JPH09257849A - Diagnosing method for insulation of cable - Google Patents

Diagnosing method for insulation of cable

Info

Publication number
JPH09257849A
JPH09257849A JP8088816A JP8881696A JPH09257849A JP H09257849 A JPH09257849 A JP H09257849A JP 8088816 A JP8088816 A JP 8088816A JP 8881696 A JP8881696 A JP 8881696A JP H09257849 A JPH09257849 A JP H09257849A
Authority
JP
Japan
Prior art keywords
cable
circuit
shielding layer
signal
insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8088816A
Other languages
Japanese (ja)
Other versions
JP3431390B2 (en
Inventor
Hiroshi Inushima
浩 犬島
Hiroaki Adachi
博昭 阿達
Yoshio Tsunoda
美伯 角田
Shigeto Nakamura
重人 中村
Yuujirou Doro
裕二郎 泥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Cable Industries Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd, Mitsubishi Electric Corp filed Critical Mitsubishi Cable Industries Ltd
Priority to JP08881696A priority Critical patent/JP3431390B2/en
Publication of JPH09257849A publication Critical patent/JPH09257849A/en
Application granted granted Critical
Publication of JP3431390B2 publication Critical patent/JP3431390B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To diagnose deterioration in insulation of a cable and a defect of a shielding layer thereof in distinction. SOLUTION: An AC voltage of 50 or 60Hz and 6600V is connected to a conductor 3a of a cable 3 to be measured, from a reference AC power source 1 for testing through a transformer 2 and, moreover, a Gaussian noise signal of 0-50Hz and several volts is connected to the conductor 3a from a random noise generator 4. On other hand, a detecting circuit 5 is connected to a metallic shielding layer 3b of the cable 3 and an output of this detecting circuit 5 is connected to a data collecting circuit 6, to which an arithmetic circuit 7 such as a computer is connected. A detection signal from the metallic shielding layer 3b is inputted to the detecting circuit 5, a fundamental wave from the AC reference power source 1 is removed in this circuit and a signal corresponding to the Gaussian noise signal thus obtained is collected by the data collecting circuit 6 and stored therein in correspondence with time. Based on these data, a coherence function and a transfer function are determined in regard to a frequency of 0.1-20Hz by the arithmetic circuit 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電力ケーブルの絶
縁劣化状態を正確に測定し得るケーブルの絶縁診断方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cable insulation diagnosis method capable of accurately measuring a state of insulation deterioration of a power cable.

【0002】[0002]

【従来の技術】従来から、交流高電圧等の試験電圧印加
時に、ケーブルの金属遮蔽層の接地線を流れる微小電流
を測定することにより電力ケーブルの絶縁劣化状態を測
定する脈動検出法が実施されているが、この検出法は遮
蔽層の絶縁異常が加味された測定となっている。
2. Description of the Related Art Conventionally, a pulsation detection method has been carried out for measuring the insulation deterioration state of a power cable by measuring a minute current flowing through a ground wire of a metal shield layer of a cable when a test voltage such as an AC high voltage is applied. However, this detection method is a measurement that takes into account the insulation abnormality of the shielding layer.

【0003】[0003]

【発明が解決しようとする課題】従って異常が発見され
ても、ケーブル絶縁層が劣化しているのか遮蔽層に欠陥
があるのかを区別することはなかなか困難である。
Therefore, even if an abnormality is found, it is difficult to distinguish whether the cable insulating layer is deteriorated or the shielding layer is defective.

【0004】本発明の目的は、上述の問題点を解消し、
ケーブル絶縁劣化と遮蔽層欠陥を区別して診断できるケ
ーブルの絶縁診断方法を提供することにある。
The object of the present invention is to solve the above-mentioned problems,
An object of the present invention is to provide a cable insulation diagnosis method capable of diagnosing cable insulation deterioration and shielding layer defects separately.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
の本発明に係るケーブルの絶縁診断方法は、基本波を印
加した状態の電力ケーブルの導体にランダムノイズ信号
を注入し、前記ケーブルの絶縁層、金属遮蔽層を介して
得た信号中から前記基本波を除去して前記ランダムノイ
ズ信号に対応する信号を抽出し、該信号を基にコヒーレ
ンス関数と伝達関数を演算し、得られたコヒーレンス関
数と伝達関数を評価することにより、電力ケーブルの絶
縁劣化状態を診断することを特徴とする。
In order to achieve the above object, a cable insulation diagnosis method according to the present invention comprises injecting a random noise signal into a conductor of a power cable to which a fundamental wave is applied to insulate the cable. The signal corresponding to the random noise signal is extracted by removing the fundamental wave from the signal obtained through the layer and the metal shielding layer, and the coherence function and the transfer function are calculated based on the signal, and the obtained coherence is obtained. A feature is that the insulation deterioration state of the power cable is diagnosed by evaluating the function and the transfer function.

【0006】上述の構成を有するケーブルの絶縁診断方
法は、ランダムノイズ信号をケーブルの導体に注入し、
絶縁層、金属遮蔽層を介して得られたランダムノイズ信
号に対応する信号中からコヒーレンス関数と伝達関数を
求めて診断を行う。
The cable insulation diagnosis method having the above-mentioned structure is performed by injecting a random noise signal into the conductor of the cable,
Diagnosis is performed by finding the coherence function and the transfer function from the signal corresponding to the random noise signal obtained through the insulating layer and the metal shielding layer.

【0007】[0007]

【発明の実施の形態】本発明を図示の実施例に基づいて
詳細に説明する。図1は本発明を実施するための回路構
成図である。試験用基準交流電源1からの出力をトラン
ス2を介して測定すべき電力ケーブル3の導体3aに接
続し、更にガウスノイズ信号を発生するランダムノイズ
発生器4の出力をトランス2の低圧側に接続する。一
方、ケーブル3の金属遮蔽層3bに検出回路5を接続
し、この検出回路5の出力をデータ収集回路6に接続
し、データ収集回路6にはコンピュータ等の演算回路7
を接続する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the illustrated embodiment. FIG. 1 is a circuit configuration diagram for implementing the present invention. The output from the test reference AC power supply 1 is connected to the conductor 3a of the power cable 3 to be measured via the transformer 2, and the output of the random noise generator 4 for generating a Gaussian noise signal is connected to the low voltage side of the transformer 2. To do. On the other hand, the detection circuit 5 is connected to the metal shielding layer 3b of the cable 3, the output of the detection circuit 5 is connected to the data collection circuit 6, and the data collection circuit 6 includes an arithmetic circuit 7 such as a computer.
Connect.

【0008】測定に際しては、交流基準電源1からトラ
ンス2を介して基本波を生成して、例えば50Hz、6
600Vの交流電圧を導体3aに加える。また、この交
流電圧にランダムノイズ発生器4からの例えば0〜50
Hz、数Vのガウスノイズ信号信号を重畳する。
At the time of measurement, a fundamental wave is generated from the AC reference power source 1 through the transformer 2 and, for example, 50 Hz, 6
An AC voltage of 600 V is applied to the conductor 3a. In addition, for example, 0 to 50 from the random noise generator 4 is applied to this AC voltage.
A Gaussian noise signal signal of Hz and several V is superimposed.

【0009】導体3aから絶縁層3c、金属遮蔽層3b
を介した信号を検出回路5に入力し、検出回路5におい
て交流基準電源1からの基本波をフィルタ等により除去
し、得られたガウスノイズ信号に対応する信号を必要に
応じて増幅し、データ収集回路6で収集して時間対応で
記憶する。同時に又は別時間に、このデータを演算回路
7により、例えば0.1〜20Hzの周波数を対象とし
てコヒーレンス関数及び伝達関数を求める。
Conductor 3a to insulating layer 3c, metal shield layer 3b
Is input to the detection circuit 5, the detection circuit 5 removes the fundamental wave from the AC reference power source 1 by a filter, etc., and a signal corresponding to the obtained Gaussian noise signal is amplified as necessary to obtain the data. The data is collected by the collecting circuit 6 and stored according to time. At the same time or at another time, this data is obtained by the arithmetic circuit 7 for the coherence function and the transfer function for the frequency of 0.1 to 20 Hz, for example.

【0010】コヒーレンス関数及び伝達関数は、ガウス
ノイズ信号がケーブル3の導体3aから絶縁層3c、遮
蔽層3bを経てどのように伝達されるかの情報を含んで
おり、これらの周波数対出力の波形からケーブル3の絶
縁状態を診断することができる。
The coherence function and the transfer function contain information on how the Gaussian noise signal is transferred from the conductor 3a of the cable 3 through the insulating layer 3c and the shielding layer 3b, and the waveform of the frequency vs. the output thereof. Therefore, the insulation state of the cable 3 can be diagnosed.

【0011】なお、この他にも基本統計量(標準偏差、
歪度、尖度)、クルバッグ識別情報量基準、パワースペ
クトル密度、ウェーブレット変換などの演算を試みた
が、コヒーレンス関数、伝達関数ほどの有為差は得られ
なかった。
In addition to this, basic statistics (standard deviation,
We tried to calculate the skewness, kurtosis), Kurbag identification information criterion, power spectral density, wavelet transform, etc., but we could not obtain significant difference like coherence function and transfer function.

【0012】図2〜図5の(a) はコヒーレンス関数、
(b) は伝達関数を示している。図2は絶縁層3c、遮蔽
層3bが共に正常な場合を示し、コヒーレンス関数は
0.5〜15Hzにおいて0.5〜0.7であり、伝達
関数は1.0Hzにピークを有し、0.4程度のきれい
な山形となっている。この場合は、導体3aと金属遮蔽
層3b間の容量に依存した線形な伝達が期待できるた
め、コヒーレンス関数はほぼ一定の相関をもって表れ、
伝達関数には前段のフィルタの特性が現われる。
2A to 5A are coherence functions,
(b) shows the transfer function. FIG. 2 shows a case where both the insulating layer 3c and the shielding layer 3b are normal, the coherence function is 0.5 to 0.7 at 0.5 to 15 Hz, the transfer function has a peak at 1.0 Hz, and 0. It has a beautiful mountain shape of about 4 mm. In this case, since a linear transfer depending on the capacitance between the conductor 3a and the metal shielding layer 3b can be expected, the coherence function appears with a substantially constant correlation,
The characteristics of the filter in the previous stage appear in the transfer function.

【0013】図3は絶縁層3cは正常であるが、遮蔽層
3bにおいて接地している場合を示し、伝達関数の山形
にぎざぎざがある。遮蔽層3bの接地に起因するノイズ
信号では低周波域に影響を与えるため、コヒーレンス関
数にはこのことが表れている。
FIG. 3 shows the case where the insulating layer 3c is normal, but the shield layer 3b is grounded, and the transfer function has a mountain-like shape. This is shown in the coherence function because the noise signal due to the grounding of the shielding layer 3b affects the low frequency region.

【0014】図4は絶縁層3cが劣化し、遮蔽層3bが
正常である場合を示し、コヒーレンス関数は10〜20
Hzにおいて急速に出力が減衰している。劣化に起因す
るノイズ信号は高周波領域に表れ、このことがコヒーレ
ンス関数に表れる。また、伝達関数はフィルタの影響が
表れ、形状が小さくなっている。
FIG. 4 shows the case where the insulating layer 3c is deteriorated and the shielding layer 3b is normal, and the coherence function is 10 to 20.
The output is rapidly decreasing at Hz. The noise signal caused by the deterioration appears in the high frequency region, and this appears in the coherence function. In addition, the transfer function is affected by the filter and has a small shape.

【0015】図5は絶縁層3cに劣化があり、遮蔽層3
bも接地している場合を示している。コヒーレンス関数
は対象周波数全域に渡って小さくなり、伝達関数も形状
が小さくなっている。
FIG. 5 shows that the insulating layer 3c has deteriorated and the shielding layer 3
The case where b is also grounded is shown. The coherence function is small over the entire target frequency, and the transfer function is also small in shape.

【0016】これらの判断基準を表にすると、次の通り
である。
A table of these judgment criteria is as follows.

【0017】 コヒーレンス関数 伝達関数 絶縁層正常、遮蔽層正常 0.5〜15Hz 1.0Hzにピーク 0.5以上 0.4以上 絶縁層正常、遮蔽層劣化 5〜15Hz 1.0Hzにピーク 0.5以上 0.4以上 絶縁層劣化、遮蔽層正常 1〜10Hz 0.5以上 1.0Hzにピーク 10〜15Hz 0.2以下 0.2以下 絶縁層劣化、遮蔽層劣化 0.5〜15Hz 1.0Hzにピーク 0.2以下 0.2以下Coherence function Transfer function Insulating layer normal, shielding layer normal 0.5 to 15 Hz, peak at 1.0 Hz 0.5 or more 0.4 or more Insulating layer normal, shielding layer deterioration 5 to 15 Hz, peak at 1.0 Hz 0.5 Above 0.4 or more Insulation layer deterioration, normal shielding layer 1-10Hz 0.5 or more Peak at 1.0Hz 10-15Hz 0.2 or less 0.2 or less Insulation layer deterioration, shielding layer 0.5-15Hz 1.0Hz Peak 0.2 or less 0.2 or less

【0018】なお、実施例では試験に際して基本波とし
て試験用基準交流電源1を用いたが、実際の商用電源を
そのまま用いることもできる。
Although the test reference AC power supply 1 is used as the fundamental wave in the test in the embodiment, an actual commercial power supply may be used as it is.

【0019】[0019]

【発明の効果】以上説明したように本発明に係るケーブ
ルの絶縁診断方法は、導体にランダムノイズ信号を注入
し、遮蔽層から得られた信号からコヒーレンス関数及び
伝達関数を求め、両者の組合わせから絶縁劣化状態を診
断する。
As described above, in the cable insulation diagnosis method according to the present invention, the random noise signal is injected into the conductor, the coherence function and the transfer function are obtained from the signal obtained from the shielding layer, and the combination of both is obtained. Diagnose the insulation deterioration condition from.

【図面の簡単な説明】[Brief description of drawings]

【図1】測定系の回路構成図である。FIG. 1 is a circuit configuration diagram of a measurement system.

【図2】信号処理した波形図である。FIG. 2 is a waveform diagram after signal processing.

【図3】信号処理した波形図である。FIG. 3 is a waveform diagram after signal processing.

【図4】信号処理した波形図である。FIG. 4 is a waveform diagram after signal processing.

【図5】信号処理した波形図である。FIG. 5 is a waveform diagram after signal processing.

【符号の説明】[Explanation of symbols]

1 試験用基準交流電源 2 トランス 3 ケーブル 3a 導体 3b 金属遮蔽層 3c 絶縁層 4 ランダムノイズ発生器 5 検出回路 6 データ収集回路 7 演算回路 1 Test reference AC power supply 2 Transformer 3 Cable 3a Conductor 3b Metal shielding layer 3c Insulating layer 4 Random noise generator 5 Detection circuit 6 Data collection circuit 7 Arithmetic circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 角田 美伯 埼玉県熊谷市新堀1008番地 三菱電線工業 株式会社熊谷製作所内 (72)発明者 中村 重人 埼玉県熊谷市新堀1008番地 三菱電線工業 株式会社熊谷製作所内 (72)発明者 泥 裕二郎 埼玉県熊谷市新堀1008番地 三菱電線工業 株式会社熊谷製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mihaku Tsunoda 1008 Shinbori, Kumagaya-shi, Saitama Mitsubishi Cable Industries, Ltd. Kumagaya Manufacturing Co., Ltd. (72) Shigeto Nakamura 1008 Shinbori, Kumagaya-shi, Saitama Mitsubishi Cable Industries, Ltd. Kumagaya Works (72) Inventor Yujiro Mu, 1008 Shinbori, Kumagaya-shi, Saitama Mitsubishi Cable Industries, Ltd. Kumagaya Works

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基本波を印加した状態の電力ケーブルの
導体にランダムノイズ信号を注入し、前記ケーブルの絶
縁層、金属遮蔽層を介して得た信号中から前記基本波を
除去して前記ランダムノイズ信号に対応する信号を抽出
し、該信号を基にコヒーレンス関数と伝達関数を演算
し、得られたコヒーレンス関数と伝達関数を評価するこ
とにより、電力ケーブルの絶縁劣化状態を診断すること
を特徴とするケーブルの絶縁診断方法。
1. A random noise signal is injected into a conductor of a power cable to which a fundamental wave is applied, and the fundamental wave is removed from the signal obtained through an insulating layer and a metal shielding layer of the cable to remove the random signal. A feature of diagnosing the insulation deterioration state of a power cable by extracting a signal corresponding to a noise signal, calculating a coherence function and a transfer function based on the signal, and evaluating the obtained coherence function and the transfer function Cable insulation diagnosis method.
JP08881696A 1996-03-18 1996-03-18 Cable insulation diagnosis method Expired - Fee Related JP3431390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08881696A JP3431390B2 (en) 1996-03-18 1996-03-18 Cable insulation diagnosis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08881696A JP3431390B2 (en) 1996-03-18 1996-03-18 Cable insulation diagnosis method

Publications (2)

Publication Number Publication Date
JPH09257849A true JPH09257849A (en) 1997-10-03
JP3431390B2 JP3431390B2 (en) 2003-07-28

Family

ID=13953446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08881696A Expired - Fee Related JP3431390B2 (en) 1996-03-18 1996-03-18 Cable insulation diagnosis method

Country Status (1)

Country Link
JP (1) JP3431390B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104865500A (en) * 2015-05-22 2015-08-26 华南理工大学 High voltage cable outer sheath differentiation insulation defect evaluation method
CN106646146A (en) * 2016-09-22 2017-05-10 国网江苏省电力公司电力科学研究院 Method for calculating maximum voltage withstanding position of zero load high voltage power cable

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5969813A (en) * 1982-10-14 1984-04-20 Kawasaki Steel Corp Method and apparatus for diagnosing control system
JPS63135876A (en) * 1986-11-28 1988-06-08 Furukawa Electric Co Ltd:The Diagnosis of insulation deterioration for power cable
JPH02226022A (en) * 1989-02-27 1990-09-07 Toshiba Corp Method for measuring transfer function used in active control of noise
JPH02226033A (en) * 1989-02-27 1990-09-07 Fuji Electric Co Ltd Judging method for transfer function
JPH06129701A (en) * 1992-10-16 1994-05-13 Toshiba Corp Muffler for air-conditioning duct
JPH06174579A (en) * 1992-12-02 1994-06-24 Yakichi Higo Monitor method of state of gasket

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5969813A (en) * 1982-10-14 1984-04-20 Kawasaki Steel Corp Method and apparatus for diagnosing control system
JPS63135876A (en) * 1986-11-28 1988-06-08 Furukawa Electric Co Ltd:The Diagnosis of insulation deterioration for power cable
JPH02226022A (en) * 1989-02-27 1990-09-07 Toshiba Corp Method for measuring transfer function used in active control of noise
JPH02226033A (en) * 1989-02-27 1990-09-07 Fuji Electric Co Ltd Judging method for transfer function
JPH06129701A (en) * 1992-10-16 1994-05-13 Toshiba Corp Muffler for air-conditioning duct
JPH06174579A (en) * 1992-12-02 1994-06-24 Yakichi Higo Monitor method of state of gasket

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104865500A (en) * 2015-05-22 2015-08-26 华南理工大学 High voltage cable outer sheath differentiation insulation defect evaluation method
CN106646146A (en) * 2016-09-22 2017-05-10 国网江苏省电力公司电力科学研究院 Method for calculating maximum voltage withstanding position of zero load high voltage power cable
CN106646146B (en) * 2016-09-22 2019-08-23 国网江苏省电力公司电力科学研究院 A method of it calculating unloaded high voltage power cable highest and bears voltage location

Also Published As

Publication number Publication date
JP3431390B2 (en) 2003-07-28

Similar Documents

Publication Publication Date Title
JP4261041B2 (en) Insulation abnormality diagnosis device for high voltage equipment and insulation abnormality diagnosis method thereof
EP0882975B1 (en) Testing cathodic protection of underground pipelines
JP5228558B2 (en) Partial discharge detection device by electromagnetic wave detection and detection method thereof
JPH10170596A (en) System for diagnosing insulated apparatus and method for detecting partial discharge
WO2013106429A1 (en) System for analyzing and locating partial discharges
Wu Design of partial discharge real-time capture system
Ward Digital techniques for partial discharge measurements
US8527221B2 (en) Method and an apparatus for monitoring an activity of partial electrical discharges in an electrical apparatus powered with direct voltage
JP3431390B2 (en) Cable insulation diagnosis method
JPH0580112A (en) Failure diagnostic device for power cable
JP2000002743A (en) Insulation deterioration diagnostic method for high- voltage equipment such as high-voltage overhead cable branch connecting body for power distribution
JPH10185800A (en) Evaluation method for corrosion-proof in cathode corrosion-proof system
JPH0712880A (en) Partial discharge detection method
KR102136515B1 (en) Method for diagnosing patial discharge
JP3177313B2 (en) Diagnosis method for insulation deterioration of power equipment
JP2866533B2 (en) High frequency partial discharge detection system
JP3419924B2 (en) Partial discharge measurement method
JP4094469B2 (en) Partial discharge measuring device and signal processing circuit used in the device
JP3354491B2 (en) External noise removal method
JP3756486B2 (en) Contact failure detection method and apparatus for electric power equipment
JP3085853B2 (en) Transformer insulation condition monitoring device
JP2003035742A (en) Method for diagnosing live wire in cv cable
JP2538688B2 (en) Insulation deterioration degree determination method for power equipment
CN117434396A (en) On-line monitoring system and method for transformer bushing end screen
JP2506490B2 (en) Method of measuring partial discharge of power cable line

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees