JPH09257769A - Measurement of slurry - Google Patents
Measurement of slurryInfo
- Publication number
- JPH09257769A JPH09257769A JP8093612A JP9361296A JPH09257769A JP H09257769 A JPH09257769 A JP H09257769A JP 8093612 A JP8093612 A JP 8093612A JP 9361296 A JP9361296 A JP 9361296A JP H09257769 A JPH09257769 A JP H09257769A
- Authority
- JP
- Japan
- Prior art keywords
- mud
- spectrum
- broadband
- oscillator
- receiver
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
- Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、超音波の伝播の減
衰が大きい泥状物における超音波測定に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to ultrasonic measurement in a mud having a large attenuation of ultrasonic wave propagation.
【0002】[0002]
【従来の技術】従来、フレッシュコンクリートなどの泥
状物は、超音波の伝播の減衰が大きいため、泥状物の測
定に超音波が使用されていなかった。ただ、最近、フレ
ッシュコンクリートの超音波の音速については、厚さ8
0mmの試料に当て板を介して鋼球で打撃して透過音速
を測定している("Evaluation of Utrasound Waves Dur
ing Setting and Hardening of Concrete" ; C.Grosse,
H.Reinhart Stuttgart,Stuttgart(D); International
Symposium Non-Destructive Testing in CivilEngineer
ing (NDT-CE)26-27,09,1995 参照)。2. Description of the Related Art Conventionally, ultrasonic waves have not been used for the measurement of mud matter, because mud matter such as fresh concrete has large attenuation of ultrasonic wave propagation. However, recently, regarding the sound velocity of ultrasonic waves of fresh concrete,
The transmitted sound velocity is measured by hitting a 0 mm sample with a steel ball through a backing plate ("Evaluation of Utrasound Waves Dur
ing Setting and Hardening of Concrete "; C. Grosse,
H. Reinhart Stuttgart, Stuttgart (D); International
Symposium Non-Destructive Testing in Civil Engineer
ing (NDT-CE) 26-27,09,1995).
【0003】しかし、鋼球を打撃し、超音波を発生して
測定する方法では、効率よく測定することができない。
また、透過波による測定では、打撃面に対向する面に超
音波受信子を配置する必要があり、測定に制限がある。However, the method of hitting a steel ball and generating ultrasonic waves for measurement cannot efficiently perform the measurement.
Further, in the measurement using the transmitted wave, it is necessary to dispose the ultrasonic wave receiver on the surface facing the striking surface, which limits the measurement.
【0004】[0004]
【発明が解決しようとする課題】本発明は、超音波の減
衰が大きい泥状物の超音波による測定を正確に行うこと
にある。SUMMARY OF THE INVENTION It is an object of the present invention to accurately perform ultrasonic measurement of a mud-like substance having a large attenuation of ultrasonic waves.
【0005】[0005]
【課題を解決するための手段】本発明は、厚さが既知の
泥状物における広帯域超音波の伝播速度を測定する泥状
物測定方法において、泥状物の一面に広帯域振動子と広
帯域受信子を配置し、広帯域振動子で広帯域超音波を周
期的に発振し、広帯域超音波を広帯域受信子で受信し、
受信した信号からフーリエアナライザーによりフーリエ
スペクトルを求め、広帯域振動子の発振周期を変化さ
せ、フーリエスペクトルの中の発振周期の逆数の繰り返
し周波数のスペクトルの高さが増大した際のスペクトル
を特定し、特定したスペクトルと泥状物の既知の厚さと
から泥状物における広帯域超音波の伝播速度を算出する
ことを特徴とする、泥状物測定方法、又は、広帯域超音
波の伝播速度が既知の泥状物における泥状物の厚さを測
定する泥状物測定方法において、泥状物の同一面に広帯
域振動子と広帯域受信子を配置し、広帯域振動子で広帯
域超音波を周期的に発振し、広帯域超音波を広帯域受信
子で受信し、受信した信号からフーリエアナライザーに
よりフーリエスペクトルを求め、広帯域振動子の発振周
期を変化させ、フーリエスペクトルの中の発振周期の逆
数の繰り返し周波数のスペクトルの高さが増大した際の
スペクトルを特定し、特定したスペクトルと既知の伝播
速度とから泥状物の厚さを算出することを特徴とする、
泥状物測定方法、又は、前記泥状物測定方法において、
広帯域受信子と広帯域振動子は、板状体を介して泥状物
と触することを特徴とする、泥状物測定方法にある。DISCLOSURE OF THE INVENTION The present invention provides a method of measuring the propagation speed of a broadband ultrasonic wave in a mud having a known thickness, in which a broadband oscillator and a broadband receiver are provided on one surface of the mud. A wideband ultrasonic wave is periodically oscillated by a wideband oscillator and a wideband ultrasonic wave is received by a wideband receiver.
Determine the Fourier spectrum from the received signal with a Fourier analyzer, change the oscillation period of the wideband oscillator, and identify the spectrum when the height of the spectrum of the reciprocal frequency of the inverse of the oscillation period in the Fourier spectrum increases. Of the broadband ultrasonic wave in the mud from the measured spectrum and the known thickness of the mud, the method for measuring the mud, or the mud of which the propagation speed of the broadband ultrasonic wave is known. In a mud measuring method for measuring the thickness of a mud in an object, a broadband oscillator and a broadband receiver are arranged on the same surface of the mud, and a broadband ultrasonic wave is oscillated periodically by the broadband oscillator, A wideband ultrasonic wave is received by a wideband receiver, a Fourier spectrum is obtained from the received signal by a Fourier analyzer, the oscillation period of the wideband oscillator is changed, and the D) The spectrum when the height of the spectrum of the reciprocal frequency that is the reciprocal of the oscillation period in the spectrum increases is specified, and the thickness of the mud is calculated from the specified spectrum and the known propagation velocity. To do
In the mud measuring method, or in the mud measuring method,
A wide band receiver and a wide band vibrator are in contact with a sludge through a plate-like body, and are in a sludge measuring method.
【0006】[0006]
【発明の実施の形態】以下、図面を用いて本発明の実施
の形態を説明する。 <イ>超音波による泥状物の測定の概要 超音波測定器は、例えば図1に示すように、広帯域振動
子14に電気信号を付与し、泥状物に広帯域の超音波を
パルス状に周期的に送波する。広帯域受信子15は、板
状体16や泥状物の表面を周期的に伝播してくる直接波
や、泥状物の底面で反射して周期的に伝播してくる反射
波などの周期的な合成波を受信する。Embodiments of the present invention will be described below with reference to the drawings. <B> Outline of measurement of mud by ultrasonic wave As shown in FIG. 1, for example, an ultrasonic measuring instrument applies an electric signal to a wide band oscillator 14 to make a pulse of wide band ultrasonic waves on the mud. Transmits periodically. The broadband receiver 15 is a periodic wave such as a direct wave periodically propagating on the surface of the plate-like body 16 or the mud, or a reflected wave propagating periodically on the bottom surface of the mud. Receive a synthetic wave.
【0007】受信した周期的な合成波を1つの現象とし
てフーリエ解析すると共に、送波の周期を変化させて、
フーリエ解析で求めたスペクトルの中から反射波の伝播
時間の逆数に基づくスペクトルの周波数Fを求める。Fourier analysis is performed on the received periodic composite wave as one phenomenon, and the period of the transmitted wave is changed,
From the spectrum obtained by the Fourier analysis, the frequency F of the spectrum based on the reciprocal of the propagation time of the reflected wave is obtained.
【0008】これで求めた反射波の伝播時間の逆数に基
づくスペクトルの周波数Fと、超音波の伝播速度V、反
射波の伝播距離(泥状物の厚さLの2倍)2Lと、反射
波の伝播時間の逆数に基づくスペクトルの周波数Fの関
係式(V=2LF)とから、超音波の伝播速度V又は泥
状物の厚さLの既知でない一方の値を算出する。The frequency F of the spectrum obtained based on the reciprocal of the propagation time of the reflected wave, the propagation velocity V of the ultrasonic wave, the propagation distance of the reflected wave (twice the thickness L of the mud) 2L, and the reflection From the relational expression (V = 2LF) of the frequency F of the spectrum based on the reciprocal of the wave propagation time, one of the unknown values of the propagation velocity V of the ultrasonic wave or the thickness L of the mud is calculated.
【0009】ここで、特に超音波を周期的に送波させる
こと、そして、その周期を変化させること、更にフーリ
エ解析を行うこと、しかも広帯域の超音波を利用するこ
とにより、泥状物内で減衰した微弱で複雑な波形の合成
波の中から反射波を求めることができる。Here, in particular, by transmitting ultrasonic waves periodically, changing the period, and further performing Fourier analysis, and by utilizing wideband ultrasonic waves, The reflected wave can be obtained from the attenuated complex wave having a complicated waveform.
【0010】また、泥状物とは、セメントミルク、モル
タル、フレッシュコンクリート、若材令コンクリート、
水やベントナイトと混合した土壌、糊などの泥状又は流
動状を有するものである。[0010] The mud refers to cement milk, mortar, fresh concrete, young concrete,
It has a muddy or fluid state such as soil or paste mixed with water or bentonite.
【0011】<ロ>超音波測定装置 超音波測定装置は、一般に知られている広帯域振動子1
4、広帯域受信子15、超音波測定器本体10とフーリ
エアナライザー13を備えている。広帯域振動子14や
広帯域受信子15は、例えば圧電素子を有する探触子な
どが使用できる。超音波測定器本体10は、広帯域振動
子14に付与する電気信号を作成する信号発生器11
と、広帯域受信子15からの電気信号を増幅する信号受
信器12を備えている。信号発生器11で作成された信
号を広帯域振動子14に印加して広帯域の超音波を発生
する。更に、超音波測定装置は、広帯域振動子14に印
加する信号を周期的に発生し、その周期を変化させるこ
とができるものである。フーリエアナライザー13は、
信号受信機からの信号をフーリエ解析して、スペクトル
を求めるもので、例えばFFTアナライザーを使用する
ことができる。また、フーリエアナライザー13は、解
析で求めたスペクトルの中の特定のピークの変化(シフ
ト)に対してピークホールドの機能を有していると測定
が容易になる。<B> Ultrasonic Measuring Device The ultrasonic measuring device is a generally known wideband oscillator 1.
4, a broadband receiver 15, an ultrasonic measuring device main body 10 and a Fourier analyzer 13 are provided. For the wideband vibrator 14 and the wideband receiver 15, for example, a probe having a piezoelectric element can be used. The ultrasonic measuring device main body 10 includes a signal generator 11 that creates an electric signal to be applied to the wide band transducer 14.
And a signal receiver 12 that amplifies an electric signal from the broadband receiver 15. The signal generated by the signal generator 11 is applied to the wideband oscillator 14 to generate wideband ultrasonic waves. Further, the ultrasonic measurement device can periodically generate a signal to be applied to the wide band transducer 14 and change the period. Fourier analyzer 13
The signal from the signal receiver is Fourier-analyzed to obtain the spectrum. For example, an FFT analyzer can be used. Further, the Fourier analyzer 13 has a peak hold function for a change (shift) of a specific peak in the spectrum obtained by the analysis, which facilitates the measurement.
【0012】<ハ>泥状物の超音波測定における機器配
置 広帯域振動子14と広帯域受信子15は、泥状物に直接
接触させるか、或いは、例えば図1のように、板状体1
6を介して泥状物に接触させる。図1の場合は、広帯域
の超音波が板状体16から泥状物に送波し、反対面で反
射して板状体16から受信する構成となる。この際、広
帯域受信子15には、反射波の他に、板状体16から直
接伝播するものや、泥状物の表面を伝播するもの、また
板状体16の振動波など種々の波の合成波が受信され
る。<C> Equipment Arrangement for Ultrasonic Measurement of Mud Material The broadband oscillator 14 and the broadband receiver 15 are brought into direct contact with the mud material or, for example, as shown in FIG.
Contact mud through 6. In the case of FIG. 1, wideband ultrasonic waves are transmitted from the plate-shaped body 16 to the mud, reflected on the opposite surface, and received from the plate-shaped body 16. At this time, in addition to the reflected waves, the wide band receiver 15 may receive various waves such as those propagating directly from the plate-shaped body 16, those propagating on the surface of the mud, and the vibration waves of the plate-shaped body 16. The composite wave is received.
【0013】<ニ>泥状物の超音波測定方法 泥状物の超音波測定方法は、例えば図1のような構成に
おいて、信号発生器11から図2のような急俊なパルス
を広帯域振動子14に付与し、広帯域超音波(発振波)
を周期的に泥状物に送波する。広帯域受信子15は、図
3のような反射波を含んだ種々の波の合成波からなる受
信波を受信する。受信波のr部は、反射波を示してお
り、図3では誇張して記載してある。<D> Ultrasonic Measuring Method for Mud The ultrasonic measuring method for mud is, for example, in the configuration as shown in FIG. Broadband ultrasonic wave (oscillation wave) applied to the child 14
Is periodically transmitted to the mud. The broadband receiver 15 receives a reception wave composed of a composite wave of various waves including the reflected wave as shown in FIG. The r part of the received wave indicates the reflected wave, which is exaggerated in FIG.
【0014】受信波を信号受信機で増幅し、フーリエア
ナライザー13でスペクトルに変換する。変換されたス
ペクトルの中には、周期的に送波したパルスの周期に基
づく繰り返し周波数スペクトルが含まれている。この繰
り返し周波数スペクトルは、送波パルスの周期を短く変
化させると、周波数の高い方に変化する。The received wave is amplified by the signal receiver and converted into a spectrum by the Fourier analyzer 13. The converted spectrum includes a repetitive frequency spectrum based on the cycle of the periodically transmitted pulse. The repetition frequency spectrum changes to a higher frequency when the cycle of the transmission pulse is changed to be shorter.
【0015】そこで、送波パルスの周期を変化させて、
フーリエ変換された周波数スペクトルを変化させ、この
変化した周波数スペクトルのピーク値の変動をグラフに
描く(ピークホールド法で求める)と図4のようにな
る。Therefore, by changing the cycle of the transmitted pulse,
When the frequency spectrum subjected to the Fourier transform is changed and the variation of the peak value of the changed frequency spectrum is drawn on a graph (obtained by the peak hold method), it becomes as shown in FIG.
【0016】この際、送波パルスの周期に基づく繰り返
し周波数スペクトルと反射波の伝播時間の逆数に基づく
スペクトルが一致すると、両スペクトルの和が得られ、
図4のようにスペクトルの高いt部を得ることができ
る。このピークの高いスペクトルが、反射波の伝播時間
の逆数に基づくフーリエ変換されたスペクトルの周波数
Fであり、このスペクトルを関係式(V=2LF)のF
に代入すると、伝播速度V、又は伝播距離Lを算出する
ことができる。At this time, when the repetition frequency spectrum based on the period of the transmitted pulse and the spectrum based on the reciprocal of the propagation time of the reflected wave match, the sum of both spectra is obtained,
As shown in FIG. 4, the t-part having a high spectrum can be obtained. The spectrum having a high peak is the frequency F of the Fourier-transformed spectrum based on the reciprocal of the propagation time of the reflected wave, and this spectrum is represented by F of the relational expression (V = 2LF).
By substituting into, the propagation velocity V or the propagation distance L can be calculated.
【0017】以下に実施例について説明する。 <イ>コンクリート供試体の測定 図5のように、側面が金属製の型枠(高さ300×縦5
00×横500mm)で、底面が突き固めた濡れたシル
ト土で形成し、その内部にフレッシュコンクリートを打
設してコンクリート供試体を作成する。供試体の上面に
鋼板の板状体16を介して広帯域振動子14と広帯域受
信子15を配置する。フレッシュコンクリートは、粗骨
材を含み、流動性に富む土木用のものである。このフレ
ッシュコンクリートは、生コンプラントで練り混ぜて、
型枠に打設し、測定を開始するまでに1乃至2時間が経
過した。Examples will be described below. <B> Measurement of concrete specimen As shown in Fig. 5, the side face is made of metal (height 300 x length 5).
It is made of wet silt soil with a bottom of which is tampered with 00 × 500 mm), and fresh concrete is placed therein to prepare a concrete specimen. The broadband oscillator 14 and the broadband receiver 15 are arranged on the upper surface of the test piece with a plate-shaped body 16 made of a steel plate interposed therebetween. Fresh concrete is for civil engineering, which includes coarse aggregate and is highly fluid. This fresh concrete is kneaded in a ready-mixed plant,
It took 1 to 2 hours before the measurement was started by placing it on the mold.
【0018】広帯域振動子14から広帯域の超音波を出
し、同一表面に配置した広帯域受信子15で伝播してき
た広帯域超音波を受信する。受信した超音波の中にはシ
ルト土の境界から反射してきた反射波を含んでいる。A broadband ultrasonic wave is emitted from the broadband oscillator 14, and the broadband ultrasonic wave propagated by the broadband receiver 15 arranged on the same surface is received. The received ultrasonic waves include the reflected waves reflected from the boundary of silt soil.
【0019】図6は、横軸に測定の経過時間を示し、前
半が測定開始から6時間までのフレッシュコンクリート
の状態を示し、後半は、日の単位で2日から15日まで
の若材令コンクリートの状態を示している。縦軸は超音
波の伝播速度を示している。この図の測定時間の目盛り
は、練り混ぜてから1乃至2時間経過後の時間を示して
いる。FIG. 6 shows the elapsed time of measurement on the horizontal axis, the first half shows the state of fresh concrete from the start of measurement to 6 hours, and the second half shows the age of young people from 2 to 15 days in units of days. The state of concrete is shown. The vertical axis represents the propagation velocity of ultrasonic waves. The scale of the measurement time in this figure shows the time after 1 to 2 hours have passed since the kneading.
【0020】打設したコンクリートは、時間の経過と共
に硬化し、6時間後にはチーズ状になっていた。泥状の
コンクリートでも、図6のように超音波の反射波を検出
でき、伝播速度を求めることができた。The cast concrete hardened with the passage of time and became a cheese-like substance after 6 hours. Even in mud-like concrete, the reflected waves of ultrasonic waves could be detected as shown in FIG. 6, and the propagation velocity could be obtained.
【0021】<ロ>関東ローム土供試体の測定 図7のように関東ローム層の土を容器に入れ、上面に板
状体16を介して広帯域振動子14と広帯域受信子15
を配置し、重り17を載せて関東ローム土に荷重をかけ
る。関東ローム土に水を加えて、含水量を変えて測定し
た。<B> Measurement of Kanto Loam Soil Specimen As shown in FIG. 7, the soil of the Kanto loam layer is placed in a container, and a wide band oscillator 14 and a wide band receiver 15 are placed on the upper surface via a plate-shaped body 16.
Place the weight 17 and place a weight on the Kanto loam soil. Water was added to the Kanto loam soil to measure the water content.
【0022】図8には、横軸に含水比(水重量/土の乾
燥重量)を示し、縦軸に超音波の伝播速度を示してい
る。曲線Aは、0.4g/mm2 の荷重をかけた場合を
示し、曲線Bは、0.2g/mm2 の荷重の場合を示
し、曲線Cは、荷重をかけていない場合の伝播速度を示
している。In FIG. 8, the horizontal axis represents the water content ratio (water weight / dry weight of soil), and the vertical axis represents the ultrasonic wave propagation velocity. A curve A shows a case where a load of 0.4 g / mm 2 is applied, a curve B shows a case of a load of 0.2 g / mm 2 , and a curve C shows a propagation velocity when no load is applied. Shows.
【0023】この流動性のある関東ローム土でも、超音
波による測定ができ、圧力や含水比により超音波の伝播
速度が変化することを知ることができる。Even in this fluid Kanto loam soil, ultrasonic measurement can be performed, and it can be known that the propagation velocity of ultrasonic waves changes depending on the pressure and the water content.
【0024】[0024]
【発明の効果】本発明は、次のような効果を得ることが
できる。 <イ>超音波の減衰が大きな泥状物に対しても、送波パ
ルスの周期を調整し、反射波をフーリエ変換することに
より、反射波を分離でき、泥状物の厚さ又は伝播速度を
求めることができる。According to the present invention, the following effects can be obtained. <B> Even for mud with a large attenuation of ultrasonic waves, the reflected wave can be separated by adjusting the cycle of the transmission pulse and performing Fourier transform of the reflected wave, and the thickness or propagation velocity of the mud Can be asked.
【図1】超音波測定装置の配置図[Fig. 1] Layout of an ultrasonic measurement device
【図2】広帯域振動子に付与するパルス[Fig. 2] Pulse applied to a wide band oscillator
【図3】広帯域受信子が受信する波形[Fig. 3] Waveform received by a broadband receiver
【図4】周期を変化させて得られた周波数スペクトルの
変化をピークホールド法によって得られたグラフFIG. 4 is a graph obtained by a peak hold method showing changes in a frequency spectrum obtained by changing a period.
【図5】コンクリート供試体の測定図[Fig. 5] Measurement diagram of concrete specimen
【図6】コンクリート供試体の超音波測定値[Figure 6] Ultrasonic measurement value of concrete specimen
【図7】関東ローム土供試体の測定図[Fig.7] Measurement diagram of Kanto Loam soil specimen
【図8】関東ローム土供試体の超音波測定値[Figure 8] Ultrasonic measurement values of Kanto Loam soil specimen
10・・・超音波測定器本体 13・・・フーリエアナライザー 14・・・広帯域振動子 15・・・広帯域受信子 16・・・板状体 10 ... Ultrasonic measuring device main body 13 ... Fourier analyzer 14 ... Wideband oscillator 15 ... Wideband receiver 16 ... Plate-shaped body
Claims (3)
の伝播速度を測定する泥状物測定方法において、 泥状物の一面に広帯域振動子と広帯域受信子を配置し、 広帯域振動子で広帯域超音波を周期的に発振し、広帯域
超音波を広帯域受信子で受信し、 受信した信号からフーリエアナライザーによりフーリエ
スペクトルを求め、 広帯域振動子の発振周期を変化させ、フーリエスペクト
ルの中の発振周期の逆数の繰り返し周波数のスペクトル
の高さが増大した際のスペクトルを特定し、 特定したスペクトルと泥状物の既知の厚さとから泥状物
における広帯域超音波の伝播速度を算出することを特徴
とする、 泥状物測定方法。1. A method for measuring the propagation speed of a broadband ultrasonic wave in a mud having a known thickness, wherein a broadband oscillator and a broadband receiver are arranged on one surface of the mud, and the broadband oscillator is provided. To oscillate a wide band ultrasonic wave periodically, the wide band ultrasonic wave is received by a wide band receiver, the Fourier spectrum is obtained from the received signal by a Fourier analyzer, the oscillation period of the wide band oscillator is changed, and the oscillation in the Fourier spectrum is generated. It is characterized by specifying the spectrum when the height of the spectrum of the reciprocal frequency which is the reciprocal of the period increases and calculating the propagation velocity of the broadband ultrasonic wave in the mud from the specified spectrum and the known thickness of the mud. And the method for measuring mud.
おける泥状物の厚さを測定する泥状物測定方法におい
て、 泥状物の同一面に広帯域振動子と広帯域受信子を配置
し、 広帯域振動子で広帯域超音波を周期的に発振し、広帯域
超音波を広帯域受信子で受信し、 受信した信号からフーリエアナライザーによりフーリエ
スペクトルを求め、 広帯域振動子の発振周期を変化させ、フーリエスペクト
ルの中の発振周期の逆数の繰り返し周波数のスペクトル
の高さが増大した際のスペクトルを特定し、 特定したスペクトルと既知の伝播速度とから泥状物の厚
さを算出することを特徴とする、 泥状物測定方法。2. A mud measuring method for measuring the thickness of a mud in a mud having a known propagation velocity of broadband ultrasonic waves, wherein a broadband oscillator and a broadband receiver are arranged on the same surface of the mud. Then, the wideband oscillator periodically oscillates the wideband ultrasonic wave, the wideband ultrasonic wave is received by the wideband receiver, the Fourier spectrum is obtained from the received signal by the Fourier analyzer, and the oscillation period of the wideband oscillator is changed to Characterized by specifying the spectrum when the height of the spectrum of the repetition frequency that is the reciprocal of the oscillation period in the spectrum increases, and calculating the thickness of the mud from the specified spectrum and the known propagation velocity , Mud measurement method.
状物測定方法において、 広帯域受信子と広帯域振動子は、板状体を介して泥状物
と触することを特徴とする、 泥状物測定方法。3. The method for measuring mud matter according to claim 1, wherein the broadband receiver and the broadband oscillator are in contact with the mud matter via a plate-like body. Yes, the method for measuring mud.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8093612A JPH09257769A (en) | 1996-03-22 | 1996-03-22 | Measurement of slurry |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8093612A JPH09257769A (en) | 1996-03-22 | 1996-03-22 | Measurement of slurry |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09257769A true JPH09257769A (en) | 1997-10-03 |
Family
ID=14087161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8093612A Pending JPH09257769A (en) | 1996-03-22 | 1996-03-22 | Measurement of slurry |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09257769A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001337013A (en) * | 2000-05-29 | 2001-12-07 | Token Koei:Kk | Method and apparatus for measuring strength of soil |
JP2003177115A (en) * | 2001-12-11 | 2003-06-27 | Pacific Systems Corp | Quality control system for high-fluidity concrete |
JP2011038835A (en) * | 2009-08-07 | 2011-02-24 | Kajima Corp | Tunnel lining thickness measuring device, measuring method, and formwork |
JP2015501423A (en) * | 2011-10-18 | 2015-01-15 | シドラ コーポレイト サービシズ インコーポレイティド | Method and apparatus for providing real-time air measurements in ready-mixed concrete |
JP2020187005A (en) * | 2019-05-14 | 2020-11-19 | 株式会社東芝 | Estimation device, inspection system, estimation method, angle adjustment method, inspection method, program, and storage medium |
US11275056B2 (en) | 2011-10-18 | 2022-03-15 | Cidra Corporate Services Inc. | Method and apparatus for providing real time air measurement applications in wet concrete using dual frequency techniques |
-
1996
- 1996-03-22 JP JP8093612A patent/JPH09257769A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001337013A (en) * | 2000-05-29 | 2001-12-07 | Token Koei:Kk | Method and apparatus for measuring strength of soil |
JP2003177115A (en) * | 2001-12-11 | 2003-06-27 | Pacific Systems Corp | Quality control system for high-fluidity concrete |
JP2011038835A (en) * | 2009-08-07 | 2011-02-24 | Kajima Corp | Tunnel lining thickness measuring device, measuring method, and formwork |
JP2015501423A (en) * | 2011-10-18 | 2015-01-15 | シドラ コーポレイト サービシズ インコーポレイティド | Method and apparatus for providing real-time air measurements in ready-mixed concrete |
US10156547B2 (en) | 2011-10-18 | 2018-12-18 | Cidra Corporate Services Inc. | Method and apparatus for providing real time air measurement applications in wet concrete |
US11275056B2 (en) | 2011-10-18 | 2022-03-15 | Cidra Corporate Services Inc. | Method and apparatus for providing real time air measurement applications in wet concrete using dual frequency techniques |
JP2020187005A (en) * | 2019-05-14 | 2020-11-19 | 株式会社東芝 | Estimation device, inspection system, estimation method, angle adjustment method, inspection method, program, and storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kim et al. | Air-coupled detection of nonlinear Rayleigh surface waves in concrete—Application to microcracking detection | |
Kolluru et al. | Determining elastic properties of concrete using vibrational resonance frequencies of standard test cylinders | |
Philippidis et al. | An acousto-ultrasonic approach for the determination of water-to-cement ratio in concrete | |
US5078013A (en) | Ultrasonic measuring apparatus using a high-damping probe | |
Qin et al. | Monitoring of cement hydration using embedded piezoelectric transducers | |
JPH0525045B2 (en) | ||
Zhu et al. | Monitoring early age property of cement and concrete using piezoceramic bender elements | |
Berriman et al. | Humidity and aggregate content correction factors for air-coupled ultrasonic evaluation of concrete | |
Brigante et al. | Acoustic methods for the nondestructive testing of concrete: A review of foreign publications in the experimental field | |
Chang et al. | Engineering properties of lightweight aggregate concrete assessed by stress wave propagation methods | |
JPH09257769A (en) | Measurement of slurry | |
Popovics et al. | Ultrasonic testing to determine water-cement ratio for freshly mixed concrete | |
Banouni et al. | Ultrasound Non-Destructive Characterization of Early Hydration of Cement Pastes: The Effects of Water-Cement Ratio and Curing Temperature | |
Gabrijel et al. | Application of ultrasonic measurements for determination of setting and hardening in cement paste | |
Lai et al. | Dispersion of ultrasonic guided surface wave by honeycomb in early-aged concrete | |
Tang et al. | Research on the sensor for detection of carburized case depth based on nonlinear ultrasound | |
Ohtsu et al. | Development of non-contact SIBIE procedure for identifying ungrouted tendon duct | |
Ortega et al. | Non-destructive evaluation of the effects of exposure environment in mortars using non-linear ultrasonic measurements | |
Bardakov et al. | Forecasting the strength of concrete during its hardening by the acoustic-emission method | |
Gallo et al. | The use of surface waves to estimate in-place strength of concrete | |
Aissani et al. | Experimental Study of Concrete by Using Ultrasonic Surface Waves at Hundreds of Kilohertz Frequency Range | |
Slotwinski et al. | Ultrasonic measurement of the dynamic elastic moduli of small metal samples | |
Han et al. | Characteristics of elastic waves passing through a flowable fill at early age | |
Carino | Measurement of the Setting Time and Strength of Concrete by the Impact-Echo Method | |
Berriman et al. | NON-CONTACT ULTRASONIC INTERROGATION OF COfig3NCRETE |