JPH09257835A - Current detector - Google Patents
Current detectorInfo
- Publication number
- JPH09257835A JPH09257835A JP8065586A JP6558696A JPH09257835A JP H09257835 A JPH09257835 A JP H09257835A JP 8065586 A JP8065586 A JP 8065586A JP 6558696 A JP6558696 A JP 6558696A JP H09257835 A JPH09257835 A JP H09257835A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- current
- detection
- outputs
- magnetic field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は電流検出装置に係
り、特に、環状鉄心を貫通する導体に流れる電流を検出
する電流検出装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current detecting device, and more particularly to a current detecting device for detecting a current flowing through a conductor penetrating an annular core.
【0002】[0002]
【従来の技術】この種の電流検出装置として、図4に示
すものが用いられている。図4において、導体1は環状
鉄心2を貫通するように配設され、環状鉄心2には空隙
部2aが設けられ、この空隙部2aには磁界を電気信号
に変換するホール素子などでなる磁電素子3が配設され
ている。環状鉄心2にはコイル(巻線)5が卷回され、
導体1に電流Im が図示のように流れると、電流Im に
比例した磁束φが図示のように環状鉄心2に励起され、
空隙部2aには磁束φによる磁界が発生する。この磁界
により磁電素子3から磁束φの強さに比例した電気信号
Es が出力される。増幅器4はこの電気信号Es に比例
した励磁電流Ic を出力して、コイル5と抵抗器6の直
列回路に供給する。この励磁電流Ic によりコイル5は
図示のように磁束φを打ち消す方向に磁束φ´を励起
し、環状鉄心2の磁束はφ−φ´に低減し磁電素子3に
加わる磁界も低減する。この場合、磁束φ−φ´から励
起磁束φ´に至る伝達経路のループゲインをAとすると
(φ−φ´)A=φ´となるので、環状鉄心2の磁束φ
に対する磁束(φ−φ´)はほぼ1/Aに低減され、増
幅器4の増幅率を大きくしループゲインAを大きく設定
すると励起磁束φ´は磁束φとほぼ同じ値となり、磁束
φに追従して変化する。磁束φは導体1に流れる電流I
m に比例し、励起磁束φ´は励磁電流Ic とコイル5の
巻数比Nとの積に比例し、励磁電流Ic は導体1に流れ
る電流Im に比例するので、励磁電流Icにコイル5の
巻数比Nを乗じることにより導体1に流れる電流Im を
求めることができる。従って、抵抗器6に生じる電圧降
下V0 から導体1に流れる電流Imを検出することがで
きる。2. Description of the Related Art As this type of current detecting device, the one shown in FIG. 4 is used. In FIG. 4, the conductor 1 is arranged so as to penetrate the annular iron core 2, and the annular iron core 2 is provided with a void portion 2a. In the void portion 2a, a magnetoelectric element including a Hall element for converting a magnetic field into an electric signal is provided. The element 3 is provided. A coil (winding) 5 is wound around the annular core 2,
When the current Im flows through the conductor 1 as shown in the figure, a magnetic flux φ proportional to the current Im is excited in the annular core 2 as shown in the figure,
A magnetic field due to the magnetic flux φ is generated in the void 2a. Due to this magnetic field, an electric signal Es proportional to the strength of the magnetic flux φ is output from the magnetoelectric element 3. The amplifier 4 outputs an exciting current Ic proportional to the electric signal Es and supplies it to the series circuit of the coil 5 and the resistor 6. With this exciting current Ic, the coil 5 excites the magnetic flux φ ′ in the direction of canceling the magnetic flux φ as shown in the figure, the magnetic flux of the annular core 2 is reduced to φ−φ ′, and the magnetic field applied to the magnetoelectric element 3 is also reduced. In this case, assuming that the loop gain of the transmission path from the magnetic flux φ−φ ′ to the excitation magnetic flux φ ′ is A, (φ−φ ′) A = φ ′, and thus the magnetic flux φ of the annular core 2
The magnetic flux (φ−φ ′) is reduced to almost 1 / A, and when the amplification factor of the amplifier 4 is increased and the loop gain A is set to a large value, the excited magnetic flux φ ′ becomes almost the same value as the magnetic flux φ and follows the magnetic flux φ. Change. The magnetic flux φ is the current I flowing through the conductor 1.
The exciting magnetic flux φ ′ is proportional to m, the exciting magnetic flux φ ′ is proportional to the product of the exciting current Ic and the winding ratio N of the coil 5, and the exciting current Ic is proportional to the current Im flowing in the conductor 1. By multiplying the ratio N, the current Im flowing in the conductor 1 can be obtained. Therefore, the current Im flowing in the conductor 1 can be detected from the voltage drop V0 generated in the resistor 6.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、上記従
来の電流検出装置では、導体1に流れる電流Im が大き
くなるとコイル5に供給する励磁電流Ic も大きくな
り、増幅器の電流容量が大きくなって電力損失が増加し
温度が上昇するという問題があり、励磁電流Ic を小さ
くするためにコイルの巻数を増やすとインダクタンスが
増加しコイルが大きくなって、検出応答が遅くなり装置
が大形化するという問題が生じる。However, in the above-mentioned conventional current detecting device, when the current Im flowing through the conductor 1 increases, the exciting current Ic supplied to the coil 5 also increases, and the current capacity of the amplifier increases, resulting in power loss. And the temperature rises. If the number of turns of the coil is increased in order to reduce the exciting current Ic, the inductance increases, the coil becomes large, the detection response becomes slow, and the device becomes large. Occurs.
【0004】本発明は、上記問題に鑑みてなされたもの
で、その目的とするは、コイルの巻数及び電流を増加さ
せることなく大きな電流の検出に対応でき、しかも小形
化した電流検出装置を提供することにある。The present invention has been made in view of the above problems, and an object thereof is to provide a downsized current detection device which can detect a large current without increasing the number of turns of the coil and the current. To do.
【0005】[0005]
【課題を解決するための手段】本発明の電流検出装置
は、磁界が加えられたとき、該磁界の強さに対応した電
気信号を出力する磁電素子と、該磁界を打ち消す方向に
相殺磁界を発生する励磁巻線とを一体として環状鉄心の
空隙部に配設し、前記環状鉄心を貫通する導体に流れる
電流により前記環状鉄心に磁束が発生して前記磁電素子
に磁界が加えられたとき、前記磁電素子から出力される
電気信号に応じて前記励磁巻線に励磁電流を供給する制
御部を備え、この励磁電流から前記導体に流れる電流を
検出する。(請求項1) 更に、前記制御部は、前記電気信号を比例積分増幅して
励磁電流として出力する増幅器を備え、前記励磁巻線に
生じる相殺磁界により前記磁電素子に加わる磁界を打ち
消す。(請求項2) 更に、前記制御部は、前記電気信号をディジタル信号に
変換するA/D変換手段と、このディジタル信号に基づ
いて第3ディジタル信号を出力するマイクロコンピュー
タと、この第3ディジタル信号を第3アナログ信号に変
換するD/A変換手段と、前記第3アナログ信号に基づ
いて前記電気信号に応じた励磁電流を供給する増幅器を
備える。(請求項3) 更に、前記制御部は、前記励磁電流を電圧として検出
し、この電圧(第2アナログ信号)を第2ディジタル信
号に変換するD/A変換手段を備え、前記マイクロコン
ピュータが前記第2ディジタル信号に基づいて前記導体
に流れる電流の検出信号を出力する。(請求項4) また、磁界が加えられたとき、該磁界の強さに対応した
電気信号を出力する検出感度の異なる複数の磁電素子
と、該磁界を打ち消す方向に相殺磁界を発生する励磁巻
線とを一体として環状鉄心の空隙部に配設し、前記環状
鉄心を貫通する導体に流れる電流により前記環状鉄心に
磁束が発生して各磁電素子に磁界が加えられたとき、い
ずれか一つの磁電素子から出力される電気信号に応じて
前記励磁巻線に励磁電流を供給する制御部を備え、この
励磁電流から前記導体に流れる電流を検出する。(請求
項5) 更に、前記制御部は、いずれか一つの磁電素子を指定す
るための切替信号を決定する設定部と、前記切替信号に
基づいて選択信号と倍率信号を出力する切替部と、前記
選択信号に基づいて検出感度の異なる複数の磁電素子の
いずれか一つの磁電素子の検出信号を選択出力するスイ
ッチ部と、前記倍率信号に基づいて選択された磁電素子
の検出信号を増幅する増幅部を備え、前記増幅部の出力
に基づいて前記励磁巻線に励磁電流を供給し、磁電素子
が切換えられてもループゲインを一定に保つ。(請求項
6) 更に、前記切替部は、前記切替信号に基づいて前記選択
信号と倍率信号を出力すると共に第2倍率信号を出力
し、前記制御部は、前記励磁電流の検出信号を前記第2
倍率信号に基づいて増幅して前記導体に流れる電流の検
出信号として出力する第2増幅器を備え、選択された磁
電素子の検出感度に応じて検出信号のフルスケールレン
ジを変える。(請求項7) 更に、前記磁電素子と前記励磁巻線と前記磁電素子の周
囲温度を検出する温度検出器とを一体として環状鉄心の
空隙部に配設し、前記制御部は、周囲温度の検出信号に
基づいて温度補正信号を出力する関数発生部と、励磁電
流の検出信号を前記温度補正信号に基づいて補正し前記
導体に流れる電流の検出信号を出力する第2増幅器を備
え、温度補償を行う。(請求項8) 更に、前記制御部は、周囲温度の検出信号に基づいて検
出感度の異なる複数の磁電素子のいずれか一つの磁電素
子の温度補正信号を出力する関数発生部と、励磁電流の
検出信号を前記温度補正信号に基づいて補正し前記導体
に流れる電流の検出信号を出力する第2増幅器を備え、
温度補償を行う。(請求項9) 更に、前記制御部は、検出感度の異なる複数の磁電素子
のいずれか一つの磁電素子から出力される電気信号をデ
ィジタル信号に変換するA/D変換手段と、このディジ
タル信号に基づいて第3ディジタル信号を出力するマイ
クロコンピュータと、この第3ディジタル信号を第3ア
ナログ信号に変換するD/A変換手段と、前記第3アナ
ログ信号に基づいて前記電気信号に応じた励磁電流を供
給する増幅器を備える。(請求項10) 更に、前記制御部は、前記励磁電流を電圧として検出
し、この電圧(第2アナログ信号)を第2ディジタル信
号に変換すると共に前記温度検出信号を第9ディジタル
信号に変換するD/A変換手段を備え、前記マイクロコ
ンピュータが前記第2ディジタル信号と第9ディジタル
信号とに基づいて前記導体に流れる電流の検出信号を出
力する。(請求項11)According to the present invention, there is provided a current detecting device, wherein when a magnetic field is applied, a magnetoelectric element that outputs an electric signal corresponding to the strength of the magnetic field and a canceling magnetic field in a direction that cancels the magnetic field. When a magnetic field is applied to the magnetoelectric element by arranging the exciting winding to be generated in the void portion of the annular iron core integrally, and the magnetic flux is generated in the annular iron core by the current flowing through the conductor passing through the annular iron core, A control unit for supplying an exciting current to the exciting winding in accordance with an electric signal output from the magnetoelectric element is provided, and a current flowing through the conductor is detected from the exciting current. (Claim 1) Furthermore, the control unit includes an amplifier that proportionally and integrally amplifies the electric signal and outputs it as an exciting current, and cancels a magnetic field applied to the magnetoelectric element by a canceling magnetic field generated in the exciting winding. (Claim 2) Further, the control section further comprises an A / D conversion means for converting the electric signal into a digital signal, a microcomputer for outputting a third digital signal based on the digital signal, and the third digital signal. To a third analog signal, and an amplifier that supplies an exciting current according to the electric signal based on the third analog signal. (Claim 3) Further, the control section includes D / A conversion means for detecting the exciting current as a voltage and converting the voltage (second analog signal) into a second digital signal, and the microcomputer is provided with A detection signal of the current flowing through the conductor is output based on the second digital signal. (Claim 4) Further, when a magnetic field is applied, a plurality of magnetoelectric elements having different detection sensitivities that output an electric signal corresponding to the strength of the magnetic field, and an excitation winding that generates a canceling magnetic field in a direction of canceling the magnetic field. A wire is integrally provided in the void portion of the annular core, and when a magnetic flux is generated in each magnetoelectric element by generating a magnetic flux in the annular core by a current flowing through a conductor passing through the annular core, any one of A control unit for supplying an exciting current to the exciting winding according to an electric signal output from the magnetoelectric element is provided, and a current flowing through the conductor is detected from the exciting current. (Claim 5) Further, the control unit includes a setting unit that determines a switching signal for designating one of the magnetoelectric elements, and a switching unit that outputs a selection signal and a magnification signal based on the switching signal. A switch unit that selectively outputs a detection signal of any one of a plurality of magnetoelectric elements having different detection sensitivities based on the selection signal, and an amplification that amplifies the detection signal of the magnetoelectric element selected based on the magnification signal. And an exciting current is supplied to the exciting winding on the basis of the output of the amplifying unit, and the loop gain is kept constant even when the magnetoelectric element is switched. (Claim 6) Further, the switching unit outputs the selection signal and the magnification signal based on the switching signal and outputs a second magnification signal, and the control unit outputs the detection signal of the excitation current to the first signal. Two
A second amplifier that amplifies based on the magnification signal and outputs as a detection signal of the current flowing through the conductor is provided, and the full scale range of the detection signal is changed according to the detection sensitivity of the selected magnetoelectric element. (Claim 7) Further, the magnetoelectric element, the excitation winding, and a temperature detector for detecting the ambient temperature of the magnetoelectric element are integrally provided in a void portion of the annular iron core, and the control unit controls the ambient temperature. The temperature compensation includes a function generator that outputs a temperature correction signal based on the detection signal, and a second amplifier that corrects the detection signal of the exciting current based on the temperature correction signal and outputs a detection signal of the current flowing through the conductor. I do. (Claim 8) Furthermore, the control unit outputs a temperature correction signal of any one of a plurality of magnetoelectric elements having different detection sensitivities based on the detection signal of the ambient temperature, and a function generator for exciting current. A second amplifier that corrects a detection signal based on the temperature correction signal and outputs a detection signal of a current flowing through the conductor,
Perform temperature compensation. (Claim 9) Furthermore, the control unit converts the electric signal output from any one of the plurality of magnetoelectric elements having different detection sensitivities into an A / D conversion means, and the digital signal. A microcomputer that outputs a third digital signal based on the above, D / A conversion means that converts the third digital signal into a third analog signal, and an exciting current corresponding to the electric signal based on the third analog signal. A supply amplifier is provided. (Claim 10) Further, the control unit detects the exciting current as a voltage, converts the voltage (second analog signal) into a second digital signal, and converts the temperature detection signal into a ninth digital signal. The microcomputer is provided with D / A conversion means, and outputs the detection signal of the current flowing through the conductor based on the second digital signal and the ninth digital signal. (Claim 11)
【0006】[0006]
【発明の実施の形態】本発明による電流検出装置の請求
項1〜4に対応する実施の形態を図1に示す。同図にお
いて、環状鉄心2の空隙部2aには、磁界の強さに応じ
た電気信号を出力するホール素子などでなる磁電素子3
と、磁電素子3に加わる磁界を打ち消すための相殺磁界
を発生させる励磁巻線(コイル)5が磁電素子3を取り
囲んで卷回され、モールド樹脂などで一体に形成されて
配設される。増幅器4は磁電素子3から出力される電気
信号Es を増幅し電圧信号E1 を出力する。増幅器7は
抵抗器6に生じる電圧降下Vf を増幅し電圧信号E2 を
出力する。A/D変換器8は増幅器4と7から出力され
る電圧(アナログ)信号E1 、E2 をそれぞれディジタ
ル信号S1 、S2 に変換する。マイクロコンピュータ9
はA/D変換器8から入力されるディジタル信号S1 、
S2 を処理してディジタル信号S3 を出力すると共に電
流検出信号S4 を出力する。D/A変換器10はマイク
ロコンピュータ9から与えられるディジタル信号S3 を
電圧(アナログ)信号E3 に変換する。増幅器11は電
圧信号E3 を増幅してコイル5に励磁電流Ic を供給す
る。その他は従来(図5)と同じもので構成することが
できる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment corresponding to claims 1 to 4 of a current detecting device according to the present invention. In the figure, in the void portion 2a of the annular iron core 2, a magnetoelectric element 3 including a Hall element or the like that outputs an electric signal according to the strength of the magnetic field.
Then, an exciting winding (coil) 5 for generating a canceling magnetic field for canceling the magnetic field applied to the magnetoelectric element 3 is wound around the magnetoelectric element 3 and integrally formed with a mold resin or the like. The amplifier 4 amplifies the electric signal Es output from the magnetoelectric element 3 and outputs a voltage signal E1. The amplifier 7 amplifies the voltage drop Vf generated in the resistor 6 and outputs a voltage signal E2. The A / D converter 8 converts the voltage (analog) signals E1 and E2 output from the amplifiers 4 and 7 into digital signals S1 and S2, respectively. Microcomputer 9
Is a digital signal S1 input from the A / D converter 8,
It processes S2 and outputs a digital signal S3 and a current detection signal S4. The D / A converter 10 converts the digital signal S3 supplied from the microcomputer 9 into a voltage (analog) signal E3. The amplifier 11 amplifies the voltage signal E3 and supplies the exciting current Ic to the coil 5. Others can be configured by the same as the conventional one (FIG. 5).
【0007】上記構成において、導体1に電流Im が流
れ、環状鉄心2に電流Im に比例した磁束φが励起され
ると、環状鉄心2の空隙部2aに磁界が発生し、その一
部の磁界が磁電素子3に加わり、磁電素子3から磁束φ
の強さに対応した電気信号Es が出力される。この電気
信号Es は増幅器4で増幅され、A/D変換器8でディ
ジタル信号S1 に変換され、マイクロコンピュータ9に
入力される。マイクロコンピュータ9はディジタル信号
S1 に基づいて比例積分等の処理を行いディジタル信号
S3 を出力し、D/A変換器10を介して磁束φの強さ
に対応した電気信号E3 を出力する。増幅器11は電気
信号E3 を増幅しコイル5に磁束φの強さに対応した励
磁電流Ic を供給する。コイル5に励磁電流Ic が流れ
ると、磁電素子3に加わる磁界を打ち消す方向にコイル
5から励磁電流Ic に比例した相殺磁界が発生し、磁電
素子3に加わる磁界を減少させるように作用する。磁電
素子3に加わる磁界から相殺磁界に至るループゲインを
大きく設定することにより相殺磁界は磁束φにより生じ
る磁界とほぼ等しくなり、励磁電流Ic は導体1に流れ
る電流Im に比例する。従って、マイクロコンピュータ
9は抵抗器6に生じる電圧降下Vf として入力されるデ
ィジタル信号S2 に基づいて励磁電流Ic を求め、コイ
ル5の巻数比で決まる定数を励磁電流Ic に乗じて、導
体1に流れる電流Im を検出することができる。本実施
例によれば、環状鉄心2の磁束φにより空隙部2aに生
じる磁界の一部の磁界が磁電素子3に加わるようにし
て、相殺磁界は一部の磁界のみを打ち消すように作用さ
せ、コイル5を小さくすることができる。また、コイル
5のインダクタンスが小さくなるので検出応答時間を早
くすることができる。In the above structure, when the current Im flows in the conductor 1 and the magnetic flux φ proportional to the current Im is excited in the annular core 2, a magnetic field is generated in the void 2a of the annular core 2, and a part of the magnetic field is generated. Is added to the magnetoelectric element 3 and the magnetic flux φ is generated from the magnetoelectric element 3.
The electric signal Es corresponding to the strength of the is output. The electric signal Es is amplified by the amplifier 4, converted into the digital signal S1 by the A / D converter 8 and input to the microcomputer 9. The microcomputer 9 performs processing such as proportional integration on the basis of the digital signal S1 and outputs a digital signal S3, and an electric signal E3 corresponding to the strength of the magnetic flux φ via the D / A converter 10. The amplifier 11 amplifies the electric signal E3 and supplies the coil 5 with an exciting current Ic corresponding to the strength of the magnetic flux φ. When the exciting current Ic flows through the coil 5, a canceling magnetic field proportional to the exciting current Ic is generated from the coil 5 in the direction of canceling the magnetic field applied to the magnetoelectric element 3, and acts to reduce the magnetic field applied to the magnetoelectric element 3. By setting a large loop gain from the magnetic field applied to the magnetoelectric element 3 to the canceling magnetic field, the canceling magnetic field becomes substantially equal to the magnetic field generated by the magnetic flux φ, and the exciting current Ic is proportional to the current Im flowing in the conductor 1. Therefore, the microcomputer 9 obtains the exciting current Ic based on the digital signal S2 input as the voltage drop Vf generated in the resistor 6, multiplies the exciting current Ic by a constant determined by the turn ratio of the coil 5, and flows to the conductor 1. The current Im can be detected. According to the present embodiment, a part of the magnetic field generated in the void 2a by the magnetic flux φ of the annular core 2 is applied to the magnetoelectric element 3, and the canceling magnetic field acts so as to cancel only part of the magnetic field. The coil 5 can be made smaller. Moreover, since the inductance of the coil 5 is reduced, the detection response time can be shortened.
【0008】本発明による電流検出装置の請求項5〜7
に対応する実施の形態を図2に示す。この実施例は、環
状鉄心2の空隙部2aに配設される磁電素子として検出
感度の異なる複数個の磁電素子を設け、用途に応じてフ
ルスケールレンジの切り替えを行えるようにしたもの
で、図2(a) は2個の磁電素子を用いる場合の構成例を
示したものである。同図において、3a、3bは検出感
度の異なる磁電素子、5は磁電素子3a、3bを取り囲
んで卷回され、磁電素子3a、3bに加わる磁界を打ち
消すための相殺磁界を発生させる励磁巻線(コイル)
で、モールド樹脂などで磁電素子3a、3bと一体に形
成され、図1と同じ環状鉄心2の空隙部2aに配設され
る。4a、4bは磁電素子3a、3bから出力される電
気信号を増幅し電圧信号E1a、E1bを出力する増幅器、
8は電圧(アナログ)信号E1a、E1b及びE2 をディジ
タル信号S1a、S1b及びS2 に変換するA/D変換器、
12はフルスケールレンジの切り替えを行うための切替
信号S5 を出力する設定部であり、マイクロコンピュー
タ9はディジタル信号S1a、S1b、S2 と切替信号S5
を取り込み、図2(b) に示す処理を行って、ディジタル
信号S3 と電流検出信号S4 を出力する機能を有してい
る。その他は図1と同様であり同符号で示している。[0008] Claims 5 to 7 of the current detecting device according to the present invention
An embodiment corresponding to is shown in FIG. In this embodiment, a plurality of magnetoelectric elements having different detection sensitivities are provided as the magnetoelectric elements arranged in the void portion 2a of the annular iron core 2 so that the full scale range can be switched according to the application. 2 (a) shows a configuration example in the case of using two magnetoelectric elements. In the figure, 3a and 3b are magnetoelectric elements with different detection sensitivities, and 5 is a winding that surrounds the magnetoelectric elements 3a and 3b and is wound around to generate an offset magnetic field for canceling the magnetic field applied to the magnetoelectric elements 3a and 3b. coil)
Then, it is integrally formed with the magnetoelectric elements 3a and 3b by a molding resin or the like, and is disposed in the void portion 2a of the same annular core 2 as in FIG. 4a and 4b are amplifiers for amplifying electric signals output from the magnetoelectric elements 3a and 3b and outputting voltage signals E1a and E1b,
Reference numeral 8 is an A / D converter for converting the voltage (analog) signals E1a, E1b and E2 into digital signals S1a, S1b and S2,
Reference numeral 12 is a setting unit for outputting a switching signal S5 for switching the full scale range, and the microcomputer 9 controls the digital signals S1a, S1b, S2 and the switching signal S5.
Has a function of taking in the digital signal S3 and performing the processing shown in FIG. Others are the same as those in FIG. 1 and are denoted by the same reference numerals.
【0009】磁電素子は磁界と電気信号の比例関係を補
償する範囲が検出感度によって異なり、例えば、磁電素
子3aが高感度、磁電素子3bが低感度とした場合、変
換精度を補償する磁界の強さは、磁電素子3aの方が小
さく、磁電素子3bの方が大きくなる。従って、導体1
に流れる電流Im の検出精度を補償する最大値は磁電素
子3aの方が小さく、磁電素子3bの方が大きくなり、
磁電素子を切り替えることにより、電流検出のフルスケ
ールレンジを切り替えて検出精度を補償することができ
る。The range of compensating the proportional relationship between the magnetic field and the electric signal of the magnetoelectric element varies depending on the detection sensitivity. For example, when the magnetoelectric element 3a has high sensitivity and the magnetoelectric element 3b has low sensitivity, the magnetic field strength for compensating the conversion accuracy is high. The magnetic element 3a is smaller and the magnetic element 3b is larger. Therefore, conductor 1
The maximum value for compensating the detection accuracy of the current Im flowing in the magnetic element 3a is smaller and the maximum value is larger in the magnetic element 3b.
By switching the magnetoelectric element, it is possible to switch the full-scale range of current detection and compensate for detection accuracy.
【0010】上記構成において、設定部12で電流検出
のフルスケールレンジの小さい方を選択する切替信号S
5 を設定すると、マイクロコンピュータ9は図2(b) に
示すように、切換部23から選択信号S6 を出力してス
イッチ21を閉路し、磁電素子3aによるディジタル信
号S1aをS1 として増幅部24に入力する。同時に磁電
素子3aの検出感度で定められる倍率信号S7 、S8 を
出力し、増幅部24、25に入力する。増幅部24は倍
率信号S7 の倍率に基づいて信号S1 を増幅し励磁電流
Ic となる信号S3 を出力し、増幅部25は倍率信号S
8 の倍率に基づいて信号S2 を増幅し、電流検出信号S
4 のフルスケールレンジを磁電素子3aの検出精度を補
償する最大値に合わせる。これにより、励磁電流Ic を
供給するループゲインを所定のゲインとし、小さい電流
でフルスケールの信号を出力し、検出精度を補償するこ
とができる。In the above configuration, the switching signal S for selecting the smaller one of the full-scale ranges for current detection in the setting section 12
When 5 is set, the microcomputer 9 outputs the selection signal S6 from the switching unit 23 to close the switch 21 as shown in FIG. 2 (b), and the digital signal S1a from the magnetoelectric element 3a is sent to the amplification unit 24 as S1. input. At the same time, magnification signals S7 and S8 determined by the detection sensitivity of the magnetoelectric element 3a are output and input to the amplifiers 24 and 25. The amplification section 24 amplifies the signal S1 based on the magnification of the magnification signal S7 and outputs a signal S3 which becomes the exciting current Ic, and the amplification section 25 outputs the magnification signal S.
The signal S2 is amplified based on the multiplication factor of 8 to obtain the current detection signal S
The full scale range of 4 is adjusted to the maximum value that compensates the detection accuracy of the magnetoelectric element 3a. As a result, the loop gain for supplying the exciting current Ic can be set to a predetermined gain, a full-scale signal can be output with a small current, and the detection accuracy can be compensated.
【0011】また、設定部12で電流検出のフルスケー
ルレンジの大きい方を選択する切替信号S5 を設定する
と、マイクロコンピュータ9は、切換部23から選択信
号S6 を出力してスイッチ22を閉路し、磁電素子3b
によるディジタル信号S1bをS1 として増幅部24に入
力する。同時に磁電素子3bの検出感度で定められる倍
率信号S7 、S8 を出力し、増幅部24、25に入力す
る。増幅部24は倍率信号S7 の倍率に基づいて信号S
1 を増幅し励磁電流Ic となる信号S3 を出力し、増幅
部25は倍率信号S8 の倍率に基づいて信号S2 を増幅
し、電流検出信号S4 のフルスケールレンジを磁電素子
3aの検出精度を補償する最大値に合わせる。これのよ
り、励磁電流Ic を供給するループゲインを所定のゲイ
ンとし、磁電素子の検出感度が切り替えられても検出応
答時間を一定とすることができ、大きい電流でフルスケ
ールの信号を出力し、検出精度を補償することができ
る。この場合、フルスケールとなる電流で環状鉄心2の
磁束が飽和しないように選定することはいうまでもな
い。When the setting unit 12 sets the switching signal S5 for selecting the one having a larger full-scale range for current detection, the microcomputer 9 outputs the selection signal S6 from the switching unit 23 to close the switch 22. Magnetoelectric element 3b
The digital signal S1b by S1 is input to the amplifier 24 as S1. At the same time, magnification signals S7 and S8 determined by the detection sensitivity of the magnetoelectric element 3b are output and input to the amplifiers 24 and 25. The amplification unit 24 outputs the signal S based on the magnification of the magnification signal S7.
The signal S3 that amplifies 1 and becomes the exciting current Ic is output, and the amplifying section 25 amplifies the signal S2 based on the magnification of the magnification signal S8 to compensate the detection accuracy of the magnetoelectric element 3a for the full scale range of the current detection signal S4. Adjust to the maximum value. As a result, the loop gain for supplying the exciting current Ic is set to a predetermined gain, and the detection response time can be made constant even if the detection sensitivity of the magnetoelectric element is switched, and a full-scale signal is output with a large current, The detection accuracy can be compensated. In this case, it goes without saying that the magnetic flux of the annular core 2 is not saturated by the full-scale current.
【0012】本発明による電流検出装置の請求項8〜1
1に対応する実施の形態を図3に示す。この実施例は、
磁電素子の検出特性が周囲温度によって変化する場合の
温度補償を行う場合の例を示したもので、図3(a) に示
すように、磁電素子3a、3b及びコイル5とともに、
磁電素子の周囲温度を検出する温度検出器13を設け、
これらをモールド樹脂などで一体に形成して図1と同じ
環状鉄心2の空隙部2aに配設される。温度検出器13
から出力される温度検出信号は増幅器14で増幅され電
圧信号E4 とされ、A/D変換器8を介してディジタル
信号S9 に変換され、マイクロコンピュータ9に入力さ
れる。マイクロコンピュータ9はディジタル信号S1a、
S1b、S2 、S9 と切替信号S5 を取り込み、図3(b)
に示す処理を行って、ディジタル信号S3 と電流検出信
号S4 を出力する機能を有している。その他は図2(b)
と同様であり同符号で示している。Claims 8 to 1 of the current detecting device according to the present invention
An embodiment corresponding to No. 1 is shown in FIG. This example is
This is an example of temperature compensation when the detection characteristics of the magnetoelectric element change depending on the ambient temperature. As shown in FIG. 3 (a), the magnetoelectric elements 3a and 3b and the coil 5 are
A temperature detector 13 for detecting the ambient temperature of the magnetoelectric element is provided,
These are integrally formed with a molding resin or the like and arranged in the same void 2a of the annular core 2 as in FIG. Temperature detector 13
The temperature detection signal output from the amplifier is amplified by the amplifier 14 into a voltage signal E4, which is converted into a digital signal S9 via the A / D converter 8 and input to the microcomputer 9. The microcomputer 9 uses the digital signal S1a,
S1b, S2, S9 and switching signal S5 are taken in, and FIG.
It has a function of outputting the digital signal S3 and the current detection signal S4 by performing the processing shown in FIG. Others are shown in Figure 2 (b)
And the same reference numerals are used.
【0013】上記構成において、切換部23は、図2
(b) の場合と同様に、設定部12で設定された切替信号
S5 に基づいて選択信号S6 と倍率信号S7 、S8 を出
力し、選択信号S6 に基づいてスイッチ21か22のい
ずれかが閉路し、磁電素子3a、3bの検出信号S1a、
S1bのいずれかがS1 として増幅部24に入力される。
関数発生部26は、各磁電素子3a、3bに対する温度
特性を予め測定して各磁電素子3a、3b毎に周囲温度
に対する温度補償のデータを保有し、選択信号S6 で指
定された磁電素子に対する温度補償信号S10をディジタ
ル信号(温度検出信号)S9 に基づいて出力する。増幅
部24は倍率信号S7 の倍率に基づいて信号S1 を増幅
しディジタル信号S3 を出力し、増幅部25は倍率信号
S8 の倍率に基づいて信号S2 を増幅し、電流検出信号
S4 のフルスケールレンジを選択された磁電素子の検出
精度を補償する最大値に合わせると共に、温度補償信号
S10に基づいて増幅された値に対して補正倍率を乗じて
温度補償を行う。この実施例によれば、周囲温度が変化
する場合でも検出精度を補償することが可能となる。In the above-mentioned structure, the switching unit 23 has the structure shown in FIG.
Similar to the case of (b), the selection signal S6 and the magnification signals S7 and S8 are output based on the switching signal S5 set by the setting unit 12, and either the switch 21 or 22 is closed based on the selection signal S6. Then, the detection signals S1a of the magnetoelectric elements 3a and 3b,
One of S1b is input to the amplifier 24 as S1.
The function generator 26 measures the temperature characteristics for each of the magnetoelectric elements 3a and 3b in advance and holds temperature compensation data for the ambient temperature for each of the magnetoelectric elements 3a and 3b, and the temperature for the magnetoelectric element designated by the selection signal S6. The compensation signal S10 is output based on the digital signal (temperature detection signal) S9. The amplification unit 24 amplifies the signal S1 based on the magnification of the magnification signal S7 and outputs the digital signal S3, and the amplification unit 25 amplifies the signal S2 based on the magnification of the magnification signal S8 to obtain the full scale range of the current detection signal S4. Is adjusted to the maximum value for compensating the detection accuracy of the selected magnetoelectric element, and the value amplified based on the temperature compensation signal S10 is multiplied by the correction magnification to perform temperature compensation. According to this embodiment, the detection accuracy can be compensated even when the ambient temperature changes.
【0014】[0014]
【発明の効果】本発明の電流検出装置によれば、コイル
の巻数及び電流を増加させることなく大きな電流の検出
に対応でき、しかも小形化することができ、検出電流の
最大値を切換えたときも所定の検出精度を維持すること
ができ、周囲温度が変化する場合でも検出精度を補償す
ることができる。According to the current detecting device of the present invention, it is possible to cope with the detection of a large current without increasing the number of turns of the coil and the current, and it is possible to reduce the size, and when the maximum value of the detected current is switched. Can maintain a predetermined detection accuracy and can compensate the detection accuracy even when the ambient temperature changes.
【図1】本発明の電流検出器の請求項1〜4に対応する
実施例の構成図。FIG. 1 is a configuration diagram of an embodiment corresponding to claims 1 to 4 of a current detector of the present invention.
【図2】本発明の電流検出器の請求項5〜7に対応する
実施例で、(a) は構成図、(b) はマイクロコンピュータ
9の要部機能の構成図。2A and 2B are diagrams showing an embodiment corresponding to claims 5 to 7 of the current detector of the present invention, wherein FIG. 2A is a configuration diagram and FIG. 2B is a configuration diagram of a main function of the microcomputer 9.
【図3】本発明の電流検出器の請求項8〜11に対応す
る実施例で、(a) は構成図、(b) はマイクロコンピュー
タ9の要部機能の構成図。3A and 3B show an embodiment of the current detector of the present invention corresponding to claims 8 to 11, wherein FIG. 3A is a configuration diagram and FIG. 3B is a configuration diagram of a main function of a microcomputer 9.
【図4】従来の電流検出器の構成図。FIG. 4 is a configuration diagram of a conventional current detector.
1…導体 2…環状鉄心 2a…空隙部 3、3a、3b
…磁電素子 4、4a、4b、7、14…増幅器 5…励磁巻線
(コイル) 6…抵抗器 8…A/D変換
器 9…マイクロコンピュータ 10…D/A変換
器 11…増幅器 12…設定部 13…温度検出器 21、22…スイッチ 23…切換部 24、25…増幅部 26…関数発生
部DESCRIPTION OF SYMBOLS 1 ... Conductor 2 ... Annular iron core 2a ... Voids 3, 3a, 3b
... Magnetoelectric element 4, 4a, 4b, 7, 14 ... Amplifier 5 ... Excitation winding (coil) 6 ... Resistor 8 ... A / D converter 9 ... Microcomputer 10 ... D / A converter 11 ... Amplifier 12 ... Setting Part 13 ... Temperature detector 21, 22 ... Switch 23 ... Switching part 24, 25 ... Amplifying part 26 ... Function generating part
Claims (11)
応した電気信号を出力する磁電素子と、該磁界を打ち消
す方向に相殺磁界を発生する励磁巻線とを一体として環
状鉄心の空隙部に配設し、前記環状鉄心を貫通する導体
に流れる電流により前記環状鉄心に磁束が発生して前記
磁電素子に磁界が加えられたとき、前記磁電素子から出
力される電気信号に応じて前記励磁巻線に励磁電流を供
給する制御部を備え、この励磁電流から前記導体に流れ
る電流を検出することを特徴とする電流検出装置。1. A ring-shaped iron core integrally including a magnetoelectric element that outputs an electric signal corresponding to the strength of the magnetic field when a magnetic field is applied, and an excitation winding that generates a canceling magnetic field in a direction of canceling the magnetic field. When a magnetic flux is generated in the annular core by a current flowing through a conductor passing through the annular core and disposed in the void, and a magnetic field is applied to the magnetoelectric element, depending on an electric signal output from the magnetoelectric element. A current detecting device comprising a control unit for supplying an exciting current to the exciting winding, and detecting a current flowing through the conductor from the exciting current.
前記制御部は、前記電気信号を比例積分増幅して励磁電
流として出力する増幅器を備え、前記励磁巻線に生じる
相殺磁界により前記磁電素子に加わる磁界を打ち消すこ
とを特徴とする電流検出装置。2. The current detection device according to claim 1,
The said control part is equipped with the amplifier which proportionally-integrally amplifies the said electric signal, and outputs it as an exciting current, The current detection apparatus characterized by canceling the magnetic field added to the said magnetoelectric element by the cancellation magnetic field which arises in the said excitation winding.
前記制御部は、前記電気信号をディジタル信号に変換す
るA/D変換手段と、このディジタル信号に基づいて第
3ディジタル信号を出力するマイクロコンピュータと、
この第3ディジタル信号を第3アナログ信号に変換する
D/A変換手段と、前記第3アナログ信号に基づいて前
記電気信号に応じた励磁電流を供給する増幅器を備える
ことを特徴とする電流検出装置。3. The current detection device according to claim 1,
The control unit includes an A / D conversion unit that converts the electric signal into a digital signal, and a microcomputer that outputs a third digital signal based on the digital signal.
A current detecting device comprising D / A converting means for converting the third digital signal into a third analog signal, and an amplifier for supplying an exciting current according to the electric signal based on the third analog signal. .
前記制御部は、前記励磁電流を電圧として検出し、この
電圧(第2アナログ信号)を第2ディジタル信号に変換
するD/A変換手段を備え、前記マイクロコンピュータ
が前記第2ディジタル信号に基づいて前記導体に流れる
電流の検出信号を出力することを特徴とする電流検出装
置。4. The current detection device according to claim 3,
The control section includes D / A conversion means for detecting the exciting current as a voltage and converting the voltage (second analog signal) into a second digital signal, and the microcomputer is based on the second digital signal. A current detection device, which outputs a detection signal of a current flowing through the conductor.
応した電気信号を出力する検出感度の異なる複数の磁電
素子と、該磁界を打ち消す方向に相殺磁界を発生する励
磁巻線とを一体として環状鉄心の空隙部に配設し、前記
環状鉄心を貫通する導体に流れる電流により前記環状鉄
心に磁束が発生して各磁電素子に磁界が加えられたと
き、いずれか一つの磁電素子から出力される電気信号に
応じて前記励磁巻線に励磁電流を供給する制御部を備
え、この励磁電流から前記導体に流れる電流を検出する
ことを特徴とする電流検出装置。5. A plurality of magnetoelectric elements having different detection sensitivities for outputting an electric signal corresponding to the strength of the magnetic field when a magnetic field is applied, and an exciting winding for generating a canceling magnetic field in a direction of canceling the magnetic field. Is disposed in the void portion of the annular iron core as a unit, and when a magnetic flux is generated in each of the magnetoelectric elements by the magnetic flux generated in the annular iron core by the current flowing through the conductor passing through the annular iron core, any one of the magnetoelectric elements A current detecting device, comprising: a control unit that supplies an exciting current to the exciting winding in accordance with an electric signal output from the exciting coil, and detects a current flowing through the conductor from the exciting current.
前記制御部は、いずれか一つの磁電素子を指定するため
の切替信号を決定する設定部と、前記切替信号に基づい
て選択信号と倍率信号を出力する切替部と、前記選択信
号に基づいて検出感度の異なる複数の磁電素子のいずれ
か一つの磁電素子の検出信号を選択出力するスイッチ部
と、前記倍率信号に基づいて選択された磁電素子の検出
信号を増幅する増幅部を備え、前記増幅部の出力に基づ
いて前記励磁巻線に励磁電流を供給し、磁電素子が切換
えられてもループゲインを一定に保つことを特徴とする
電流検出装置。6. The current detection device according to claim 5,
The control unit determines a switching signal for designating one of the magnetoelectric elements, a switching unit that outputs a selection signal and a magnification signal based on the switching signal, and a detection unit that detects based on the selection signal. A switch unit that selectively outputs a detection signal of any one of a plurality of magnetoelectric elements having different sensitivities, and an amplification unit that amplifies the detection signal of the magnetoelectric element selected based on the magnification signal, the amplification unit An exciting current is supplied to the exciting winding on the basis of the output of, and the loop gain is kept constant even if the magnetoelectric element is switched.
前記切替部は、前記切替信号に基づいて前記選択信号と
倍率信号を出力すると共に第2倍率信号を出力し、前記
制御部は、前記励磁電流の検出信号を前記第2倍率信号
に基づいて増幅して前記導体に流れる電流の検出信号と
して出力する第2増幅器を備え、選択された磁電素子の
検出感度に応じて検出信号のフルスケールレンジを変え
ることを特徴とする電流検出装置。7. The current detecting device according to claim 6,
The switching unit outputs the selection signal and the magnification signal based on the switching signal and also outputs a second magnification signal, and the control unit amplifies the detection signal of the exciting current based on the second magnification signal. And a second amplifier for outputting as a detection signal of the current flowing through the conductor, and changing the full-scale range of the detection signal according to the detection sensitivity of the selected magnetoelectric element.
電流検出装置において、前記磁電素子と前記励磁巻線と
前記磁電素子の周囲温度を検出する温度検出器とを一体
として環状鉄心の空隙部に配設し、前記制御部は、周囲
温度の検出信号に基づいて温度補正信号を出力する関数
発生部と、励磁電流の検出信号を前記温度補正信号に基
づいて補正し前記導体に流れる電流の検出信号を出力す
る第2増幅器を備え、温度補償を行うことを特徴とする
電流検出装置。8. The current detecting device according to claim 1, wherein the magnetoelectric element, the excitation winding, and a temperature detector for detecting an ambient temperature of the magnetoelectric element are integrated into an annular core. The function generator that outputs a temperature correction signal based on the ambient temperature detection signal, and the excitation current detection signal that is corrected based on the temperature correction signal. A current detection device comprising a second amplifier that outputs a detection signal of a flowing current, and performing temperature compensation.
前記制御部は、周囲温度の検出信号に基づいて検出感度
の異なる複数の磁電素子のいずれか一つの磁電素子の温
度補正信号を出力する関数発生部と、励磁電流の検出信
号を前記温度補正信号に基づいて補正し前記導体に流れ
る電流の検出信号を出力する第2増幅器を備え、温度補
償を行うことを特徴とする電流検出装置。9. The current detection device according to claim 8,
The controller is a function generator that outputs a temperature correction signal of any one of a plurality of magnetoelectric elements having different detection sensitivities based on an ambient temperature detection signal, and an excitation current detection signal that is the temperature correction signal. A current detection device comprising a second amplifier that corrects the current based on the above, and outputs a detection signal of the current flowing through the conductor, and performs temperature compensation.
て、前記制御部は、検出感度の異なる複数の磁電素子の
いずれか一つの磁電素子から出力される電気信号をディ
ジタル信号に変換するA/D変換手段と、このディジタ
ル信号に基づいて第3ディジタル信号を出力するマイク
ロコンピュータと、この第3ディジタル信号を第3アナ
ログ信号に変換するD/A変換手段と、前記第3アナロ
グ信号に基づいて前記電気信号に応じた励磁電流を供給
する増幅器を備えることを特徴とする電流検出装置。10. The current detection device according to claim 8, wherein the control unit converts an electric signal output from any one of a plurality of magnetoelectric elements having different detection sensitivities into a digital signal. D conversion means, a microcomputer that outputs a third digital signal based on this digital signal, D / A conversion means that converts this third digital signal into a third analog signal, and based on the third analog signal A current detecting device comprising an amplifier for supplying an exciting current according to the electric signal.
て、前記制御部は、前記励磁電流を電圧として検出し、
この電圧(第2アナログ信号)を第2ディジタル信号に
変換すると共に前記温度検出信号を第9ディジタル信号
に変換するD/A変換手段を備え、前記マイクロコンピ
ュータが前記第2ディジタル信号と第9ディジタル信号
とに基づいて前記導体に流れる電流の検出信号を出力す
ることを特徴とする電流検出装置。11. The current detecting device according to claim 8, wherein the control unit detects the exciting current as a voltage,
The microcomputer is provided with D / A conversion means for converting the voltage (second analog signal) into a second digital signal and also for converting the temperature detection signal into a ninth digital signal, and the microcomputer includes the second digital signal and the ninth digital signal. A current detection device, which outputs a detection signal of a current flowing through the conductor based on the signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8065586A JPH09257835A (en) | 1996-03-22 | 1996-03-22 | Current detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8065586A JPH09257835A (en) | 1996-03-22 | 1996-03-22 | Current detector |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09257835A true JPH09257835A (en) | 1997-10-03 |
Family
ID=13291268
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8065586A Pending JPH09257835A (en) | 1996-03-22 | 1996-03-22 | Current detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09257835A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6316931B1 (en) | 1998-12-15 | 2001-11-13 | Tdk Corporation | Magnetic sensor apparatus and current sensor apparatus |
US6323634B1 (en) | 1998-10-14 | 2001-11-27 | Tdk Corporation | Magnetic sensor apparatus, current sensor apparatus and magnetic sensor element |
US6411078B1 (en) | 1999-01-21 | 2002-06-25 | Tdk Corporation | Current sensor apparatus |
JP2008514930A (en) * | 2004-09-28 | 2008-05-08 | ザ・ユニバーシティ・オブ・クイーンズランド | Magnetic dosimeter |
JP2014029340A (en) * | 2006-01-20 | 2014-02-13 | Allegro Microsystems Llc | Arrangements for integrated sensor |
JP2015533420A (en) * | 2012-11-02 | 2015-11-24 | シエヴァ デー.オー.オー. − ポスロヴナ エノタ イドリヤ | Insulated current measuring device and insulated current judging method |
WO2019069763A1 (en) * | 2017-10-06 | 2019-04-11 | 株式会社デンソー | Electric current sensor |
US10935612B2 (en) | 2018-08-20 | 2021-03-02 | Allegro Microsystems, Llc | Current sensor having multiple sensitivity ranges |
US11567108B2 (en) | 2021-03-31 | 2023-01-31 | Allegro Microsystems, Llc | Multi-gain channels for multi-range sensor |
-
1996
- 1996-03-22 JP JP8065586A patent/JPH09257835A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6323634B1 (en) | 1998-10-14 | 2001-11-27 | Tdk Corporation | Magnetic sensor apparatus, current sensor apparatus and magnetic sensor element |
US6316931B1 (en) | 1998-12-15 | 2001-11-13 | Tdk Corporation | Magnetic sensor apparatus and current sensor apparatus |
US6411078B1 (en) | 1999-01-21 | 2002-06-25 | Tdk Corporation | Current sensor apparatus |
JP2008514930A (en) * | 2004-09-28 | 2008-05-08 | ザ・ユニバーシティ・オブ・クイーンズランド | Magnetic dosimeter |
JP4871281B2 (en) * | 2004-09-28 | 2012-02-08 | ザ・ユニバーシティ・オブ・クイーンズランド | Magnetic dosimeter |
US9859489B2 (en) | 2006-01-20 | 2018-01-02 | Allegro Microsystems, Llc | Integrated circuit having first and second magnetic field sensing elements |
US9082957B2 (en) | 2006-01-20 | 2015-07-14 | Allegro Microsystems, Llc | Arrangements for an integrated sensor |
JP2014029340A (en) * | 2006-01-20 | 2014-02-13 | Allegro Microsystems Llc | Arrangements for integrated sensor |
US10069063B2 (en) | 2006-01-20 | 2018-09-04 | Allegro Microsystems, Llc | Integrated circuit having first and second magnetic field sensing elements |
JP2015533420A (en) * | 2012-11-02 | 2015-11-24 | シエヴァ デー.オー.オー. − ポスロヴナ エノタ イドリヤ | Insulated current measuring device and insulated current judging method |
WO2019069763A1 (en) * | 2017-10-06 | 2019-04-11 | 株式会社デンソー | Electric current sensor |
JP2019070563A (en) * | 2017-10-06 | 2019-05-09 | 株式会社デンソー | Current sensor |
CN111094999A (en) * | 2017-10-06 | 2020-05-01 | 株式会社电装 | Current sensor |
US11199563B2 (en) | 2017-10-06 | 2021-12-14 | Denso Corporation | Electric current sensor |
US10935612B2 (en) | 2018-08-20 | 2021-03-02 | Allegro Microsystems, Llc | Current sensor having multiple sensitivity ranges |
US11567108B2 (en) | 2021-03-31 | 2023-01-31 | Allegro Microsystems, Llc | Multi-gain channels for multi-range sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4752733A (en) | Compensating circuit for a magnetic field sensor | |
US6984989B2 (en) | Current sensor and overload current protective device therewith | |
US10444309B2 (en) | Digital amplifier | |
US11061100B2 (en) | System for continuous calibration of hall sensors | |
JP3691551B2 (en) | Current sensor based on compensation principle | |
JPH09257835A (en) | Current detector | |
JPH06313718A (en) | Position detecting circuit | |
US3974425A (en) | Isolator circuit with improved frequency response | |
KR100605023B1 (en) | apparatus for measuring current using rogowski coil | |
JPWO2003032461A1 (en) | Overload current protection device | |
JPH07106881A (en) | Output level control circuit | |
JP2005503561A (en) | Measuring transducer | |
JPH05142272A (en) | Watthour meter | |
JP2004020455A (en) | Current detector | |
JPH0572311A (en) | Calibration method of wattmeter | |
JP2007040758A (en) | Current sensor | |
JPH0627150A (en) | Hall element type current sensor | |
JP2000097973A (en) | D.c. current sensor | |
JPH0540134A (en) | Current detector | |
JP3643517B2 (en) | Constant current power supply | |
JPH11183526A (en) | Voltage sensor | |
JPH07294572A (en) | Signal insulating circuit | |
JPH01309417A (en) | Pre-stage circuit for ad converter | |
JPH04340488A (en) | Highly-sensitive apparatus for detecting magnetic field | |
JP2003149309A (en) | Multi-channel magnetic detector |