風呂追い焚き往管44、
シスターン38に内蔵した風呂追い焚き用熱交換器4
5、風呂追い焚き復管46の順に配設して構成した風呂
追い焚き系路47を浴槽48に接続している。また、暖
房往管39の系路に暖房用ポンプ49を、風呂追い焚き
系路47に風呂用ポンプ50を設けたものである。
The hot water supply / room heating device 25 of each dwelling unit is composed of the heat transfer pipe 2
1 is connected to the heat medium hot water supply forward pipe 26, and is connected to the heat medium return pipe 22 via the first control valve 27 and the heat medium hot water return pipe 28 to form a hot water supply primary side system passage 29, and water is supplied at the inlet side. A hot water supply heat exchanger 33 is provided which communicates with the pipe 30 and has a hot water supply secondary side system passage 32 having a hot water supply tap 31 at the end on the outlet side in a heat exchange relationship. A heating primary side system passage 37 formed by the heating medium heating outward pipe 34, the second control valve 35, and the heating medium heating return pipe 36 is provided in parallel with the heating medium hot water returning pipe 26 and the heating medium hot water returning pipe 28, A heating secondary side system passage 42 which communicates with the heating outward pipe 39 from the systurn 38 on the inlet side and a heating radiator 40 and a heating return pipe 41 are arranged on the outlet side in this order to form a circulation system passage A heating heat exchanger 43 in an exchange relationship is provided. In addition, the bath-fired forward pipe 44,
Heat exchanger 4 for bath reheating built in Sistern 38
5. A bath reheating system passage 47 configured by arranging the bath reheating recuperation pipe 46 in this order is connected to the bathtub 48. In addition, a heating pump 49 is provided in the system path of the heating outward pipe 39, and a bath pump 50 is provided in the bath reheating system path 47.

【0010】そして、上記給湯暖房装置25は、電気モ
ータにて駆動する暖房用ポンプ49を運転し暖房熱交換
器43にて得た高温湯を暖房用放熱器40に送り暖房
し、また電気モータにて駆動する風呂用ポンプ50を運
転して風呂追い焚き用熱交換器45にて得た高温湯を浴
槽48に送り風呂追い焚きをするものである。
The hot water supply / room heating device 25 operates the heating pump 49 driven by an electric motor to send the high temperature hot water obtained by the heating heat exchanger 43 to the heating radiator 40 for heating, and the electric motor. The high-temperature hot water obtained by the bath-exchanging heat exchanger 45 is driven to drive the bath pump 50, which is then driven to the bath, to supplement the bath.

【0011】また、電動モータを駆動源とするポンプと
して、実開昭57−40686号公報の図18に示すよ
うな構成のものがある。
Further, as a pump using an electric motor as a drive source, there is one having a structure as shown in FIG. 18 of Japanese Utility Model Laid-Open No. 57-40686.

【0012】図18は、電動モータ50mの駆動軸51
に固定した回転体52に固定した永久磁石である駆動側
マグネット53を、ポンプ羽根車54に固定された永久
磁石である従動側マグネット55に隔壁56を介して対
向して設けたもので、このポンプ羽根車54はポンプケ
ーシング57に収納されるとともにポンプケーシング5
7に設けた固定軸58に回動自在に取り付けられてい
る。
FIG. 18 shows a drive shaft 51 of an electric motor 50m.
The drive-side magnet 53, which is a permanent magnet fixed to the rotating body 52 fixed to, is provided to face the driven-side magnet 55, which is a permanent magnet fixed to the pump impeller 54, via a partition wall 56. The pump impeller 54 is housed in the pump casing 57 and the pump casing 5
It is rotatably attached to a fixed shaft 58 provided on the No. 7.

【0013】この構成において、電動モータ50mによ
り駆動軸51を回転させるとこれと一体の回転体52と
ともに駆動側マグネット53が回転し、磁力により連結
された従動側マグネット55がポンプ羽根車54ととも
に回転し、吸込口59から吸引した流体を遠心力により
吐出口60より送り出す。
In this structure, when the drive shaft 51 is rotated by the electric motor 50m, the drive side magnet 53 is rotated together with the rotating body 52 integrated with the drive shaft 51, and the driven side magnet 55 connected by magnetic force is rotated together with the pump impeller 54. Then, the fluid sucked from the suction port 59 is sent out from the discharge port 60 by centrifugal force.

【0014】これに対して駆動軸により直接ポンプ羽根
車を回転駆動するものとして、特開昭55−57697
号公報の図19に示すようなの構成のものがある。
On the other hand, Japanese Patent Application Laid-Open No. 55-57697 discloses that the pump impeller is directly rotated by the drive shaft.
There is a structure as shown in FIG. 19 of the publication.

【0015】図19は、ポンプ羽根車101の主盤10
2の両方の側面に軸方向に突出する複数の羽根103、
104を設け、羽根103、104の先端にそれぞれ側
板105、106を取り付け、ポンプ羽根車101の両
側に吸込み通路107、108および吸込み口109、
110を設けた両吸込型で密閉型の羽根車であり、ボス
部111に駆動軸112を取り付けて外部より回転駆動
するものである。
FIG. 19 shows the main board 10 of the pump impeller 101.
A plurality of blades 103 protruding axially on both sides of
104 is provided, side plates 105 and 106 are attached to the tips of the blades 103 and 104, respectively, and suction passages 107 and 108 and a suction port 109 are provided on both sides of the pump impeller 101.
This is a double-suction type and closed-type impeller provided with 110, and a drive shaft 112 is attached to a boss portion 111 to be rotationally driven from the outside.

【0016】この構成において、駆動軸112により回
転したポンプ羽根車101は、両側の吸込み口109、
110より吸引した流体を遠心力によりポンプ羽根車1
01の外周側に送り、外周側の環状通路113に送り出
す。
In this structure, the pump impeller 101 rotated by the drive shaft 112 has the suction ports 109 on both sides,
The fluid sucked from 110 is pumped by centrifugal force 1
01 to the outer peripheral side, and then to the outer peripheral side annular passage 113.

【0017】[0017]

【発明が解決しようとする課題】しかしながら従来の住
棟セントラル用として各住戸に設ける給湯暖房装置25
の構成では、暖房および風呂追い焚き時に暖房用ポンプ
49と風呂用ポンプ50を運転することになる。これら
は、いずれも電気モータにて駆動するポンプである。従
って、これら両ポンプはイニシャルコストが高い、寸法
が大きくなる、重量が大きい、さらに電気を消費するた
めランニングコストが高くつくなどの課題があった。
However, the hot water supply and heating device 25 provided in each dwelling unit for the central of the conventional dwelling building is provided.
With this configuration, the heating pump 49 and the bath pump 50 are operated when heating and reheating the bath. All of these are pumps driven by an electric motor. Therefore, these two pumps have the problems that the initial cost is high, the size is large, the weight is heavy, and the running cost is high because they consume electricity.

【0018】ポンプの駆動動力を流体の流動力で行う方
法があるが、上記図15に示した従来の構成では、水車
の回転数が低く水車自身でポンプ駆動に要求される回転
数が得られないため途中に増速機を設ける必要があり、
イニシャルコストが高価で一般家庭用に使用できるもの
ではなく、また水車駆動流体とポンプにより搬送される
流体は分離されておらず全く同一であり、集合住宅等の
住棟セントラル給湯等に利用するには安全、衛生上の課
題があった。
Although there is a method in which the driving power of the pump is performed by the fluid force of the fluid, in the conventional configuration shown in FIG. 15, the rotational speed of the water turbine is low and the rotational speed required for driving the pump by the water turbine itself can be obtained. It is not necessary to install a speed increaser on the way,
The initial cost is high and it cannot be used for general households, and the fluid driven by the water turbine and the fluid conveyed by the pump are not separated and are exactly the same. Had safety and hygiene issues.

【0019】また、図16で示した従来の構成では、駆
動側流体とポンプで搬送される流体はポンプ部で軸シー
ル部材で仕切られて構成されるものの、住棟セントラル
給湯等に利用するには万一の時の駆動側とポンプ側の流
体の混入防止が不確実であり信頼性上の課題があり、さ
らに軸シール部材のため水車の出力軸の回転抵抗が大き
く、住棟セントラル給湯あるいは暖房等に利用するには
ポンプ側の流量が過小であり流量特性上の課題があっ
た。
Further, in the conventional construction shown in FIG. 16, the drive side fluid and the fluid conveyed by the pump are partitioned by the shaft seal member in the pump portion, but are used for the central hot water supply of the dwelling. In case of emergency, it is uncertain how to prevent the mixture of fluids on the drive side and the pump side, which poses a reliability problem.Because of the shaft seal member, the rotation resistance of the output shaft of the water turbine is large, so The flow rate on the pump side was too small to be used for heating, etc., and there was a problem with flow rate characteristics.

【0020】そこで、我々は特開平6−185489号
公報に示される流体駆動ポンプを提案し改良を進めた。
その結果、駆動側流体の限られた駆動力を有効に活かす
には回転抵抗を極力低減させることが重要であり、電動
モータ式ポンプではモータ入力上昇となるだけのことも
無視できないことが判った。
Therefore, we proposed a fluid drive pump disclosed in Japanese Patent Laid-Open No. 6-185489 and made improvements.
As a result, it has been found that it is important to reduce the rotational resistance as much as possible in order to effectively utilize the limited driving force of the driving fluid, and it is not negligible that the electric motor type pump only increases the motor input. .

【0021】即ち、図18に示した従来の構成では従動
側マグネット55がポンプ羽根車54の隔壁56側を占
有するため、ポンプ羽根車54の運転時に流体力により
生じる吸込口59方向への軸方向のスラスト力を低減さ
せ得ず、軸方向スラスト力により生じる軸受け部での摩
擦抵抗の増大を招いていた。
That is, in the conventional structure shown in FIG. 18, since the driven magnet 55 occupies the partition wall 56 side of the pump impeller 54, the shaft in the direction of the suction port 59 generated by the fluid force during the operation of the pump impeller 54. The thrust force in the axial direction cannot be reduced, and the frictional resistance in the bearing portion caused by the axial thrust force increases.

【0022】軸方向スラスト力を低減させる方法とし
て、図19に示した両吸込み型の羽根車があるが、駆動
軸を持つため図16に示した従来例と同様に軸シール部
材の回転抵抗および駆動側とポンプ側の両流体の混入防
止の点で課題があり、さらに両吸込み構成により吸込み
通路スペースが両側に必要なため寸法が大きくなり小型
化に課題があった。
As a method of reducing the axial thrust force, there is a double-suction type impeller shown in FIG. 19. However, since it has a drive shaft, the rotational resistance of the shaft seal member and the rotation resistance of the shaft seal member are the same as in the conventional example shown in FIG. There is a problem in preventing both fluids on the drive side and the pump side from entering, and there is a problem in downsizing because the size of the suction passage space is increased on both sides due to the double suction structure.

【0023】本発明は上記課題を解決するもので、住棟
セントラル給湯に利用でき、小型コンパクトでイニシャ
ルコストが安価であり高効率な羽根車を提供することを
第一の目的としたものである。また、住棟セントラル給
湯に利用でき小型コンパクトで安全性が高く駆動流体動
力を低減する流体駆動の循環ポンプを提供することを第
二の目的としたものである。さらに、動力伝達能力を高
めた羽根車を提供することを第三の目的としたものであ
る。さらに、羽根車の効率をより高めることを第四の目
的とし、羽根車をより一層小型化することを第五の目的
とし、動力伝達体の配置のためスペースを縮小される裏
羽根をより性能向上することを第六の目的としたもので
ある。
The present invention is intended to solve the above problems, and it is a first object of the present invention to provide a highly efficient impeller which can be used for central hot water supply in a residential building, is small and compact, has a low initial cost. . A second object of the present invention is to provide a fluid-driven circulation pump that can be used for central hot water supply in a residential building, is compact, has high safety, and reduces driving fluid power. Furthermore, the third object is to provide an impeller with improved power transmission capability. The fourth purpose is to improve the efficiency of the impeller, and the fifth purpose is to further reduce the size of the impeller. The sixth purpose is to improve.

【0024】[0024]

【課題を解決するための手段】本発明は上記第一の目的
を達成するため、羽根基部の片面に設けた片面開放型の
表羽根と、羽根基部の他の片面には片面開放型の裏羽根
と動力伝達体とを有し前記表羽根側と裏羽根側を連通す
る連通孔を備えたものである。
In order to achieve the first object of the present invention, a single-sided open type front blade provided on one side of a blade base and a single-sided open type back blade on the other side of the blade base. The blade has a blade and a power transmission body, and is provided with a communication hole that connects the front blade side and the back blade side.

【0025】また、第二の目的を達成するため、一次側
流体を回転力の駆動源とする駆動羽根車と、二次側流体
を循環させる二次側羽根車と、前記一次側流体と二次側
流体とを気密に分離する隔壁と、前記駆動羽根車に設け
た駆動側の動力伝達体と前記二次側羽根車に設けた従動
側の動力伝達体とを前記隔壁を介して対向させた動力伝
達手段と、前記駆動羽根車あるいは二次側羽根車の少な
くとも一方には羽根基部の片面に設けた片面開放型の表
羽根と、羽根基部の他の片面には片面開放型の裏羽根と
前記動力伝達体とを有し、前記表羽根側と裏羽根側を連
通する連通孔を備えた羽根車を搭載したものである。
Further, in order to achieve the second object, a drive impeller having a primary fluid as a drive source of rotational force, a secondary impeller for circulating a secondary fluid, and the primary fluid A partition wall that airtightly separates the secondary fluid, a drive-side power transmission body provided in the drive impeller, and a driven-side power transmission body provided in the secondary side impeller are opposed to each other through the partition wall. Power transmission means, at least one of the drive impeller and the secondary side impeller, a front blade of one side open type provided on one side of the blade base, and a back blade of one side open type on the other side of the blade base. And the power transmission body, and is mounted with an impeller having a communication hole that communicates the front blade side and the back blade side.

【0026】また、第三の目的を達成するため、動力伝
達手段は裏羽根の外周側に設け、連通孔は裏羽根の内周
側および外周側に設けたものである。
In order to achieve the third object, the power transmission means is provided on the outer peripheral side of the back blade, and the communication holes are provided on the inner peripheral side and the outer peripheral side of the back blade.

【0027】また、第四の目的を達成するため、動力伝
達体は裏羽根の外周側に設け、この動力伝達体の外周側
と内周側に渡る凹状溝部を設けたものである。
Further, in order to achieve the fourth object, the power transmission body is provided on the outer peripheral side of the back blade, and the recessed groove portion extending to the outer peripheral side and the inner peripheral side of the power transmission body is provided.

【0028】また、第五の目的を達成するため、動力伝
達手段は裏羽根の内周側に設け、連通孔は動力伝達体の
外周側に設けたものである。
In order to achieve the fifth object, the power transmission means is provided on the inner peripheral side of the back blade, and the communication hole is provided on the outer peripheral side of the power transmission body.

【0029】また、第六の目的を達成するため、連通孔
は表羽根の流路途中と裏羽根の内周側を連通させたもの
である。
Further, in order to achieve the sixth object, the communication hole is such that the middle of the flow path of the front blade and the inner peripheral side of the back blade communicate with each other.

【0030】[0030]

【作用】本発明は上記構成によって第一の手段のものは
羽根基部の両面に片面開放型の羽根を有するため、軸方
向のスラスト力が相殺されてスラスト抵抗の少ない回転
運動がなされるとともに、羽根車の軸方向の口が片面に
のみ配置されるため小型化がなされる。
According to the present invention, according to the above-mentioned structure, the first means has the one-sided open type blades on both sides of the blade base portion, so that the thrust force in the axial direction is canceled and the rotational movement with less thrust resistance is performed. Since the axial mouth of the impeller is arranged on only one side, the size is reduced.

【0031】また、第二の手段のものは一次側流体を駆
動羽根車に流動させて駆動羽根車を回転させ、一次側流
体と二次側流体を気密に分離する隔壁を介して対向する
動力伝達体による動力伝達手段で非接触で駆動羽根車と
連結される二次側羽根車が回転し、二次側流体を搬送す
るポンプ動作が行われる。この時、駆動羽根車あるいは
二次側羽根車は羽根基部の両面に片面開放型の羽根を有
するため、軸方向のスラスト力が相殺されてスラスト抵
抗の少ない回転運動がなされ、一次側流体の駆動流体動
力の低減がなされる。
In the second means, the primary side fluid is caused to flow to the drive impeller to rotate the drive impeller, and the powers are opposed to each other via the partition wall that airtightly separates the primary side fluid and the secondary side fluid. The secondary side impeller, which is connected to the drive impeller in a non-contact manner, rotates by the power transmission means by the transmission body, and the pump operation for conveying the secondary side fluid is performed. At this time, the driving impeller or the secondary-side impeller has single-sided open-type blades on both sides of the blade base, so that the thrust force in the axial direction is canceled out and the rotary motion with less thrust resistance is performed, and the drive of the primary-side fluid is performed. Fluid power is reduced.

【0032】また、第三手段のものは、裏羽根の外周側
に動力伝達体を設けることにより回転力を加える力点の
半径が大きく(モーメント力が増大)なり、より大きな
トルク伝達により動力伝達能力を高めた運転がなされ
る。
In the third means, the radius of the power point for applying the rotational force is increased (the moment force is increased) by providing the power transmission body on the outer peripheral side of the back blade, and the power transmission capability is increased by the larger torque transmission. Driving is performed with a higher level.

【0033】また、第四の手段のものは、裏羽根外周部
を凹状溝部を介して動力伝達体の外周側と連通させて、
駆動羽根車においては表羽根に加えて凹状溝部も駆動流
体の流動力を受けて駆動力を高めた運転がなされ、二次
側羽根車においては裏羽根を通過した流体の一部が凹状
溝部に入って回転力を受けてよりポンプ特性を高めた運
転がなされる。
Further, in the fourth means, the outer peripheral portion of the back blade is communicated with the outer peripheral side of the power transmission body through the concave groove portion,
In the driving impeller, not only the front blade but also the concave groove part receives the fluid force of the driving fluid to increase the driving force, and in the secondary side impeller, part of the fluid that has passed through the back blade is in the concave groove part. The operation is performed and the pumping characteristics are improved by receiving the rotational force.

【0034】また、第五の手段のものは、動力伝達体を
裏羽根の内周側に設けて二次側羽根車あるいは駆動羽根
車を小型化して慣性力を小さくした運転がなされる。
In the fifth means, the power transmission body is provided on the inner peripheral side of the back blade to downsize the secondary side impeller or the drive impeller to reduce the inertial force.

【0035】また、第六の手段のものは、二次側羽根車
においては表羽根で昇圧途中の流体を裏羽根に導入して
裏羽根でのポンプ特性を高めた運転がなされ、駆動羽根
車においては裏羽根を出た流体を表羽根の途中に合流さ
せて回転力を一層高めた運転がなされる。
In the secondary impeller, the sixth impeller has a driving impeller in which the fluid whose pressure is being boosted is introduced into the back vane by the front vane to improve the pump characteristic of the back vane. In the case of (1), the fluid that has flowed out from the back blade is joined in the middle of the front blade to perform an operation in which the rotational force is further increased.

【0036】[0036]

【実施例】以下本発明の実施例を図1〜図14を参照し
て説明する。まず図1および図5に示す本発明第一およ
び第二の実施例について説明する。図において、61は
一次側流体が流れる駆動流体通路62に設けられ一次側
流体を回転力の駆動源とする駆動羽根車であり、63は
二次側流体が流れる被駆動流体通路64に設けられ二次
側流体を循環させる二次側羽根車である。65は一次側
流体が流れる駆動流体通路62と二次側流体が流れる被
駆動流体通路64の間を気密に分離する隔壁である。6
6は動力伝達手段であり、駆動羽根車61に固定して設
けた駆動側の動力伝達体67と二次側羽根車63に設け
た従動側の動力伝達体68とが隔壁65を介して対向し
て配置されている。駆動羽根車61と二次側羽根車63
はこの隔壁65を介して対向して配置されるとともに動
力伝達手段66により動力伝達可能に連結されている。
69は駆動羽根車61を回転自在に支持する駆動側支持
軸、70は二次側羽根車63を回転自在に支持する二次
側支持軸であり、どちらの支持軸も隔壁65に支えられ
ている。
Embodiments of the present invention will be described below with reference to FIGS. First, the first and second embodiments of the present invention shown in FIGS. 1 and 5 will be described. In the figure, 61 is a drive impeller provided in a drive fluid passage 62 through which the primary fluid flows, and uses the primary fluid as a drive source of rotational force, and 63 is provided in a driven fluid passage 64 through which the secondary fluid flows. It is a secondary-side impeller that circulates the secondary-side fluid. Reference numeral 65 is a partition that hermetically separates the drive fluid passage 62 through which the primary fluid flows and the driven fluid passage 64 through which the secondary fluid flows. 6
Reference numeral 6 denotes a power transmission means, and a drive-side power transmission body 67 fixedly provided on the drive impeller 61 and a driven-side power transmission body 68 provided on the secondary side impeller 63 face each other via a partition wall 65. Are arranged. Drive impeller 61 and secondary-side impeller 63
Are arranged so as to face each other through the partition wall 65, and are connected by a power transmission means 66 so that power can be transmitted.
Reference numeral 69 denotes a drive-side support shaft that rotatably supports the drive impeller 61, and 70 denotes a secondary-side support shaft that rotatably supports the secondary-side impeller 63. Both support shafts are supported by the partition wall 65. There is.

【0037】71は一次側流体が流入する駆動入口、7
2は一次側流体が流出する駆動出口、73は二次側流体
が流入する二次側入口である。74は二次側羽根車63
を収納するポンプ室75に開口し、二次側羽根車63の
運転により二次側入口73から吸引された二次側流体が
加圧されて流出する二次側出口である。
Reference numeral 71 denotes a drive inlet into which the primary side fluid flows, 7
Reference numeral 2 is a drive outlet through which the primary fluid flows out, and 73 is a secondary inlet through which the secondary fluid flows. 74 is the secondary side impeller 63
Is a secondary side outlet that is opened to the pump chamber 75 that stores the secondary side fluid and is sucked from the secondary side inlet 73 by the operation of the secondary side impeller 63 to be pressurized and flow out.

【0038】駆動羽根車61および二次側羽根車63
は、それぞれ羽根基部61A、63Aの片面の駆動出口
72側あるいは二次側入口73側には羽根基部61A、
63Aから突出し径方向に延びる複数の表羽根61B、
63Bが設けられ、さらに羽根基部61A、63Aの他
の片面である隔壁65側には羽根基部61A、63Aか
ら突出し径方向に延びる複数の裏羽根61C、63Cが
設けられている。表羽根61B、63Bおよび裏羽根6
1C、63Cの羽根基部61A、63Aから立ち上がっ
た高さ方向の先端部は側壁を持たないいわゆる開放型の
羽根である。
Drive impeller 61 and secondary-side impeller 63
Are the blade bases 61A, 63A on one side of the blade bases 61A, 63A on the drive outlet 72 side or the secondary side inlet 73 side, respectively.
A plurality of front blades 61B protruding from 63A and extending in the radial direction,
63B is provided, and a plurality of back blades 61C and 63C that project from the blade bases 61A and 63A and extend in the radial direction are provided on the side of the partition wall 65 that is the other surface of the blade bases 61A and 63A. Front blades 61B, 63B and back blade 6
The front end portions in the height direction rising from the blade base portions 61A and 63A of 1C and 63C are so-called open type blades having no side wall.

【0039】61D、63Dは、それぞれ羽根基部61
A、63Aを貫通し表羽根61B、63B側と裏羽根6
1C、63C側とを連通させる連通孔であり、この連通
孔61D、63Dは図4(図2のA−A断面)に示すよ
うに周方向に傾斜面61F、63Fを持つ斜孔としてい
る。61E、63Eは羽根基部61A、63Aに設けた
駆動側軸受および二次側軸受である。76は駆動羽根車
61および二次側羽根車63の両端に設けた軸方向のス
ラスト力を受けるスラスト体である。
61D and 63D are blade base portions 61, respectively.
Front blades 61B, 63B side and back blade 6 through A, 63A
The communication holes 61D and 63D are communication holes that communicate with the 1C and 63C sides. The communication holes 61D and 63D are inclined holes having inclined surfaces 61F and 63F in the circumferential direction as shown in FIG. 4 (A-A cross section in FIG. 2). Reference numerals 61E and 63E denote a drive side bearing and a secondary side bearing provided on the blade base portions 61A and 63A. Reference numeral 76 is a thrust body that is provided at both ends of the drive impeller 61 and the secondary side impeller 63 and that receives thrust force in the axial direction.

【0040】上記構成において、羽根車の動作を説明す
る。まず、ポンプ作用を行う二次側羽根車として使用す
る場合、図2に示す矢印P方向に羽根車63が回転する
と、表羽根63B側の二次側軸受63Eの周りに軸方向
から流体が流入するとともに、一部は表羽根63B間の
通路を通って遠心力により加圧されて外周部より流出
し、残りは連通孔63Dを通過して裏羽根63C側に入
り裏羽根63C間の通路を通って遠心力により加圧され
て外周部より流出する。この連通孔63Dは傾斜面61
Fにより斜孔となっているため流体の流動抵抗を減じる
だけでなく、連通孔63Dを通過する流体に対し羽根車
63の回転により裏羽根63C側に向けて流動力を印可
する。
The operation of the impeller in the above structure will be described. First, when used as a secondary side impeller that performs a pumping action, when the impeller 63 rotates in the direction of arrow P shown in FIG. 2, the fluid flows in the axial direction around the secondary side bearing 63E on the front blade 63B side. At the same time, a part of them is pressurized by centrifugal force through the passage between the front blades 63B and flows out from the outer peripheral portion, and the rest passes through the communication hole 63D and enters the side of the back blade 63C to pass through the passage between the back blades 63C. It is pressurized by centrifugal force and flows out from the outer peripheral portion. This communication hole 63D has an inclined surface 61.
Since it is an oblique hole due to F, not only the flow resistance of the fluid is reduced, but also the fluid passing through the communication hole 63D is applied with a fluid force toward the back blade 63C by the rotation of the impeller 63.

【0041】また、回転駆動力を発生する駆動羽根車6
1として使用する場合は、図2に示す矢印Q方向に回転
するように羽根車61の周方向Rに噴出した流体の流動
圧を表羽根61Bおよび裏羽根61Cが受けて回転駆動
され、一部の流体は表羽根61B側の表羽根61B間の
通路を通って駆動側軸受61Eの周りから軸方向に流出
し、残りの流体は裏羽根61C側の裏羽根61C間の通
路を通って中心方向に向かい、連通孔61Dを通過して
表羽根61B側の流体と合流して軸方向に流出する。こ
こで、連通孔61Dは傾斜面61Fにより斜孔となって
いるため流体の流動抵抗を低減するとともに、連通孔6
1Dを貫流する流体は羽根車61に対して矢印Q方向に
さらに回転力を加えて回転駆動力を増大させる。
Further, a drive impeller 6 for generating a rotational drive force
When used as 1, the front blade 61B and the back blade 61C are rotationally driven by the fluid pressure of the fluid ejected in the circumferential direction R of the impeller 61 so as to rotate in the direction of the arrow Q shown in FIG. Fluid flows axially from around the drive-side bearing 61E through the passage between the front blades 61B on the front blade 61B side, and the remaining fluid passes through the passage between the back blades 61C on the back blade 61C side toward the center direction. Toward the front, the fluid passes through the communication hole 61D, merges with the fluid on the front blade 61B side, and flows out in the axial direction. Here, since the communication hole 61D is an inclined hole due to the inclined surface 61F, the flow resistance of the fluid is reduced and the communication hole 6D is formed.
The fluid flowing through 1D further applies a rotational force to the impeller 61 in the direction of the arrow Q to increase the rotational driving force.

【0042】このように、駆動羽根車61、二次側羽根
車63のいずれの羽根車に使用しても羽根基部61A、
63Aの両側に表羽根が61B、63Bおよび裏羽根6
1C、63Cを設けかつ羽根先端に側板のない開放型の
羽根としているので、流体による軸方向のスラスト力が
低減されて軸受61E、63E端部での機械的な摩擦抵
抗を低減でき、さらに側板のない開放型の羽根車のため
流体摩擦抵抗である円板摩擦損失が発生せず回転抵抗が
低減でき効率向上が実現できる。
As described above, the blade base 61A, which is used for both the drive impeller 61 and the secondary side impeller 63,
Front blades 61B, 63B and back blade 6 on both sides of 63A
Since 1C and 63C are provided and the tip of the blade is an open type blade without a side plate, the axial thrust force of the fluid is reduced, and the mechanical frictional resistance at the ends of the bearings 61E and 63E can be reduced. Since it is an open type impeller, there is no disc friction loss, which is fluid friction resistance, and rotation resistance can be reduced, improving efficiency.

【0043】また、連通孔61D、63Dは羽根基部6
1A、63Aに対して周方向に傾斜面61F、63Fを
設けることで連通孔61D、63Dが新たに羽根の作用
を発生し、駆動用の羽根車では回転駆動力が増大され、
ポンプ作用を行う二次側の羽根車ではポンプ搬送特性の
向上するなど、羽根車のより一層の特性向上が実現でき
る。
Further, the communication holes 61D and 63D are the blade base 6
By providing inclined surfaces 61F and 63F in the circumferential direction with respect to 1A and 63A, the communication holes 61D and 63D newly generate the action of blades, and the rotational driving force is increased in the driving impeller,
Further improvement of the characteristics of the impeller can be realized, such as improvement of pump transfer characteristics in the secondary side impeller that performs the pumping action.

【0044】なお、図2および図3には表羽根と裏羽根
が同じ形状の場合を示したが、図5に他の実施例として
示すように羽根基部61A、63Aを有するため裏羽根
61C’、63C’を加えて表羽根と裏羽根の形状を任
意に変える設計の自由度が拡大でき、表羽根61B、6
3B、裏羽根61C、63Cの羽根特性の最適化がで
き、より一層の高効率化ができる。
Although FIG. 2 and FIG. 3 show the case where the front blade and the back blade have the same shape, the back blade 61C ′ has the blade base portions 61A and 63A as shown in FIG. 5 as another embodiment. , 63C 'can be added to expand the degree of freedom in design for arbitrarily changing the shapes of the front and back blades.
The blade characteristics of 3B and the rear blades 61C and 63C can be optimized, and the efficiency can be further improved.

【0045】さらに、羽根基部61A、63Aの両面に
羽根を設けた羽根車でありながら、連通孔により羽根車
の内周側の口が片面(駆動羽根車61では駆動出口7
2、二次側羽根車63では二次側入口73)なので羽根
車の構成の簡素化による低コスト化と小型化ができる。
Further, even though the blade bases 61A and 63A are provided with blades on both sides, the communication hole allows one side of the inner peripheral side of the impeller (the drive outlet 7 in the drive impeller 61).
2. Since the secondary side impeller 63 is the secondary side inlet 73), the cost and size can be reduced by simplifying the configuration of the impeller.

【0046】以上のように本発明の第一の実施例によれ
ば、軸方向のスラスト力による機械的な摩擦抵抗の低減
と流体摩擦抵抗である円板摩擦損失の発生を抑制して羽
根車の高効率化が実現できるという効果がある。
As described above, according to the first embodiment of the present invention, the impeller is suppressed by reducing the mechanical frictional resistance due to the axial thrust force and suppressing the disc friction loss which is the fluid frictional resistance. There is an effect that high efficiency can be realized.

【0047】また、両面羽根で且つ片面流出入口構成に
より低コスト化と小型化が実現できるという効果があ
る。さらに、表羽根と裏羽根の設計の自由度の向上と表
裏羽根の最適化による一層の高効率化ができるという効
果がある。
Further, there is an effect that cost reduction and size reduction can be realized by the double-sided blade and the single-sided inlet / outlet structure. Further, there is an effect that the degree of freedom in designing the front and back blades can be improved and the efficiency can be further improved by optimizing the front and back blades.

【0048】次に、上記図1の構成における流体駆動装
置の動作を説明する。駆動入口71から噴出流入された
一次側流体により駆動羽根車61が駆動側の動力伝達体
67とともに駆動側支持軸69を軸として回転し、従動
側の動力伝達体68を有する二次側羽根車63は動力伝
達手段66により非接触で連結されているため二次側側
支持軸70を軸として回転する。この時、駆動入口71
から噴出した一次側流体は表羽根61Bおよび裏羽根6
1Cに外周側から流入して駆動羽根車61の回転力を発
生して内周側から流出し駆動出口72に向かう。なお裏
羽根61Cに入った流体は内周側で連通孔61Dを通過
して表羽根61B側に合流する。
Next, the operation of the fluid drive system having the structure shown in FIG. 1 will be described. The drive-side impeller 61 rotates around the drive-side support shaft 69 together with the drive-side power transmission 67 by the primary-side fluid ejected from the drive inlet 71, and the secondary-side impeller having the driven-side power transmission 68. Since 63 is connected in a non-contact manner by the power transmission means 66, it rotates about the secondary side support shaft 70. At this time, the drive inlet 71
The primary fluid ejected from the front blade 61B and the back blade 6
1C flows in from the outer peripheral side to generate the rotational force of the drive impeller 61, flows out from the inner peripheral side toward the drive outlet 72. The fluid that has entered the back blade 61C passes through the communication hole 61D on the inner peripheral side and merges with the front blade 61B side.

【0049】一方、被駆動流体通路64側では二次側羽
根車63の回転により被駆動流体通路64内の流体は二
次側入口73からポンプ室75に流入し、一部は表羽根
63Bにより、また残りは連通孔63Dを通過して裏羽
根63Cにより遠心作用で加圧されて二次側出口74か
ら流出する。
On the other hand, on the driven fluid passage 64 side, the fluid in the driven fluid passage 64 flows into the pump chamber 75 from the secondary inlet 73 due to the rotation of the secondary side impeller 63, and part of the fluid is driven by the front blade 63B. The remaining portion passes through the communication hole 63D, is pressurized by the back blade 63C by centrifugal action, and flows out from the secondary side outlet 74.

【0050】このように、駆動羽根車61、二次側羽根
車63のいずれにこの羽根車を使用しても、羽根基部6
1A、63Aの両側に表羽根61B、63Bおよび裏羽
根61C、63Cを設け且つ羽根先端に側板のない開放
型の羽根なので、流体による軸方向へのスラスト力が小
さく軸受61E、63E端部のスラスト体76との機械
的な摩擦抵抗を低減でき、さらに側板がある場合では側
板が回転して流体との摩擦抵抗であるいわゆる円板摩擦
損失が発生するのに対して本発明では側板がない開放型
のため円板摩擦損失が発生せず回転抵抗が低減できる。
このような機械摩擦抵抗および流体摩擦抵抗の低減によ
り損失の少ない高効率化が実現でき、駆動流体動力が小
さくて大きなポンプ作用などの二次側作用を行う流体駆
動装置が得られ、一次側の駆動流体の負担を軽減して駆
動流体動力を低減できる。
Thus, even if this impeller is used for both the drive impeller 61 and the secondary side impeller 63, the impeller base 6
The front blades 61B and 63B and the rear blades 61C and 63C are provided on both sides of 1A and 63A, and since the blades are open blades without side plates, the thrust force in the axial direction due to the fluid is small and the thrust at the ends of the bearings 61E and 63E. Mechanical frictional resistance with the body 76 can be reduced, and when there is a side plate, the side plate rotates and so-called disc friction loss, which is frictional resistance with the fluid, occurs, whereas in the present invention, there is no side plate open. Since it is a mold, the frictional loss of the disc does not occur and the rotation resistance can be reduced.
Due to such reduction of mechanical friction resistance and fluid friction resistance, high efficiency with less loss can be realized, and a fluid drive device that has a small drive fluid power and performs a secondary action such as a pump action can be obtained. The load on the driving fluid can be reduced and the driving fluid power can be reduced.

【0051】また、羽根基部の両面に羽根を設けた羽根
車でありながら、羽根車内周側の口が片面(二次側羽根
車63では二次側入口73、駆動羽根車61では駆動出
口72)とし他の片面に動力伝達体67、68を設けて
互いに対向させているので流体駆動装置の構成の簡素化
と小型化が実現できる。
Further, although the impeller has blades provided on both sides of the blade base, the inner peripheral side of the impeller has one side (the secondary side impeller 63 has a secondary inlet 73, and the driving impeller 61 has a drive outlet 72). Since the power transmission bodies 67 and 68 are provided on the other surface and face each other, the structure and the size of the fluid drive device can be simplified.

【0052】以上のように本発明の第二の実施例によれ
ば、従来の複雑な電気モータと一つの羽根車で構成され
る電気モータ式ポンプに対して、電気モータレスであり
且つ二つの羽根車で済むことになり、ポンプとしての寸
法が小さく軽量化が図れ、イニシャルコストが安価で電
気モータ式ポンプの場合に生じる電気代が不要なためラ
ンニングコストが安くなるという効果が特開平6−18
5489号公報に示した流体駆動ポンプの場合と同様に
ある。
As described above, according to the second embodiment of the present invention, in contrast to the conventional electric motor type pump composed of the complicated electric motor and one impeller, the electric motorless and two blades are provided. Since the size of the pump can be reduced and the weight of the pump can be reduced, the initial cost is low, and the electric bill generated in the case of the electric motor type pump is not required, the running cost can be reduced.
This is similar to the case of the fluid drive pump shown in Japanese Patent No. 5489.

【0053】さらに、軸方向へのスラスト力の低減によ
り軸受部での機械摩擦抵抗の低減および円板摩擦損失と
いう流体摩擦抵抗の抑制を実現でき、高効率な流体駆動
装置を実現できるという効果がある。
Further, by reducing the thrust force in the axial direction, it is possible to reduce the mechanical friction resistance in the bearing portion and suppress the fluid friction resistance such as the disc friction loss, and it is possible to realize a highly efficient fluid drive device. is there.

【0054】また、一次側の駆動流体動力の負担を低減
でき、限られた一次側の駆動流体動力を使って利用側で
ある二次側に対してより大きな仕事ができるため、利用
側の用途(暖房、給湯、風呂追い焚きなど)が拡大で
き、あるいは利用範囲(暖房能力の大出力化など)が拡
大できるという効果があり、実用性が向上する。
Further, the load of the driving fluid power on the primary side can be reduced, and a larger work can be performed on the secondary side, which is the user side, by using the limited driving fluid power on the primary side. (Heating, hot water supply, reheating the bath, etc.) can be expanded, or the range of use (increasing the heating capacity output, etc.) can be expanded, and the practicality is improved.

【0055】さらに、構成を簡素化した羽根車を対向配
置することで、流体駆動装置の小型化ができるという効
果がある。
Further, by arranging the impellers having a simplified structure so as to face each other, it is possible to reduce the size of the fluid drive device.

【0056】なお、本実施例では駆動羽根車61および
二次側羽根車63のいずれも同じ形状の羽根車の場合を
示したが、駆動羽根車61と二次側羽根車63では羽根
形状を変えることは可能であり、また駆動羽根車61と
二次側羽根車63はどちらも羽根基部の両面に表羽根と
裏羽根を有する羽根車の場合を示したが、いずれか一方
に羽根基部の両面に表羽根と裏羽根を有する羽根車とし
て他方は表羽根のみ有する羽根車とすることが可能なの
は言うまでもない。
Although the drive impeller 61 and the secondary-side impeller 63 have the same shape in this embodiment, the drive impeller 61 and the secondary-side impeller 63 have different blade shapes. It is possible to change, and both the driving impeller 61 and the secondary side impeller 63 have shown the case of the impeller having the front blade and the back blade on both sides of the blade base, but either one of the blade base has It goes without saying that an impeller having front and back blades on both sides and an impeller having only front blades can be provided on the other side.

【0057】次に、図6〜図8に示す本発明第三の実施
例について説明する。なお、図1〜図5に示した実施例
と同一機能、同一部材のところは同一符号を付与し詳細
な説明は省略する。
Next, a third embodiment of the present invention shown in FIGS. 6 to 8 will be described. The same functions and members as those in the embodiment shown in FIGS. 1 to 5 are designated by the same reference numerals and detailed description thereof will be omitted.

【0058】67Aは駆動羽根車61の羽根基部61A
の隔壁65側で且つ開放型の裏羽根61CAの外周側に
設けた駆動側の動力伝達体であり、68Aはポンプ羽根
車63の羽根基部63Aの隔壁65側で且つ開放型の裏
羽根63CAの外周側に設けた動力伝達体である。駆動
羽根車61の羽根基部61Aには裏羽根61CAの内周
側と表羽根61Bの内周側を連通する内周側の連通孔6
1DAと、裏羽根61CAの外周側と表羽根61Bの外
周側を連通する外周側の連通孔61DBが設けられてい
る。また、ポンプ羽根車の羽根基部63Aには開放型の
裏羽根63CAの内周側と表羽根63Bの内周側を連通
する内周側の連通孔63DAと、裏羽根63CAの外周
側と表羽根63Bの外周側を連通する外周側の連通孔6
3DBが設けられている。外周側の連通孔61DB、6
3DBは裏羽根61CA、63CA側から表羽根61
B、63Bに向かって開孔位置の径が大きくなるよう羽
根基部61A、63Aに対して斜めに設けられている。
67A is a blade base portion 61A of the driving impeller 61.
Is a drive-side power transmission body provided on the partition wall 65 side of the open type back blade 61CA, and 68A of the drive type power transmission body on the partition wall 65 side of the blade base portion 63A of the pump impeller 63 and the open type back blade 63CA. It is a power transmission body provided on the outer peripheral side. In the blade base 61A of the drive impeller 61, a communication hole 6 on the inner peripheral side that connects the inner peripheral side of the back blade 61CA and the inner peripheral side of the front blade 61B.
1DA is provided with a communication hole 61DB on the outer peripheral side that connects the outer peripheral side of the back blade 61CA and the outer peripheral side of the front blade 61B. Further, in the blade base 63A of the pump impeller, a communication hole 63DA on the inner peripheral side that communicates the inner peripheral side of the open type rear blade 63CA and the inner peripheral side of the front blade 63B, and the outer peripheral side of the rear blade 63CA and the front blade. Communication hole 6 on the outer peripheral side that communicates with the outer peripheral side of 63B
3DB is provided. Communication holes 61DB, 6 on the outer peripheral side
3DB is back blade 61CA, front blade 61 from 63CA side
The blade bases 61A and 63A are provided obliquely so that the diameter of the opening position increases toward B and 63B.

【0059】上記構成において、羽根車の動作を流体駆
動装置において説明する。駆動羽根車61において、駆
動入口71から噴出流入した一次側流体は表羽根61B
に衝突し回転力を発生するとともに一部は表羽根61B
間の通路を通って回転力を与えて駆動出口72に向か
い、残りは表羽根61Bに衝突したあと外周側の連通孔
61DBを通過し裏羽根61CAに噴出してここでも回
転力を与えて内周側の連通孔61DAを経て表羽根61
B側の流体と合流して駆動出口72へ流出する。駆動羽
根車61の回転は羽根基部61Aの外周部に固定された
動力伝達体67Aにより対向配置された二次側羽根車6
3側の動力伝達体68Aに伝えられ、二次側羽根車63
が駆動羽根車61に同期して回転する。
The operation of the impeller in the above structure will be described with reference to the fluid drive system. In the drive impeller 61, the primary fluid ejected from the drive inlet 71 flows into the front blade 61B.
And a rotating force is generated, and a part of the front blade 61B
A rotary force is applied to the drive outlet 72 through the passage between them, and the rest collides with the front blades 61B and then passes through the communication hole 61DB on the outer peripheral side and is jetted to the back blades 61CA, where the rotary force is also applied to the inside. Front blade 61 through communication hole 61DA on the circumferential side
It merges with the fluid on the B side and flows out to the drive outlet 72. The rotation of the drive impeller 61 is controlled by the power transmission body 67A fixed to the outer peripheral portion of the blade base 61A so as to face the secondary side impeller 6.
The secondary side impeller 63 is transmitted to the power transmission body 68A on the third side.
Rotates in synchronization with the drive impeller 61.

【0060】一方、被駆動流体通路側64では二次側羽
根車63の回転により二次側入口73から吸入した流体
の一部は表羽根63B間の通路を通って加圧されて二次
側出口74に向かい、残りは内周側の連通孔63DAを
通過して裏羽根63CA側に入って加圧されて裏羽根6
3CAの外周側の連通孔63DBを経て表羽根63B側
に噴出して合流する。
On the other hand, on the driven fluid passage side 64, a part of the fluid sucked from the secondary side inlet 73 due to the rotation of the secondary side impeller 63 is pressurized through the passage between the front blades 63B and the secondary side. To the outlet 74, the rest passes through the communication hole 63DA on the inner peripheral side, enters the rear blade 63CA side, and is pressurized to the rear blade 6.
After passing through the communication hole 63DB on the outer peripheral side of 3CA, they are jetted to the front blade 63B side and merge.

【0061】このように、裏羽根61CA、63CAの
外周側に設けた動力伝達体67A、68Aで動力伝達手
段66を構成しているので、動力を伝える力点の半径が
大きくでき回転力の伝達トルクが大きい動力伝達能力の
高い羽根車が実現できる。
As described above, since the power transmission means 66 is constituted by the power transmission bodies 67A, 68A provided on the outer peripheral sides of the back blades 61CA, 63CA, the radius of the power point for transmitting the power can be increased and the torque for transmitting the rotational force can be transmitted. It is possible to realize an impeller with high power transmission capability.

【0062】さらに、内周側の連通孔61DA、63D
Aだけでなく外周側の連通孔61DB、63DBを設け
ているので、駆動羽根車61では表羽根61Bの外周部
に集中して流体を噴出して駆動力を高めたうえに外周側
の連通孔61DBを通過した流体を裏羽根61CAに再
度噴出して駆動力をより高めた運転ができる。また、二
次側羽根車63では表羽根63B間の通路断面積が拡が
った外周部に連通孔63DBを介して裏羽根63CA間
を通過した流体を流入させて表羽根63B間の外周部で
の流量を増加させるため、表羽根63Bの外周部での流
体の羽根からの剥離あるいは羽根間での局所的逆流によ
る渦損失などを減少してより効率を高めた羽根車が実現
できる。
Further, the communication holes 61DA and 63D on the inner peripheral side are provided.
In addition to A, since the communication holes 61DB and 63DB on the outer peripheral side are provided, the drive impeller 61 concentrates on the outer peripheral portion of the front blade 61B to eject the fluid to enhance the driving force, and also the communication holes on the outer peripheral side. The fluid that has passed through 61DB is jetted again to the rear blades 61CA, and the operation with a higher driving force can be performed. Further, in the secondary side impeller 63, the fluid passing between the back blades 63CA is made to flow into the outer peripheral portion where the passage cross-sectional area between the front blades 63B is widened through the communication hole 63DB, and the outer peripheral portion between the front blades 63B is formed. Since the flow rate is increased, it is possible to realize an impeller with higher efficiency by reducing eddy loss due to separation of fluid from the blades on the outer peripheral portion of the front blade 63B or local backflow between the blades.

【0063】また、外周側の連通孔61DB、63DB
を羽根基部61A、63Aに対して斜めに開けることに
より、流体の流れを滑らかに分流あるいは合流させて流
動抵抗の増大を防止した低損失化を実現できる。
Further, the communication holes 61DB, 63DB on the outer peripheral side
By obliquely opening the blade bases 61A and 63A, it is possible to smoothly divide or join the fluid flows to realize a reduction in loss while preventing an increase in flow resistance.

【0064】なお、外周側の連通孔は表羽根に向かって
開孔位置の径が大きくなるように設ける例を示したが、
径方向に加えてさらに回転方向すなわち周方向にも斜め
に開ける(図示せず)ことでより一層滑らかな流体の流
れを形成し、より低損失化を実現できるのは言うまでも
ない。
Although the communication hole on the outer peripheral side is provided so that the diameter of the opening position increases toward the front blade,
It goes without saying that a smoother flow of the fluid can be formed by further opening not only in the radial direction but also in the rotation direction, that is, the circumferential direction (not shown), and a lower loss can be realized.

【0065】以上のように、本発明の第三の実施例によ
れば図1の第一の実施例と同様の効果が得られるととも
に、伝達トルクの大きい動力伝達能力の高い羽根車が実
現できるという効果がある。また、駆動羽根車では駆動
力をより高めた運転ができ、二次側羽根車では損失を減
少した効率の高い羽根車が実現できる。
As described above, according to the third embodiment of the present invention, the same effect as that of the first embodiment of FIG. 1 can be obtained, and an impeller having a large transmission torque and a high power transmission capability can be realized. There is an effect. Further, the driving impeller can be operated with a higher driving force, and the secondary side impeller can realize a highly efficient impeller with reduced loss.

【0066】次に、図9〜図12に示す本発明第四の実
施例について説明する。なお、図1〜図8に示した実施
例と同一機能、同一部材のところは同一符号を付与し詳
細な説明は省略する。
Next, a fourth embodiment of the present invention shown in FIGS. 9 to 12 will be described. The same functions and members as those of the embodiment shown in FIGS. 1 to 8 are designated by the same reference numerals and detailed description thereof will be omitted.

【0067】67Bは駆動羽根車61の羽根基部61A
の隔壁65側で且つ裏羽根61CAの外周側に設けられ
た駆動側の動力伝達体である。67Cはこの動力伝達体
67Bの隔壁65側に設けた複数の凹状溝部であり、こ
の凹状溝部67Cは動力伝達体67Bの外周側と内周側
に渡り形成され、裏羽根61CA側と動力伝達体67B
の外周側とは凹状溝部67Cで流体が流動可能につなが
っている。68Bは二次側羽根車63の羽根基部63A
の隔壁65側で且つ裏羽根63CAの外周側に設けられ
た従動側の動力伝達体である。68Cはこの動力伝達体
68Bの隔壁65側に設けた複数の凹状溝部であり、こ
の凹状溝部68Cは動力伝達体68Bの外周側と内周側
に渡り形成され、裏羽根63CA側と動力伝達体68B
の外周側とは凹状溝部68Cで流体が流動可能につなが
っている。
67B is a blade base portion 61A of the driving impeller 61.
Is a drive-side power transmission body provided on the partition wall 65 side and on the outer peripheral side of the back blade 61CA. 67C is a plurality of concave groove portions provided on the partition wall 65 side of the power transmission body 67B. The concave groove portions 67C are formed on the outer peripheral side and the inner peripheral side of the power transmission body 67B, and are arranged on the back blade 61CA side and the power transmission body. 67B
The fluid is connected to the outer peripheral side by a concave groove 67C. 68B is a blade base portion 63A of the secondary side impeller 63.
Is a driven-side power transmission body provided on the partition wall 65 side and on the outer peripheral side of the back blade 63CA. Reference numeral 68C denotes a plurality of concave groove portions provided on the partition wall 65 side of the power transmission body 68B. The concave groove portions 68C are formed on the outer peripheral side and the inner peripheral side of the power transmission body 68B, and the rear blade 63CA side and the power transmission body. 68B
The fluid is connected to the outer peripheral side by a concave groove portion 68C.

【0068】上記構成において、羽根車の動作を流体駆
動装置において説明する。駆動入口71より流入した駆
動流体の一部は第二の実施例と同様に表羽根61Bおよ
び外周側の連通孔61DBを経て裏羽根61CAに流入
して駆動羽根車61に回転力を与えて駆動出口72に流
出、残りは駆動側の動力伝達体67Bの外周部に噴出し
て凹状溝部67Cに衝突貫流して駆動羽根車61にさら
なる回転力を加えて裏羽根61CA側に流入する。ま
た、二次側羽根車63側では二次側入口73より吸入さ
れた流体の一部は第二の実施例と同様に表羽根63Bを
通過するものおよび内周側の連通孔63DAから裏羽根
63CAに入り外周側の連通孔63DBを経て二次側出
口74から吐出され、残りは裏羽根63CAの外周側で
凹状溝部68Cを通過して二次側出口74に向かう。
The operation of the impeller having the above structure will be described with reference to the fluid drive system. A part of the driving fluid flowing from the driving inlet 71 flows into the back blade 61CA through the front blade 61B and the communication hole 61DB on the outer peripheral side and gives a rotational force to the driving impeller 61 to be driven, as in the second embodiment. Outflow to the outlet 72, the rest is ejected to the outer peripheral portion of the drive-side power transmission body 67B, collides with the concave groove portion 67C, flows into the drive impeller 61, and further inflows to the rear blade 61CA side. On the side of the secondary side impeller 63, a part of the fluid sucked from the secondary side inlet 73 passes through the front blade 63B as in the second embodiment and from the communication hole 63DA on the inner peripheral side to the back blade. 63CA is discharged from the secondary side outlet 74 through the communication hole 63DB on the outer peripheral side, and the rest passes through the concave groove portion 68C on the outer peripheral side of the back blade 63CA toward the secondary side outlet 74.

【0069】このように、駆動羽根車61においては凹
状溝部67Cが流体力を効果的に受け留めて裏羽根61
CA側に流出させ回転力を高めた効率の良い運転がで
き、二次側羽根車63においては凹状溝部68Cにより
裏羽根63CAにより加圧された流体を流動抵抗を少な
くして流出させポンプ揚程を高めたポンプ特性の良い運
転ができる。
As described above, in the drive impeller 61, the concave groove portion 67C effectively receives the fluid force and the back blade 61C.
It is possible to perform efficient operation by increasing the rotational force by causing the fluid to flow out to the CA side, and in the secondary side impeller 63, the fluid pressurized by the rear blade 63CA is reduced by the concave groove portion 68C and flows out while reducing the flow resistance to raise the pump head. Operation with good pump characteristics is possible.

【0070】図12は他の実施例を示すもので、駆動側
および従動側の動力伝達体67B、68Bはマグネット
とし、67Dおよび68Dは駆動側および従動側の動力
伝達体67B、68Bに複数形成されたN極、S極の磁
極間に設けた凹状溝部であり、この凹状溝部67D、6
8Dは少なくともN極、S極の磁極間に設けている。
FIG. 12 shows another embodiment, in which the driving and driven power transmission bodies 67B and 68B are magnets, and a plurality of 67D and 68D are formed on the driving and driven power transmission bodies 67B and 68B. The concave groove portions 67D and 6 are provided between the magnetic poles of the N pole and the S pole that are formed.
8D is provided between magnetic poles of at least N pole and S pole.

【0071】上記構成において、N極およびS極の磁極
間に設けられた凹状溝部67D、68Dにより磁極面は
相対的に突出した形状となる。そのため、磁極から出る
磁束が隣合う磁極から出る磁束による干渉を受けること
が少なくなり、動力伝達体として隔壁65を介して対向
する磁極に対して集中する。
In the above structure, the magnetic pole surfaces are relatively projected by the concave groove portions 67D and 68D provided between the N and S poles. Therefore, the magnetic flux emitted from the magnetic poles is less likely to be interfered with by the magnetic flux emitted from the adjacent magnetic poles, and is concentrated on the opposing magnetic poles via the partition wall 65 as a power transmission body.

【0072】従って、動力伝達手段66としての連結力
が増大して動力伝達能力を高めた羽根車の連結が可能で
あり、また動力伝達体67B、68Bの小型化ができ
る。
Therefore, the connecting force of the power transmitting means 66 is increased, and it is possible to connect the impellers having improved power transmitting ability, and the power transmitting bodies 67B and 68B can be downsized.

【0073】以上のように、動力伝達能力を高めた羽根
車が実現できるという効果がある。また、動力伝達体を
小型化したコンパクトな羽根車が実現できるという効果
がある。
As described above, there is an effect that an impeller with improved power transmission capability can be realized. Further, there is an effect that a compact impeller in which the power transmission body is downsized can be realized.

【0074】以上のように、本発明の第四の実施例によ
れば図1の第一の実施例および図6の第三の実施例と同
様の効果が得られるとともに、駆動羽根車では駆動力を
より高めた運転ができ、二次側羽根車では羽根車内での
流動抵抗をさらに低減してポンプ揚程を高めるという効
果があり、効率をより高めるとともに性能を向上できる
という効果がある。
As described above, according to the fourth embodiment of the present invention, the same effects as those of the first embodiment of FIG. 1 and the third embodiment of FIG. The operation can be performed with a higher force, and in the secondary-side impeller, there is an effect that flow resistance in the impeller is further reduced to increase the pump head, and there is an effect that efficiency is further improved and performance is improved.

【0075】なお、本実施例では凹状溝部として断面が
四角形状の場合を示したが、羽根車の回転方向すなわち
周方向に対して略三角形のような鋸刃状の形(図示せ
ず)にしても良いのは言うまでもない。
In the present embodiment, the case where the concave groove portion has a quadrangular cross section is shown. However, the concave groove portion is formed into a saw-tooth shape (not shown) having a substantially triangular shape with respect to the rotation direction of the impeller, that is, the circumferential direction. It goes without saying that it is okay.

【0076】次に、図13に示す本発明の第五の実施例
について説明する。なお、図1〜図5に示した実施例と
同一機能、同一部材のところは同一符号を付与し詳細な
説明は省略する。
Next explained is the fifth embodiment of the invention shown in FIG. The same functions and members as those in the embodiment shown in FIGS. 1 to 5 are designated by the same reference numerals and detailed description thereof will be omitted.

【0077】駆動側の動力伝達体67および従動側の動
力伝達体68は裏羽根61CB、63CBの内周側に設
けられ、連通孔61D、63Dは動力伝達体67、68
の外周側に設けられている。また、裏羽根61CB、6
3CBの内周側先端には連通孔61D、63Dを設け、
動力伝達体67、68と裏羽根61CB、63CBとは
環状流路77、78により分離されている。
The drive-side power transmission body 67 and the driven-side power transmission body 68 are provided on the inner peripheral side of the back blades 61CB and 63CB, and the communication holes 61D and 63D are provided in the power transmission bodies 67 and 68.
Is provided on the outer peripheral side. Also, the back blades 61CB, 6
Communication holes 61D and 63D are provided at the inner peripheral end of 3CB,
The power transmission bodies 67 and 68 and the back blades 61CB and 63CB are separated by the annular flow paths 77 and 78.

【0078】上記構成において、羽根車の動作を流体駆
動装置において説明する。駆動羽根車61では駆動入口
71より噴出流入した一部の一次側流体は表羽根61B
に衝突流入して駆動羽根車61の回転力を生み、さらに
残りの流体は裏羽根61CBの外周側が開放されている
ため裏羽根61CBにも効率よく衝突流入してより強い
回転力を発生させて連通孔61Dを通過して駆動出口7
2に向かう。また、二次側羽根車63ではその回転に伴
い二次側入口73より吸入された流体の一部は表羽根6
3Bにより加圧されて二次側出口74に向かい、残りの
流体は連通孔63Dを通過して裏羽根63CBに入って
加圧されて裏羽根63CBの外周側より滑らかに吐出さ
れ、二次側羽根車63内の流路抵抗は大きく低減され
る。さらに、重量的に重くなる動力伝達体67、68を
内周側に配置しているので、羽根車回転時の慣性が小さ
くでき起動立ち上がりが速く速度変化などの制御応答性
に優れた羽根車ができる。
The operation of the impeller having the above structure will be described with reference to the fluid drive system. In the drive impeller 61, a part of the primary-side fluid that has flown out from the drive inlet 71 flows into the front blade 61B.
Collide into and generate the rotational force of the drive impeller 61, and the remaining fluid efficiently collides and flows into the rear blade 61CB because the outer peripheral side of the rear blade 61CB is open to generate a stronger rotational force. The drive outlet 7 passes through the communication hole 61D.
Head to 2. Further, in the secondary side impeller 63, a part of the fluid sucked from the secondary side inlet 73 due to the rotation of the secondary side impeller 63 is part of the front blade 6
The fluid is pressurized by 3B toward the secondary side outlet 74, the remaining fluid passes through the communication hole 63D, enters the back blade 63CB, is pressurized, and is smoothly discharged from the outer peripheral side of the back blade 63CB. The flow path resistance in the impeller 63 is greatly reduced. Further, since the power transmission bodies 67 and 68, which become heavy in weight, are arranged on the inner peripheral side, the impeller having a small inertia during rotation of the impeller and quick start-up / startup and excellent control response such as speed change can be provided. it can.

【0079】また、裏羽根61CB、63CBの内周側
の連通孔61D、63D部に裏羽根のない環状流路7
7、78を設けているので、流体を周方向に掻き混ぜる
だけの動力損失の発生を防止でき損失の少なく効率の高
い運転が実現できる。
Further, the annular flow path 7 having no back blade in the communication holes 61D, 63D on the inner peripheral side of the back blade 61CB, 63CB.
Since 7, 78 are provided, it is possible to prevent the generation of power loss just by stirring the fluid in the circumferential direction, and realize highly efficient operation with less loss.

【0080】以上のように、本発明の第五の実施例によ
れば図1の第一の実施例と同様の効果が得られるととも
に、裏羽根の特性を高めたより性能の優れた羽根車を実
現できるという効果がある。
As described above, according to the fifth embodiment of the present invention, the same effect as that of the first embodiment of FIG. 1 can be obtained, and an impeller having higher performance with improved characteristics of the back blade can be obtained. There is an effect that it can be realized.

【0081】また、起動性あるいは速度変化の制御応答
性に優れた羽根車が得られるという効果がある。
Further, there is an effect that an impeller excellent in startability or control response of speed change can be obtained.

【0082】次に、図14に示す本発明第六の実施例に
ついて説明する。なお、図1〜図5に示した実施例と同
一機能、同一部材のところは同一符号を付与し詳細な説
明は省略する。
Next explained is the sixth embodiment of the invention shown in FIG. The same functions and members as those in the embodiment shown in FIGS. 1 to 5 are designated by the same reference numerals and detailed description thereof will be omitted.

【0083】駆動側の動力伝達体67および従動側の動
力伝達体68は裏羽根61CC、63CCの内周側に設
けられ、連通孔61DC、63DCは動力伝達体67、
68の外周側に設けられている。連通孔61DC、63
DCは表羽根61B、63Bの内周側先端より外周側に
入った表羽根61B、63Bの流路途中に一端を開口
し、他端は裏羽根61CC、63CCの内周側先端に開
口したもので、表羽根61B、63Bの流路途中と裏羽
根61CC、63CCの内周側を連通させたものであ
る。また、裏羽根61CC、63CCの内周側先端には
連通孔61DC、63DC部において動力伝達体67、
68とは分離された環状流路77、78を有している。
The driving-side power transmission body 67 and the driven-side power transmission body 68 are provided on the inner peripheral side of the back blades 61CC and 63CC, and the communication holes 61DC and 63DC are the power transmission bodies 67 and 63DC, respectively.
It is provided on the outer peripheral side of 68. Communication hole 61DC, 63
DC has one end opened in the middle of the flow path of the front blades 61B and 63B that has entered the outer peripheral side from the inner peripheral side tips of the front blades 61B and 63B, and the other end opened to the inner peripheral side tips of the back blades 61CC and 63CC. The middle of the flow passages of the front blades 61B and 63B and the inner peripheral side of the back blades 61CC and 63CC are communicated with each other. Further, the power transmission body 67 is provided at the communication holes 61DC and 63DC at the inner peripheral ends of the back blades 61CC and 63CC.
It has annular flow paths 77 and 78 separated from 68.

【0084】上記構成において、羽根車の動作を流体駆
動装置において説明する。駆動羽根車61では駆動入口
71より噴出流入した一部の一次側流体は表羽根61B
に衝突流入して駆動羽根車61の回転力を生み、また残
りの流体は裏羽根61CBの外周側が開放されているた
め裏羽根61CBにも効率よく衝突流入してより強い回
転力を発生させ、さらに残圧のある状態で連通孔61D
Cを通過して表羽根61B側に噴出合流して回転力を増
大させ、駆動出口72に向かう。また、二次側羽根車6
3ではその回転に伴い二次側入口73より吸入された流
体の一部は表羽根63Bにより加圧されて二次側出口7
4に向かい、残りの流体は表羽根63Bでの加圧途中で
連通孔63DCを通過して裏羽根63CBに入り、さら
に裏羽根63CBでも加圧されてその外周側より滑らか
に吐出され、二次側羽根車63内の流路抵抗は大きく低
減される。ここでは表羽根の流路途中に連通孔の一端を
開口させているので、駆動羽根車61では表羽根61B
側と連通孔61DCとの合流部で二段タービンの作用を
行い性能向上し、二次側羽根車63では裏羽根63CC
の入口に表羽根63Bで加圧昇圧した流体が流入し、裏
羽根63CCが二段ポンプの作用を行いポンプの吐出圧
力を高めたすなわちポンプ揚程を高めた運転ができる。
特に、動力伝達体67、68が大きくなって裏羽根61
CC、63CCの設置スペースが十分確保できない場合
では、表羽根と裏羽根の特性バランスを取るための裏羽
根の特性向上手段として有効である。
The operation of the impeller having the above structure will be described with reference to the fluid drive system. In the drive impeller 61, a part of the primary-side fluid that has flown out from the drive inlet 71 flows into the front blade 61B.
Collide into and generate a rotational force of the drive impeller 61, and the remaining fluid efficiently collides into the rear blade 61CB to generate a stronger rotational force because the outer peripheral side of the rear blade 61CB is open. Further, with residual pressure, communication hole 61D
After passing through C, they are jetted and merged to the front blade 61B side to increase the rotational force, and head toward the drive outlet 72. In addition, the secondary side impeller 6
3, a part of the fluid sucked from the secondary side inlet 73 due to the rotation is pressurized by the front blade 63B, and the secondary side outlet 7
4, the remaining fluid passes through the communication hole 63DC during the pressurization by the front blade 63B, enters the back blade 63CB, is further pressurized by the back blade 63CB, and is smoothly discharged from the outer peripheral side. The flow path resistance in the side impeller 63 is greatly reduced. Here, since one end of the communication hole is opened in the middle of the flow path of the front blade, the drive blade 61 has the front blade 61B.
The performance of the secondary side impeller 63 is improved by performing the action of the two-stage turbine at the confluence of the side and the communication hole 61DC.
The fluid whose pressure is increased by the front blade 63B flows into the inlet of the back blade 63B, and the back blade 63CC acts as a two-stage pump to increase the discharge pressure of the pump, that is, the operation in which the pump head is increased.
In particular, the power transmission members 67, 68 become large and the back blade 61
When a sufficient installation space for CC and 63CC cannot be secured, it is effective as a means for improving the characteristics of the back blade to balance the characteristics of the front blade and the back blade.

【0085】以上のように、本発明の第六の実施例によ
れば図1の第一の実施例と同様の効果が得られるととも
に、裏羽根の特性を高めたより性能の優れた羽根車を実
現できるという効果がある。
As described above, according to the sixth embodiment of the present invention, the same effect as that of the first embodiment of FIG. 1 can be obtained, and an impeller having higher performance with improved characteristics of the back blade can be obtained. There is an effect that it can be realized.

【0086】さらに、裏羽根の設置スペースが小さいと
いう制約条件の時でも特性の優れた裏羽根を提供でき、
表羽根との性能バランスに優れるという効果がある。
Further, it is possible to provide a back blade having excellent characteristics even when the installation space for the back blade is small.
There is an effect that the performance balance with the front blade is excellent.

【0087】[0087]

【発明の効果】以上の説明から明らかなように本発明の
羽根車は、羽根基部の片面に設けた片面開放型の表羽根
と、羽根基部の他の片面には片面開放型の裏羽根と動力
伝達体を有し、表羽根および裏羽根を連通する連通孔を
設けているので、軸方向のスラスト力による機械的な摩
擦抵抗の低減と流体摩擦抵抗である円板摩擦損失の発生
を抑制して羽根車の高効率化が実現できるという効果が
ある。
As is apparent from the above description, the impeller of the present invention has the front blade of one side open type provided on one side of the blade base and the back blade of one side open type on the other side of the blade base. Since it has a power transmission body and has a communication hole that connects the front and back blades, it reduces mechanical frictional resistance due to axial thrust force and suppresses disc friction loss, which is fluid frictional resistance. Then, there is an effect that the efficiency of the impeller can be improved.

【0088】また、両面羽根で且つ片面流出入口構成に
より低コスト化と小型化が実現できるという効果があ
り、さらに表羽根と裏羽根の設計の自由度の向上と表裏
羽根の最適化による一層の高効率化ができるという効果
がある。
Further, the double-sided blade and the single-sided outflow / inlet configuration have the effect of realizing cost reduction and downsizing, and further improve the degree of freedom in designing the front and back blades and optimize the front and back blades. There is an effect that efficiency can be improved.

【0089】また、第二の発明の流体駆動装置は、駆動
羽根車と二次側羽根車とを隔壁で分離しつつ動力伝達手
段で連結し、駆動あるいは二次側羽根車は羽根基部の両
面に片面開放型の羽根を設けるとともに連通孔で表裏羽
根を連通し、羽根基部の隔壁側の片面には動力伝達体を
設けたものである。
Further, in the fluid drive system of the second invention, the drive impeller and the secondary side impeller are separated by the partition wall and connected by the power transmission means, and the drive or secondary side impeller is provided on both sides of the blade base. The front and back blades are communicated with each other through a communication hole, and a power transmission body is provided on one surface of the blade base portion on the partition wall side.

【0090】従って、軸受部での機械摩擦抵抗の低減と
円板摩擦損失という流体摩擦抵抗の低減した抵抗損失の
小さな高効率の羽根車により、一次側の駆動流体動力の
負担を低減でき、小型コンパクトな流体駆動装置が実現
できるという効果がある。
Therefore, the load of driving fluid power on the primary side can be reduced by the high-efficiency impeller having a small resistance loss in which the mechanical frictional resistance at the bearing portion is reduced and the fluid frictional resistance such as the disk frictional loss is also reduced. There is an effect that a compact fluid drive device can be realized.

【0091】さらに、損失の少ない羽根車により一次側
の限られた駆動流体動力においても二次側の大能力化が
でき、利用用途および利用範囲が拡大でき実用性が向上
するという効果がある。
Further, the impeller having a small loss can increase the capacity of the secondary side even with a limited drive fluid power on the primary side, and can be used in a wide range of applications and a wide range of applications, thereby improving the practicality.

【0092】また、第三の発明の羽根車は、動力伝達体
は裏羽根の外周側に設け、裏羽根の内周側および外周側
に連通孔を設けているので、動力を伝える力点の半径が
大きくでき回転力の伝達トルクが大きい動力伝達能力の
高い羽根車が実現できるという効果があり、さらに外周
側の連通孔により駆動羽根車では駆動力をより高めた運
転ができ、二次側羽根車では流体損失を低減し効率向上
ができるという効果がある。
Further, in the impeller of the third invention, the power transmission body is provided on the outer peripheral side of the back blade, and the communication holes are provided on the inner peripheral side and the outer peripheral side of the back blade. It is possible to realize an impeller with a large power transmission capacity and a large torque transmission torque of the rotational force.In addition, the communication hole on the outer peripheral side allows the driving impeller to operate with a higher driving force and the secondary side blade. In vehicles, there is an effect that fluid loss can be reduced and efficiency can be improved.

【0093】また、第四の発明の羽根車は、動力伝達体
を裏羽根の外周側に設けるとともにこの動力伝達体に外
周側と内周側に渡る凹状溝部を設けているので、この凹
状溝部が駆動羽根車では流体力を受けとめ、二次側羽根
車では流体の加圧と吐出流動抵抗を減じ、駆動羽根車で
は駆動力をより高めた運転ができるという効果があり、
二次側羽根車ではポンプ揚程を高め流動抵抗を低減でき
るという効果があり、いずれの場合でも効率をより高め
るとともに性能を向上できるという効果がある。
Further, in the impeller of the fourth invention, the power transmission body is provided on the outer peripheral side of the back blade, and the power transmission body is provided with the concave groove portion extending to the outer peripheral side and the inner peripheral side. Has the effect that the drive impeller receives fluid force, the secondary side impeller reduces fluid pressurization and discharge flow resistance, and the drive impeller can operate with higher drive force.
The secondary side impeller has the effect of increasing the pump head and reducing the flow resistance, and in either case, there is the effect of further increasing efficiency and improving performance.

【0094】また、第五の発明の羽根車は、動力伝達体
を裏羽根の内周側に設け連通孔を動力伝達体の外周側に
設けているので、慣性力を小さくして起動性速度変化の
制御応答性に優れるという効果があり、動力損失を低減
させて裏羽根の性能向上ができるという効果がある。
In the impeller of the fifth invention, the power transmission body is provided on the inner peripheral side of the back blade and the communication hole is provided on the outer peripheral side of the power transmission body. There is an effect that the control response of the change is excellent, and there is an effect that the power loss can be reduced and the performance of the back blade can be improved.

【0095】また、第六の発明の羽根車は、連通孔の一
端を表羽根の流路途中に開口し他端を裏羽根の内周側に
開口して連通させ、裏羽根は小さい設置スペースでも駆
動羽根車では合流部で二段タービンの作用を行い性能向
上し、二次側羽根車では裏羽根が二段ポンプの作用を行
いポンプ揚程を高めるので、裏羽根の性能を向上できる
という効果があり、裏羽根の設置スペースが小さいとい
う制約条件の時でも特性の優れた裏羽根を提供でき表羽
根との性能バランスに優れるという効果がある。
Further, in the impeller of the sixth invention, one end of the communication hole is opened in the middle of the flow path of the front blade and the other end is opened to the inner peripheral side of the back blade for communication, and the back blade has a small installation space. However, in the drive impeller, the performance is improved by the action of the two-stage turbine at the confluence, and in the secondary side impeller, the back vane acts as a two-stage pump to increase the pump head, so the performance of the back vane can be improved. Therefore, even under the constraint that the installation space for the back blade is small, a back blade with excellent characteristics can be provided, and there is an effect that the performance balance with the front blade is excellent.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一および第二の実施例における羽根
車および流体駆動装置の断面図
FIG. 1 is a cross-sectional view of an impeller and a fluid drive device according to first and second embodiments of the present invention.

【図2】上記図1の駆動羽根車および二次側羽根車の表
羽根の平面図
FIG. 2 is a plan view of front blades of the drive impeller and the secondary side impeller of FIG.

【図3】上記図1の駆動羽根車および二次側羽根車の裏
羽根の平面図
FIG. 3 is a plan view of back blades of the drive impeller and the secondary side impeller of FIG.

【図4】上記図2の羽根車のA−A断面図4 is a sectional view of the impeller of FIG. 2 taken along the line AA.

【図5】上記図2の他の実施例の駆動羽根車および二次
側羽根車の裏羽根の平面図
FIG. 5 is a plan view of the driving impeller and the back blade of the secondary side impeller according to another embodiment of FIG.

【図6】本発明の第三の実施例における羽根車および流
体駆動装置の断面図
FIG. 6 is a sectional view of an impeller and a fluid drive unit according to a third embodiment of the present invention.

【図7】上記図6の駆動羽根車および二次側羽根車の表
羽根の平面図
7 is a plan view of front blades of the drive impeller and the secondary side impeller of FIG.

【図8】上記図6の駆動羽根車および二次側羽根車の裏
羽根の平面図
8 is a plan view of the drive impeller and the back blade of the secondary side impeller of FIG. 6;

【図9】本発明の第四の実施例における羽根車および流
体駆動装置の断面図
FIG. 9 is a sectional view of an impeller and a fluid drive unit according to a fourth embodiment of the present invention.

【図10】上記図9の駆動側および従動側の動力伝達体
の平面図
FIG. 10 is a plan view of the driving-side and driven-side power transmission bodies of FIG. 9;

【図11】上記図10の動力伝達体の側面図11 is a side view of the power transmission body shown in FIG.

【図12】本発明の第四の他の実施例における駆動側お
よび従動側の動力伝達体の平面図
FIG. 12 is a plan view of driving-side and driven-side power transmission bodies according to a fourth embodiment of the present invention.

【図13】本発明の第五の実施例における羽根車および
流体駆動装置の断面図
FIG. 13 is a sectional view of an impeller and a fluid drive system according to a fifth embodiment of the present invention.

【図14】本発明の第六の実施例における羽根車および
流体駆動装置の断面図
FIG. 14 is a sectional view of an impeller and a fluid drive unit according to a sixth embodiment of the present invention.

【図15】従来の流体を駆動源とするポンプの構成図FIG. 15 is a configuration diagram of a conventional pump using a fluid as a drive source.

【図16】従来の流体を駆動源とする他のポンプの構成
FIG. 16 is a block diagram of another conventional pump using a fluid as a drive source.

【図17】従来の住棟セントラル給湯暖房装置のシステ
ム構成図
[Fig. 17] System configuration diagram of a conventional central hot water supply and heating system for a residential building

【図18】従来の電動モータを駆動源とするポンプの構
成図
FIG. 18 is a configuration diagram of a conventional pump that uses an electric motor as a drive source.

【図19】従来の両吸込み羽根車を持つポンプの構成図FIG. 19 is a block diagram of a conventional pump having both suction impellers.

【符号の説明】[Explanation of symbols]

61 駆動羽根車 63 二次側羽根車 65 隔壁 66 動力伝達手段 67 68 動力伝達体 61A、63A 羽根基部 61B、63B 表羽根 61C、63C 裏羽根 61D、63D 連通孔 61 Drive impeller 63 Secondary side impeller 65 Partition wall 66 Power transmission means 67 68 Power transmission body 61A, 63A Blade base 61B, 63B Front blade 61C, 63C Back blade 61D, 63D Communication hole

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】羽根基部の一方の片面に設けた片面開放型
の表羽根と、前記羽根基部の他方の片面に設けた片面開
放型の裏羽根及び動力伝達体と、前記表羽根側と前記裏
羽根側を連通する連通孔とを備えた羽根車。
1. A single-sided open type front blade provided on one side of a blade base, a single-sided open type back blade and a power transmission body provided on the other side of the blade base, the front blade side and the front side. An impeller provided with a communication hole that communicates with the back blade side.
【請求項2】一次側流体を回転力の駆動源とする駆動羽
根車と、二次側流体を循環させる二次側羽根車と、前記
一次側流体と前記二次側流体とを気密に分離する隔壁
と、前記駆動羽根車に設けた駆動側の動力伝達体と前記
二次側羽根車に設けた従動側の動力伝達体とを前記隔壁
を介して対向させた動力伝達手段と、前記駆動羽根車あ
るいは前記二次側羽根車の少なくとも一方でかつ羽根基
部の片面に設けた片面開放型の表羽根と、前記羽根基部
の他の片面に設けた片面開放型の裏羽根及び動力伝達体
と、前記表羽根側と前記裏羽根側を連通する連通孔とを
有する羽根車を搭載した流体駆動装置。
2. A drive impeller that uses a primary fluid as a drive source of rotational force, a secondary impeller that circulates a secondary fluid, and the primary fluid and the secondary fluid that are hermetically separated from each other. A partition wall, a power transmission unit in which a drive-side power transmission body provided in the drive impeller and a driven-side power transmission body provided in the secondary-side impeller are opposed to each other through the partition wall, and the drive A front surface of a single-sided open type provided on at least one of the impeller or the secondary side impeller and one side of the blade base, and a single-sided open type back blade and a power transmission body provided on the other side of the blade base. A fluid drive device equipped with an impeller having a communication hole that connects the front blade side and the back blade side.
【請求項3】動力伝達体は裏羽根の外周側に設け、連通
孔は裏羽根の内周側および外周側に設けた請求項1記載
の羽根車。
3. The impeller according to claim 1, wherein the power transmission body is provided on an outer peripheral side of the back blade, and the communication holes are provided on an inner peripheral side and an outer peripheral side of the back blade.
【請求項4】動力伝達体は裏羽根の外周側に設け、この
動力伝達体の外周側と内周側に渡る凹状溝部を設けた請
求項1記載の羽根車。
4. The impeller according to claim 1, wherein the power transmission body is provided on an outer peripheral side of the back blade, and a concave groove portion is provided extending to an outer peripheral side and an inner peripheral side of the power transmission body.
【請求項5】動力伝達体は裏羽根の内周側に設け、連通
孔は動力伝達体の外周側に設けた請求項1記載の羽根
車。
5. The impeller according to claim 1, wherein the power transmission body is provided on the inner peripheral side of the back blade, and the communication hole is provided on the outer peripheral side of the power transmission body.
【請求項6】連通孔は表羽根の流路途中と裏羽根の内周
側を連通させた請求項1記載の羽根車。
6. The impeller according to claim 1, wherein the communication hole communicates with the middle of the flow path of the front blade and the inner peripheral side of the back blade.
JP7175749A 1995-07-12 1995-07-12 Impeller and fluid driving device using same Pending JPH0925868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7175749A JPH0925868A (en) 1995-07-12 1995-07-12 Impeller and fluid driving device using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7175749A JPH0925868A (en) 1995-07-12 1995-07-12 Impeller and fluid driving device using same

Publications (1)

Publication Number Publication Date
JPH0925868A true JPH0925868A (en) 1997-01-28

Family

ID=16001586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7175749A Pending JPH0925868A (en) 1995-07-12 1995-07-12 Impeller and fluid driving device using same

Country Status (1)

Country Link
JP (1) JPH0925868A (en)

Similar Documents

Publication Publication Date Title
US7341424B2 (en) Turbines and methods of generating power
EP1242719B1 (en) Viscous drag impeller components incorporated into pumps, turbines and transmissions
US6779964B2 (en) Viscous drag impeller components incorporated into pumps, turbines and transmissions
WO2014166128A1 (en) Dynamic-pressure suspension-type double-flow pump
CN105673574A (en) Low-noise multi-stage centrifugal pump
US3016019A (en) Fluid power converter
US20190120249A1 (en) Modular, multi-stage, integral sealed motor pump with integrally-cooled motors and independently controlled rotor speeds
CN113809885A (en) Compressor and air conditioner and automobile with same
JPH0925868A (en) Impeller and fluid driving device using same
JPH08135592A (en) Turbine magnet drive pump
US9206814B2 (en) Energy saving pump with multiple impellers
JP3723985B2 (en) Fluid driven pump
JPH0979173A (en) Fluid driving device
JPH08135591A (en) Fluid drive pump
CN212899004U (en) Motor upper-mounted submersible pump
CN211146698U (en) Inertia air conditioner, indoor unit of air conditioner, outdoor unit of air conditioner and air conditioning system
JPH0942139A (en) Fluid driving device
JPH06257769A (en) Fluid driving apparatus
JP2000227086A (en) Self-priming pump
JPH09195914A (en) Fluid driving device
JPH0763187A (en) Fluid driving pump
CN217632946U (en) Centrifugal circulating pump
JPH07317693A (en) Fluid drive pump
CN110671334A (en) Magnetic cyclone pump
JPH06185489A (en) Fluid driving pump