JPH09258258A - Method and device for recording image - Google Patents

Method and device for recording image

Info

Publication number
JPH09258258A
JPH09258258A JP6334296A JP6334296A JPH09258258A JP H09258258 A JPH09258258 A JP H09258258A JP 6334296 A JP6334296 A JP 6334296A JP 6334296 A JP6334296 A JP 6334296A JP H09258258 A JPH09258258 A JP H09258258A
Authority
JP
Japan
Prior art keywords
liquid crystal
voltage
recording medium
electrode
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6334296A
Other languages
Japanese (ja)
Inventor
Masahito Okabe
岡部将人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP6334296A priority Critical patent/JPH09258258A/en
Publication of JPH09258258A publication Critical patent/JPH09258258A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To lower the voltage applied to an optical sensor just after voltage application and to reduce the occurrence of abnormal discharge, a noise and a defect by setting so that the voltage applied between electrodes of the optical sensor and a liquid crystal recording medium becomes higher at a voltage application end time than a voltage application start time. SOLUTION: A separation type information recording medium oppositely arranging the optical sensor 10 and the liquid crystal recording medium 20 through a gap or an integrated type information recording medium laminating the optical sensor and the liquid crystal recording medium is used. Then, when an image is exposed through the optical sensor 10, and the voltage is applied between the optical sensor 10 and the liquid crystal recording medium 20, and the image is recorded, the voltage applied between both electrodes is set so that the voltage becomes higher at the voltage application end time than the voltage application start time. By making such voltage application condition, the voltage applied to the optical sensor 10 just after the voltage application is lowered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は高分子−液晶複合体
層を有する液晶記録媒体に画像を記録する画像記録方法
及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image recording method and apparatus for recording an image on a liquid crystal recording medium having a polymer-liquid crystal composite layer.

【0002】[0002]

【従来の技術】従来、液晶−高分子複合体層を電極上に
形成した情報記録媒体と、電極層上に光導電層が形成さ
れた光センサとを対向配置し、電圧印加露光により画像
記録するものは、特開平6−130347号、特開平5
−165005号等で知られている。また、液晶−高分
子複合体を電極上に形成した情報記録媒体と、電極層上
に光導電層が形成された光センサとを対向配置し、電圧
印加露光により画像記録するものは、特開平4−362
916号に記載されている。図1はこのような情報記録
媒体を用いた情報記録装置の構成を示す図である。図
中、10は光センサ、20は情報記録媒体をそれぞれ示
している。光センサ10は透明支持体11上に透明電極
12、光導電層13が順次積層され、情報記録媒体20
は透明支持体21上に透明電極22、液晶−高分子複合
体層23が順次積層され、液晶層表面にはスキン層24
が形成されている。
2. Description of the Related Art Conventionally, an information recording medium having a liquid crystal-polymer composite layer formed on an electrode and an optical sensor having a photoconductive layer formed on the electrode layer are arranged to face each other, and image recording is performed by voltage application exposure. What can be done is disclosed in JP-A-6-130347 and JP-A-5-130347.
No. 165005 is known. Further, an information recording medium in which a liquid crystal-polymer composite is formed on an electrode and an optical sensor in which a photoconductive layer is formed on an electrode layer are opposed to each other and image recording is performed by voltage application exposure is disclosed in JP-A 4-362
No. 916. FIG. 1 is a diagram showing the configuration of an information recording apparatus using such an information recording medium. In the figure, reference numeral 10 denotes an optical sensor, and reference numeral 20 denotes an information recording medium. In the optical sensor 10, a transparent electrode 12 and a photoconductive layer 13 are sequentially laminated on a transparent support 11, and an information recording medium 20 is provided.
A transparent electrode 22 and a liquid crystal-polymer composite layer 23 are sequentially laminated on a transparent support 21, and a skin layer 24 is formed on the liquid crystal layer surface.
Are formed.

【0003】図1に示すような光センサと情報記録媒体
とを、ポリエチレンやポリイミド等のスペーサを用い
て、10μm程度の空隙を介して対向配置して電圧印加
露光するタイプのものと、図2(a)、図2(b)に示
すように光センサ及び情報記録媒体を積層した構造のも
のも提案されており、積層型記録媒体では図2(a)に
示すように光センサ上に情報記録相を直接積層するもの
と、図2(b)に示すように、透明な誘電体の中間相2
5を介在させるものとがある。このような光センサ10
と情報記録媒体20を対向配置し、図3に示すように電
源30により両電極12、22間に電圧を印加し、書き
込み光として可視光を照射すると、露光強度に応じて光
導電層13の導電性が変化し、液晶層23にかかる電界
が変化して液晶の配向状態が変化し、印加電圧をOFF
して電界を取り除いた後もその状態が維持され、露光情
報の記録が行われる。
A type in which an optical sensor and an information recording medium as shown in FIG. 1 are opposed to each other with a space of about 10 μm using a spacer such as polyethylene or polyimide, and exposed by voltage application, and FIG. A structure in which an optical sensor and an information recording medium are laminated as shown in FIGS. 2A and 2B has also been proposed. In a laminated recording medium, information is recorded on the optical sensor as shown in FIG. 2A. As shown in FIG. 2B, the recording phase is directly laminated and the transparent dielectric intermediate phase 2 is used.
There are some which intervene 5. Such an optical sensor 10
When the information recording medium 20 and the information recording medium 20 are opposed to each other and a voltage is applied between the electrodes 12 and 22 by a power source 30 as shown in FIG. 3 and visible light is irradiated as writing light, the photoconductive layer 13 of the photoconductive layer 13 is irradiated in accordance with the exposure intensity. The conductivity changes, the electric field applied to the liquid crystal layer 23 changes, the alignment state of the liquid crystal changes, and the applied voltage is turned off.
Then, the state is maintained even after the electric field is removed, and the exposure information is recorded.

【0004】記録された露光情報の再生は、例えば、図
4に示すように光源40から情報記録媒体20に再生光
を照射し、その透過光を光電変換装置60で読み取って
電気信号に変換することにより行われる。光源40とし
ては、キセノンランプ、ハロゲンランプ等の白色光源や
レーザ光が用いられ、液晶記録媒体に照射される読み出
し光としては、フィルタ50により適当な波長光を選択
して照射することが望ましい。入射した光は情報記録媒
体の液晶の配向状態に応じて変調され、透過光はフォト
ダイオード等からなる光電変換装置60でデジタル信号
に変換され、変換された信号は必要に応じてプリンタや
CRTに出力される。
To reproduce the recorded exposure information, for example, as shown in FIG. 4, reproduction light is emitted from the light source 40 to the information recording medium 20, and the transmitted light is read by the photoelectric conversion device 60 and converted into an electric signal. It is done by As the light source 40, a white light source such as a xenon lamp or a halogen lamp or a laser beam is used, and it is desirable that the reading light with which the liquid crystal recording medium is irradiated be selected to have an appropriate wavelength light and be irradiated. The incident light is modulated according to the alignment state of the liquid crystal of the information recording medium, the transmitted light is converted into a digital signal by the photoelectric conversion device 60 including a photodiode or the like, and the converted signal is output to a printer or a CRT as necessary. Is output.

【0005】[0005]

【発明が解決しようとする課題】上記の方法で画像記録
する場合、電圧印加直後に光センサの光導電層に高電界
がかかるため、異状放電、画像上のノイズの発生、欠陥
の原因になる等の問題がある。本発明はかかる点に鑑み
てなされたもので、電圧印加直後に光センサにかかる電
圧を低くして、異状放電の発生、ノイズの発生、欠陥の
発生を低減化することを目的としている。
When an image is recorded by the above method, a high electric field is applied to the photoconductive layer of the photosensor immediately after the voltage is applied, which causes abnormal discharge, noise on the image, and defects. There is a problem such as. The present invention has been made in view of the above point, and an object of the present invention is to reduce the voltage applied to the photosensor immediately after the voltage is applied to reduce the occurrence of abnormal discharge, noise, and defects.

【0006】[0006]

【課題を解決するための手段】本発明は、光センサと液
晶記録媒体をギャップを介して対向配置させた分離型情
報記録媒体あるいは光センサと液晶記録媒体とを積層し
た一体型情報記録媒体を用い、光センサを通して画像露
光し、光センサと液晶記録媒体の電極間に電圧を印加し
て画像記録する際、両電極間に印加する電圧を、電圧印
加開始時よりも電圧印加終了時の方が高くなるように設
定したものであり、このような電圧印加条件とすること
により、電圧印加直後に光センサかかる電圧を低くして
異状放電の発生、ノイズの発生、欠陥の発生を低減化す
ることができる。
The present invention provides a separate type information recording medium in which an optical sensor and a liquid crystal recording medium are opposed to each other with a gap interposed therebetween, or an integrated type information recording medium in which an optical sensor and a liquid crystal recording medium are laminated. When an image is exposed through an optical sensor and a voltage is applied between the optical sensor and the electrodes of the liquid crystal recording medium to record an image, the voltage applied between both electrodes is determined when the voltage application is completed rather than when the voltage application is started. Is set so that the voltage applied to the optical sensor immediately after the voltage is applied is reduced by setting such voltage application conditions to reduce the occurrence of abnormal discharge, noise, and defects. be able to.

【0007】[0007]

【発明の実施の形態】次に、図面を用いて本発明の画像
記録について詳しく説明する。本発明の画像記録におい
て、液晶媒体および光センサにかかる電圧の様子を調べ
るため、図5に示す測定装置を用いて、光センサおよび
液晶媒体にかかる電圧を計算した。図5において、光セ
ンサ10の光導電層13上に電極14を形成し、また、
液晶記録媒体を抵抗とコンデンサの並列回路として、相
当する抵抗51およびコンデンサ52を擬似液晶媒体と
して光センサ10に接続し、さらに電流測定用の抵抗5
0を接続して電源30により電圧を印加して電流値を測
定した。また、光センサ10に対して光源40およびシ
ャッタ41を用いて、所定の時間、所定強度の光を露光
した。測定結果例を図6に示す。印加電圧は400V、
露光条件は20Luxの強度のG光を1/30秒間、電
圧印加開始と同時に露光した。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the image recording of the present invention will be described in detail with reference to the drawings. In the image recording of the present invention, in order to investigate the state of the voltage applied to the liquid crystal medium and the optical sensor, the voltage applied to the optical sensor and the liquid crystal medium was calculated using the measuring device shown in FIG. In FIG. 5, an electrode 14 is formed on the photoconductive layer 13 of the photosensor 10, and
A liquid crystal recording medium is connected in parallel with a resistor and a capacitor, a corresponding resistor 51 and a capacitor 52 are connected as a pseudo liquid crystal medium to the optical sensor 10, and a resistor 5 for measuring current is further connected.
0 was connected and a voltage was applied by the power supply 30 to measure the current value. Further, the light source 40 and the shutter 41 were used for the optical sensor 10 to expose the optical sensor 10 with light of a predetermined intensity for a predetermined time. An example of the measurement result is shown in FIG. Applied voltage is 400V,
The exposure condition was that G light with an intensity of 20 Lux was exposed for 1/30 seconds at the same time when the voltage application was started.

【0008】次に、測定結果から擬似液晶媒体と光セン
サにかかる電圧の計算を方法を説明する。図5の方法で
測定される電流値IEXと擬似液晶媒体にかかる電圧およ
び抵抗成分の電流の間には下記(1)式が成り立つ。 IEX=VLC/RLC+CLC・dVLC/dt ……(1) また、疑似液晶媒体にかかる電圧の初期条件は、 VLC(0)=0 ……(2) であり、(1)式を変形して下記(3)式 VLC(t+Δt)=VLC(t)+(IEX−VLC/RLC)・Δt/CLC…(3) により疑似液晶媒体にかかる電圧を計算した。
Next, a method for calculating the voltage applied to the pseudo liquid crystal medium and the photosensor from the measurement result will be described. The following equation (1) is established between the current value I EX measured by the method of FIG. 5 and the voltage and resistance component current applied to the pseudo liquid crystal medium. I EX = V LC / R LC + C LC · dV LC / dt (1) Further, the initial condition of the voltage applied to the pseudo liquid crystal medium is V LC (0) = 0 (2) and (1 Equation (3) is modified to obtain the voltage applied to the pseudo liquid crystal medium by the following equation (3): V LC (t + Δt) = V LC (t) + (I EX −V LC / R LC ) Δt / C LC (3) I calculated.

【0009】図7に擬似液晶媒体にかかる電圧を上記の
方法で計算した結果を示す。液晶媒体にかかる電圧は、
電圧印加開始から極く短い時間で、光センサと液晶媒体
の容量の比に分配される。その後、光センサおよび液晶
媒体の抵抗成分の電流により液晶媒体および光センサの
電圧が変化する。図7に示した計算結果例では、0.2
〜0.3msec程度の時間で初期充電が完了し、液晶
媒体の電圧はV1 に到達する。
FIG. 7 shows the result of calculating the voltage applied to the pseudo liquid crystal medium by the above method. The voltage applied to the liquid crystal medium is
In a very short time from the start of voltage application, the capacitance is distributed to the capacitance ratio of the optical sensor and the liquid crystal medium. After that, the voltage of the liquid crystal medium and the light sensor changes due to the current of the resistance component of the light sensor and the liquid crystal medium. In the calculation result example shown in FIG. 7, 0.2
The initial charge is completed in about 0.3 msec, and the voltage of the liquid crystal medium reaches V 1 .

【0010】光センサについても(1)〜(3)式と同
様の方法で光センサにかかる電圧を計算しようとする
と、電圧印加直後の光センサの電流値を単純な式で近似
することが困難であるため、印加電圧と液晶媒体にかか
る電圧との差を光センサの電圧とした。図7に示した計
算例では、電源の内部抵抗が小さいため、約0.2〜
0.3msecで初期充電は完了し、それ以降は液晶媒
体と光センサにかかる電圧の合計は印加電圧に等しくな
る。すなわち、下式を用いて光センサにかかる電圧を計
算した。 VPS=VAP−VLC ……(4) 計算結果を図8に示す。図8から分かるように、電圧印
加直後に光センサに約340Vの電圧がかかり、その
後、光センサにかかる電圧は時間と共に減少するが、こ
のように電圧印加初期の光センサにかかる電圧が高い
と、異常放電、ノイズの発生、欠陥の発生等の原因に成
りやすい。これは媒質の不均一性に起因して局所的に光
センサが導通状態になったり、また、高電界による不均
一性が強調されて画像上に粒状ノイズが発生すると考え
られる。
For the photosensor as well, if the voltage applied to the photosensor is calculated by the same method as the equations (1) to (3), it is difficult to approximate the current value of the photosensor immediately after the voltage is applied by a simple equation. Therefore, the difference between the applied voltage and the voltage applied to the liquid crystal medium was used as the voltage of the optical sensor. In the calculation example shown in FIG. 7, since the internal resistance of the power supply is small,
The initial charge is completed in 0.3 msec, and thereafter, the total voltage applied to the liquid crystal medium and the photosensor becomes equal to the applied voltage. That is, the voltage applied to the photosensor was calculated using the following formula. V PS = V AP −V LC (4) The calculation result is shown in FIG. As can be seen from FIG. 8, a voltage of about 340V is applied to the photosensor immediately after the voltage is applied, and thereafter, the voltage applied to the photosensor decreases with time. It is likely to cause abnormal discharge, noise, defect, etc. It is considered that this is because the photosensor is locally brought into conduction due to the nonuniformity of the medium, and the nonuniformity due to the high electric field is emphasized to cause granular noise on the image.

【0011】次に、異常放電やノイズの発生を防止する
ために、光センサにかかる電圧を低減する方法について
説明する。図9は光センサにかかる電圧を低減するため
の電圧印加方法の一例を示している。図5に示したもの
と同様の測定装置を用いて、図9に示すように印加電圧
初期に300V、その後100msec当たり、100
V増加するようにスロープ状の電圧を印加したときの、
擬似液晶媒体および光センサにかかる電圧を同様に計算
した結果を図10に示す。
Next, a method of reducing the voltage applied to the photosensor in order to prevent the occurrence of abnormal discharge and noise will be described. FIG. 9 shows an example of a voltage applying method for reducing the voltage applied to the optical sensor. Using a measuring device similar to that shown in FIG. 5, as shown in FIG.
When a slope voltage is applied to increase V,
FIG. 10 shows the result of similar calculation of the voltages applied to the pseudo liquid crystal medium and the photosensor.

【0012】図10の結果と図8に示した一定電圧40
0Vを印加した場合の光センサにかかる電圧VPSを比較
すると、一定電圧印加した場合には、電圧印加開始から
57msec後に液晶媒体のしきい値電圧(200V)
に到達する。このとき、光センサにかかる電圧VPSは、
暗部(図の■)で340〜200Vの範囲であった。こ
れに対して、スロープ電圧で電圧印加した場合には、約
80msec後にしきい値電圧に到達し、光センサにか
かる電圧VPSは、暗部(図の■)では260〜180V
の範囲で、一定電圧印加の場合に比べてかなり低くなっ
た。
The result of FIG. 10 and the constant voltage 40 shown in FIG.
Comparing the voltage V PS applied to the optical sensor when 0 V is applied, when a constant voltage is applied, the threshold voltage (200 V) of the liquid crystal medium is 57 msec after the start of voltage application.
To reach. At this time, the voltage V PS applied to the optical sensor is
It was in the range of 340 to 200 V in the dark part (■ in the figure). On the other hand, when the voltage is applied with the slope voltage, the threshold voltage is reached after about 80 msec, and the voltage V PS applied to the photosensor is 260 to 180 V in the dark part (■ in the figure).
In the range, the value was considerably lower than that in the case of applying a constant voltage.

【0013】図11に、図8および図10に示した測定
結果において、明暗の電位差を計算した結果を示す。図
11に示すように、暗部の電圧がしきい値電圧であると
き(図8では電圧印加開始から57msec後、図10
では電圧印加開始から80msec後)の明暗の電位差
を比較すると、電圧印加条件に依らずほぼ等しいことが
わかる。
FIG. 11 shows the result of calculating the potential difference between light and dark in the measurement results shown in FIGS. 8 and 10. As shown in FIG. 11, when the voltage in the dark portion is the threshold voltage (in FIG. 8, 57 msec after the start of voltage application,
Then, when comparing the potential difference of light and dark after 80 msec from the start of voltage application, it is found that they are almost equal regardless of the voltage application conditions.

【0014】以上では印加電圧が直線的に増加する方法
について説明したが、必ずしもこのような方法だけに限
らず、電圧印加初期の電圧に対して印加電圧終了時の電
圧の方が高いような条件で電圧印加する方法であれば、
電圧波形の形状については特に制限はない。
Although the method of linearly increasing the applied voltage has been described above, the present invention is not limited to such a method, and the condition is such that the voltage at the end of the applied voltage is higher than the voltage at the initial voltage application. If the method of applying voltage with
There is no particular limitation on the shape of the voltage waveform.

【0015】光センサの電圧を低減する他の方法につい
て説明する。図12に光センサの電圧を低減するための
電圧印加条件を示す。図12において、条件Aは通常の
画像記録方法の場合であり、画像露光と同時に400V
の電圧を印加することにより画像記録を行う。条件Bは
本発明の画像記録方法であり、画像露光前に50mse
c間200Vの電圧を印加し、続けて400Vの電圧を
印加すると同時に、画像露光を行うことにより画像記録
を行う。なお、画像露光前の電圧印加は、ベース電流を
惹起するので画像露光時の光誘起電流に影響を与え、光
センサ、液晶媒体にかかる電圧に対して影響する。
Another method of reducing the voltage of the optical sensor will be described. FIG. 12 shows voltage application conditions for reducing the voltage of the optical sensor. In FIG. 12, condition A is the case of a normal image recording method, and 400 V at the same time as image exposure.
Image recording is performed by applying the voltage of. Condition B is the image recording method of the present invention.
An image is recorded by applying a voltage of 200 V for the period c and subsequently applying a voltage of 400 V, and simultaneously performing image exposure. It should be noted that the voltage application before image exposure affects the photo-induced current during image exposure because it induces a base current, which in turn affects the voltage applied to the photosensor and the liquid crystal medium.

【0016】図5に示した方法により擬似液晶媒体を用
いて、図12の条件A、条件Bについて液晶媒体および
光センサにかかる電圧を計算した結果をそれぞれ図1
3、図14に示す。なお、図13、図14はいずれも、
露光開始時をt=0として表示し、図のA(phot
o)、A(dark)は条件Aにおける明部、暗部を、
B(photo)、B(dark)は条件Bにおける明
部、暗部の電圧を示している。図13より、液晶媒体の
しきい値電圧が250Vであるとすると、条件Aの場合
には(明部□、暗部■)、電圧印加開始から62mse
c後に暗部の電圧はしきい値電圧に到達する。これに対
して、条件Bの場合には(明部○、暗部●)、400V
の電圧印加開始から42msecで暗部の電圧はしきい
値電圧に到達する。図14より、光センサにかかる電圧
は、条件Aに対しては350〜130Vの範囲で、条件
Bでは250〜130Vの範囲であり、条件Bの方が光
センサにかかる電圧が低くなる結果が得られた。
Using the pseudo liquid crystal medium according to the method shown in FIG. 5, the results of calculating the voltages applied to the liquid crystal medium and the photosensor under the conditions A and B of FIG. 12 are shown in FIG.
3, shown in FIG. In addition, both FIG. 13 and FIG.
The exposure start time is displayed as t = 0, and A (photo) in the figure is displayed.
o) and A (dark) are the bright and dark parts in condition A,
B (photo) and B (dark) indicate the voltages of the bright portion and the dark portion under the condition B. From FIG. 13, assuming that the threshold voltage of the liquid crystal medium is 250 V, under the condition A (bright area □, dark area ■), 62 mse from the start of voltage application.
After c, the voltage in the dark portion reaches the threshold voltage. On the other hand, in the case of condition B (bright area ○, dark area ●), 400 V
The voltage in the dark portion reaches the threshold voltage 42 msec after the start of the voltage application. From FIG. 14, the voltage applied to the photosensor is in the range of 350 to 130 V for the condition A and 250 to 130 V for the condition B, and the result that the voltage applied to the photosensor is lower in the condition B. Was obtained.

【0017】図15は、条件A、条件Bの場合につい
て、光センサの明部と暗部の電位差を計算した結果を示
している。液晶媒体の電圧がしきい値電圧のときの明暗
の電位差を比較すると、電圧印加条件によっては大きく
変わらないことが判る。
FIG. 15 shows the results of calculation of the potential difference between the bright portion and the dark portion of the photosensor under the conditions A and B. Comparing the light-dark potential difference when the voltage of the liquid crystal medium is the threshold voltage, it is found that it does not change significantly depending on the voltage application conditions.

【0018】また、ここでは露光開始と同時に一回だけ
電圧を上げる方法を示したが、電圧を上げる回数は2回
以上の複数回でもよく、また、露光のタイミングも図1
2のような場合に限らず、適切なタイミングを選んで画
像露光すればよい。
Although the method of increasing the voltage only once at the start of exposure is shown here, the number of times of increasing the voltage may be two or more times, and the exposure timing is also shown in FIG.
Not limited to the case of 2, the image exposure may be performed by selecting an appropriate timing.

【0019】さらに、光センサの電圧を低減する他の方
法について説明する。図16に示すように記録媒体に抵
抗70およびコンデンサ71からなる素子を接続するこ
とにより、光センサに電圧印加直後にかかる電圧を低減
することができる。また、図16には抵抗とコンデンサ
の並列回路を示したが、抵抗のみを接続しても同様の効
果が得られる。
Further, another method for reducing the voltage of the photosensor will be described. By connecting an element composed of a resistor 70 and a capacitor 71 to the recording medium as shown in FIG. 16, it is possible to reduce the voltage applied to the optical sensor immediately after the voltage is applied. 16 shows a parallel circuit of a resistor and a capacitor, the same effect can be obtained by connecting only the resistor.

【0020】外部接続素子の効果を調べるため、等価回
路モデルを用いて、光センサおよび液晶媒体にかかる電
圧変化をシミュレーションした。シミュレーションに用
いた等価回路モデルを図17に示す。図17に示すよう
に、液晶媒体および光センサはそれぞれ抵抗とコンデン
サの並列回路として表され、また、外部接続素子として
抵抗ReXおよびコンデンサCeXを接続した。また、電源
の内部抵抗をRint とした。計算に用いた物性値は下記
の通り。
In order to investigate the effect of the external connection element, the equivalent circuit model was used to simulate the voltage change applied to the optical sensor and the liquid crystal medium. FIG. 17 shows an equivalent circuit model used in the simulation. As shown in FIG. 17, the liquid crystal medium and the optical sensor are represented as a parallel circuit of a resistor and a capacitor, respectively, and a resistor R eX and a capacitor C eX are connected as external connection elements. In addition, the internal resistance of the power supply is R int . The physical properties used in the calculations are as follows.

【0021】光センサ抵抗:200MΩ 光センサ容量:50pF 液晶媒体抵抗:600MΩ 液晶媒体容量:160pF 外部素子抵抗:50MΩ 外部素子容量:50pF 電源内部抵抗:1MΩ 図18に液晶媒体にかかる電圧を計算した結果を示す。
印加電圧は、外部素子を接続した場合が400V、接続
しない場合は370Vをそれぞれ一定電圧で印加した。
液晶媒体のしきい値電圧に到達する時間は、通常の電圧
印加条件の場合は50msec、外部素子を接続した場
合が67msecであった。
Optical sensor resistance: 200 MΩ Optical sensor capacity: 50 pF Liquid crystal medium resistance: 600 MΩ Liquid crystal medium capacity: 160 pF External element resistance: 50 MΩ External element capacity: 50 pF Power supply internal resistance: 1 MΩ FIG. Indicates.
The applied voltage was 400 V when an external element was connected, and 370 V when it was not connected at a constant voltage.
The time required to reach the threshold voltage of the liquid crystal medium was 50 msec under normal voltage application conditions and 67 msec when an external element was connected.

【0022】また、このとき光センサにかかる電圧の時
間変化を図19に示す。通常の電圧印加条件では、電圧
印加直後に光センサに約280Vの電圧がかかっている
のに対して、外部素子を接続した場合には最大で220
V程度しかかからないことがわかる。これは図20に示
すように、電圧印加直後に、外部素子に大きな電圧がか
かり、その後減衰していくことによる。外部素子を接続
しない場合には、図20に示したように、電源の内部抵
抗にかかる電圧は極く短時間で減衰してしまうため、光
センサの電圧を低減させる効果は得られない。ここで
は、抵抗とコンデンサの並列回路を例にして説明した
が、抵抗のみを接続した場合にも同様の効果が得られ
る。
Further, FIG. 19 shows the time change of the voltage applied to the optical sensor at this time. Under normal voltage application conditions, a voltage of about 280 V is applied to the photosensor immediately after the voltage is applied, but when an external element is connected, a maximum of 220 V is applied.
It turns out that it only takes about V. This is because, as shown in FIG. 20, a large voltage is applied to the external element immediately after the voltage is applied and the external element is attenuated thereafter. When the external element is not connected, the voltage applied to the internal resistance of the power source is attenuated in an extremely short time as shown in FIG. 20, so that the effect of reducing the voltage of the optical sensor cannot be obtained. Here, the parallel circuit of the resistor and the capacitor has been described as an example, but the same effect can be obtained when only the resistor is connected.

【0023】[0023]

【発明の効果】以上のように本発明によれば、光センサ
と液晶記録媒体の電極間に印加する電圧を、電圧印加開
始時よりも電圧印加終了時の方が高くなるように設定す
ることにより、電圧印加直後に光センサにかかる電圧を
低くし、異状放電の発生、ノイズの発生、欠陥の発生を
低減化することができる。
As described above, according to the present invention, the voltage applied between the photosensor and the electrode of the liquid crystal recording medium is set to be higher at the end of voltage application than at the start of voltage application. As a result, the voltage applied to the photosensor immediately after the voltage is applied can be lowered to reduce the occurrence of abnormal discharge, noise, and defects.

【図面の簡単な説明】[Brief description of drawings]

【図1】 情報記録装置の構成を示す図である。FIG. 1 is a diagram showing a configuration of an information recording device.

【図2】 積層型記録媒体の構成を示す図である。FIG. 2 is a diagram showing a configuration of a laminated recording medium.

【図3】 露光情報の記録を説明する図である。FIG. 3 is a diagram illustrating recording of exposure information.

【図4】 露光情報の再生を説明する図である。FIG. 4 is a diagram illustrating reproduction of exposure information.

【図5】 擬似液晶媒体をした光センサを流れる電流測
定装置を示す図である。
FIG. 5 is a diagram showing a current measuring device flowing through an optical sensor having a pseudo liquid crystal medium.

【図6】 図5の装置による露光部と未露光部の電流測
定結果を示す図である。
6 is a diagram showing current measurement results of an exposed portion and an unexposed portion by the apparatus of FIG.

【図7】 擬似液晶媒体にかかる電圧の計算結果を示す
図である。
FIG. 7 is a diagram showing a calculation result of a voltage applied to a pseudo liquid crystal medium.

【図8】 光センサにかかる電圧の計算結果を示す図で
ある。
FIG. 8 is a diagram showing a calculation result of a voltage applied to an optical sensor.

【図9】 光センサにかかる電圧を低減するための電圧
印加方法の一例を示す図である。
FIG. 9 is a diagram showing an example of a voltage applying method for reducing the voltage applied to the optical sensor.

【図10】 図9のスロープ状の電圧を印加したときの
擬似液晶媒体および光センサにかかる電圧の計算結果を
示す図である。
10 is a diagram showing calculation results of voltages applied to the pseudo liquid crystal medium and the optical sensor when the sloped voltage of FIG. 9 is applied.

【図11】 図8と図10の測定結果において明暗の電
位差を計算した結果を示す図である。
FIG. 11 is a diagram showing a result of calculating a potential difference between bright and dark in the measurement results of FIGS. 8 and 10.

【図12】 光センサの電圧を低減するための電圧印加
条件の他の例を示す図である。
FIG. 12 is a diagram showing another example of voltage application conditions for reducing the voltage of the optical sensor.

【図13】 疑似液晶媒体にかかる電圧の計算結果を示
す図である。
FIG. 13 is a diagram showing a calculation result of a voltage applied to a pseudo liquid crystal medium.

【図14】 光センサにかかる電圧の計算結果を示す図
である。
FIG. 14 is a diagram showing a calculation result of a voltage applied to an optical sensor.

【図15】 条件A、条件Bの場合の光センサの明部と
暗部の電位差の計算結果を示す図である。
FIG. 15 is a diagram showing calculation results of a potential difference between a bright portion and a dark portion of the photosensor under the conditions A and B.

【図16】 外部素子を接続して光センサに電圧印加直
後にかかる電圧を低減する例を示す図である。
FIG. 16 is a diagram showing an example in which an external element is connected to reduce the voltage applied immediately after the voltage is applied to the optical sensor.

【図17】 外部素子を接続したときの等価回路を示す
図である。
FIG. 17 is a diagram showing an equivalent circuit when an external element is connected.

【図18】 外部素子を接続したときと通常電圧印加条
件時の液晶媒体にかかる電圧の時間変化の計算結果を示
す図である。
FIG. 18 is a diagram showing a calculation result of time change of voltage applied to a liquid crystal medium when an external element is connected and when a normal voltage is applied.

【図19】 外部素子を接続したときと通常電圧印加条
件時の光センサにかかる電圧の時間変化の計算結果を示
す図である。
FIG. 19 is a diagram showing a calculation result of a time change of a voltage applied to an optical sensor when an external element is connected and when a normal voltage is applied.

【図20】 外部素子を接続したときの外部素子にかか
る電圧と、外部素子を接続しない場合の電圧変化を示す
図である。
FIG. 20 is a diagram showing a voltage applied to an external element when the external element is connected and a voltage change when the external element is not connected.

【符号の説明】[Explanation of symbols]

10…光センサ、14…電極、20…液晶記録媒体、3
0…電源、50…電流測定用電極、51,70…抵抗、
52,71…コンデンサ。
10 ... Optical sensor, 14 ... Electrode, 20 ... Liquid crystal recording medium, 3
0 ... Power supply, 50 ... Electrodes for current measurement, 51, 70 ... Resistance,
52, 71 ... Capacitors.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 電極上に光導電層を有する光センサと電
極上に液晶−高分子複合体層を有する液晶記録媒体とを
空気ギャップを介して対向配置するか、または支持体上
に透明電極層、光導電層を積層した光センサと、電極層
上に液晶−高分子複合体層を積層した液晶記録媒体とを
直接または誘電体中間層を介して積層した一体型情報記
録媒体に対して、光導電層に画像露光し、光センサと液
晶記録媒体の電極間に電圧印加することにより液晶を配
向させて画像を記録する方法において、 光センサと液晶記録媒体の電極間に印加する電圧を、電
圧印加開始直後よりも電圧印加終了時が高くなるように
増加させることを特徴とする画像記録方法。
1. An optical sensor having a photoconductive layer on an electrode and a liquid crystal recording medium having a liquid crystal-polymer composite layer on the electrode are arranged to face each other via an air gap or a transparent electrode on a support. Layer, a photosensor in which a photoconductive layer is laminated, and a liquid crystal recording medium in which a liquid crystal-polymer composite layer is laminated on an electrode layer are directly or through an intermediate dielectric layer to an integrated information recording medium In the method of recording an image by aligning the liquid crystal by applying a voltage between the photosensor and the electrode of the liquid crystal recording medium by imagewise exposing the photoconductive layer, the voltage applied between the electrode of the photosensor and the liquid crystal recording medium is changed. The image recording method is characterized by increasing the voltage at the end of voltage application to be higher than immediately after the start of voltage application.
【請求項2】 請求項1記載の方法において、光センサ
と液晶記録媒体の電極間に印加する電圧を、電圧印加開
始から電圧印加終了時まで単調に増加させることを特徴
とする画像記録方法。
2. The image recording method according to claim 1, wherein the voltage applied between the photosensor and the electrode of the liquid crystal recording medium is monotonically increased from the start of the voltage application to the end of the voltage application.
【請求項3】 請求項1記載の方法において、光センサ
と液晶記録媒体の電極間に印加する電圧を、電圧印加開
始から電圧印加終了時までステップ状に増加させること
を特徴とする画像記録方法。
3. The image recording method according to claim 1, wherein the voltage applied between the photosensor and the electrode of the liquid crystal recording medium is increased stepwise from the start of voltage application to the end of voltage application. .
【請求項4】 電極上に光導電層を有する光センサと電
極上に液晶−高分子複合体層を有する液晶記録媒体とを
空気ギャップを介して対向配置するか、または支持体上
に透明電極層、光導電層を積層した光センサと、電極層
上に液晶−高分子複合体層を積層した液晶記録媒体とを
直接または誘電体中間層を介して積層した一体型情報記
録媒体に対して、光導電層に画像露光し、光センサと液
晶記録媒体の電極間に電圧印加することにより液晶を配
向させて画像を記録する方法において、 抵抗または抵抗とコンデンサからなるインピーダンス素
子を電源と液晶記録媒体間に接続し、光センサにかかる
電圧を減少させるようにしたことを特徴とする画像記録
方法。
4. An optical sensor having a photoconductive layer on an electrode and a liquid crystal recording medium having a liquid crystal-polymer composite layer on the electrode are arranged to face each other via an air gap, or a transparent electrode on a support. Layer, a photosensor in which a photoconductive layer is laminated, and a liquid crystal recording medium in which a liquid crystal-polymer composite layer is laminated on an electrode layer are directly or through an intermediate dielectric layer to an integrated information recording medium In the method of recording an image by exposing the photoconductive layer to an image and applying a voltage between the photosensor and the electrode of the liquid crystal recording medium to orient the liquid crystal, an impedance element composed of a resistor or a resistor and a capacitor is used as a power source and the liquid crystal recording. An image recording method, characterized in that the voltage is applied to the optical sensor to reduce the voltage applied to the medium.
【請求項5】 電極上に光導電層を有する光センサと電
極上に液晶−高分子複合体層を有する液晶記録媒体とを
空気ギャップを介して対向配置するか、または支持体上
に透明電極層、光導電層を積層した光センサと、電極層
上に液晶−高分子複合体層を積層した液晶記録媒体とを
直接または誘電体中間層を介して積層した一体型情報記
録媒体に対して、光導電層に画像露光し、光センサと液
晶記録媒体の電極間に電圧印加することにより液晶を配
向させて画像を記録する装置において、 光センサと液晶記録媒体の電極間に接続される電源は、
電圧印加初期よりも電圧印加終了時の電圧が高くなるよ
うな出力電圧が得られる電源であることを特徴とする画
像記録装置。
5. An optical sensor having a photoconductive layer on an electrode and a liquid crystal recording medium having a liquid crystal-polymer composite layer on the electrode are arranged to face each other via an air gap, or a transparent electrode on a support. Layer, a photosensor in which a photoconductive layer is laminated, and a liquid crystal recording medium in which a liquid crystal-polymer composite layer is laminated on an electrode layer are directly or through an intermediate dielectric layer to an integrated information recording medium In a device for recording an image by exposing a photoconductive layer to an image and applying a voltage between the electrodes of the photosensor and the liquid crystal recording medium to record an image, a power source connected between the electrodes of the photosensor and the liquid crystal recording medium. Is
An image recording apparatus, which is a power supply capable of obtaining an output voltage such that the voltage at the end of voltage application is higher than that at the beginning of voltage application.
【請求項6】 請求項5記載の装置において、前記出力
電圧は単調に増加することを特徴とする画像記録装置。
6. The image recording apparatus according to claim 5, wherein the output voltage monotonically increases.
【請求項7】 請求項5記載の装置において、前記出力
電圧は、ステップ状に増加することを特徴とする画像記
録装置。
7. The image recording apparatus according to claim 5, wherein the output voltage increases stepwise.
【請求項8】 電極上に光導電層を有する光センサと電
極上に液晶−高分子複合体層を有する液晶記録媒体とを
空気ギャップを介して対向配置するか、または支持体上
に透明電極層、光導電層を積層した光センサと、電極層
上に液晶−高分子複合体層を積層した液晶記録媒体とを
直接または誘電体中間層を介して積層した一体型情報記
録媒体に対して、光導電層に画像露光し、光センサと液
晶記録媒体の電極間に電圧印加することにより液晶を配
向させて画像を記録する装置において、 抵抗または抵抗とコンデンサからなるインピーダンス素
子が電源と記録媒体間に接続されることを特徴とする画
像記録装置。
8. An optical sensor having a photoconductive layer on an electrode and a liquid crystal recording medium having a liquid crystal-polymer composite layer on the electrode are arranged to face each other via an air gap or a transparent electrode on a support. Layer, a photosensor in which a photoconductive layer is laminated, and a liquid crystal recording medium in which a liquid crystal-polymer composite layer is laminated on an electrode layer are directly or through an intermediate dielectric layer to an integrated information recording medium In an apparatus for recording an image by imagewise exposing the photoconductive layer and applying a voltage between the photosensor and the electrode of the liquid crystal recording medium, an impedance element composed of a resistor or a resistor and a capacitor is used as a power source and the recording medium. An image recording device characterized by being connected between them.
JP6334296A 1996-03-19 1996-03-19 Method and device for recording image Pending JPH09258258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6334296A JPH09258258A (en) 1996-03-19 1996-03-19 Method and device for recording image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6334296A JPH09258258A (en) 1996-03-19 1996-03-19 Method and device for recording image

Publications (1)

Publication Number Publication Date
JPH09258258A true JPH09258258A (en) 1997-10-03

Family

ID=13226480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6334296A Pending JPH09258258A (en) 1996-03-19 1996-03-19 Method and device for recording image

Country Status (1)

Country Link
JP (1) JPH09258258A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7817213B2 (en) 2008-03-13 2010-10-19 Fuji Xerox Co., Ltd. Method for driving liquid crystal device and driving apparatus for the liquid crystal device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7817213B2 (en) 2008-03-13 2010-10-19 Fuji Xerox Co., Ltd. Method for driving liquid crystal device and driving apparatus for the liquid crystal device

Similar Documents

Publication Publication Date Title
US5408341A (en) Method and apparatus for recording optical information in a photoelectric transducer controlled by a sensed condition thereof
US5555205A (en) Method device for recording information, and method for measuring the transmittance of liquid crystals, which is applied to recording information
EP0622954B1 (en) Method and device for recording information
JPH09258258A (en) Method and device for recording image
US5587987A (en) Information recording method having a liquid crystal substrate
JPH02143778A (en) Read system for electric charge latent image
JPH09179088A (en) Picture recording device
JP3312704B2 (en) Information recording method and apparatus
JP3314992B2 (en) Information recording method and apparatus
JP3372367B2 (en) Information recording and reading methods
US5416620A (en) Pockels cell with AC driving voltage at frequency of periodic variation of writing light source
JPH09179089A (en) Picture recording method and its device
JPH09258257A (en) Method and device for recording/reproducing image
JP3289864B2 (en) Information recording method and apparatus
JP3289863B2 (en) Information recording method
US5940184A (en) Photographing method and apparatus using a photoconductive layer formed on an electrode and a liquid crystal polymer composite
JPH11283034A (en) Method for recording image, device therefor and device for collating image
JPH1020295A (en) Image recorder
JP2862456B2 (en) Information recording method using liquid crystal recording medium
JPH0777700A (en) Method and device for information recording and reproduction with dynamic range expanding function
JPH09261473A (en) Image processing method and its device
JPH06281949A (en) Photosensitive body for liquid crystal recording medium
JP2803958B2 (en) Image information recording device and image information reproducing device
JPS6151823B2 (en)
EP0632346B1 (en) Method and apparatus for recording information