JPH09257535A - Device for measuring flow of granular material to be worked such as grain - Google Patents

Device for measuring flow of granular material to be worked such as grain

Info

Publication number
JPH09257535A
JPH09257535A JP6331196A JP6331196A JPH09257535A JP H09257535 A JPH09257535 A JP H09257535A JP 6331196 A JP6331196 A JP 6331196A JP 6331196 A JP6331196 A JP 6331196A JP H09257535 A JPH09257535 A JP H09257535A
Authority
JP
Japan
Prior art keywords
grain
capacitance
flow rate
comb
capacitance type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6331196A
Other languages
Japanese (ja)
Inventor
Wataru Nakagawa
渉 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Agricultural Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Agricultural Equipment Co Ltd filed Critical Yanmar Agricultural Equipment Co Ltd
Priority to JP6331196A priority Critical patent/JPH09257535A/en
Publication of JPH09257535A publication Critical patent/JPH09257535A/en
Pending legal-status Critical Current

Links

Landscapes

  • Harvester Elements (AREA)
  • Threshing Machine Elements (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately measure the flow of grains to be worked by a grain thresher. SOLUTION: In a grain thresher 3, a flow measuring electrostatic capacity sensor 45 (46) is arranged at a grain passing position of a chaff sheave 18 and/or a grain pun 21, and on the other hand, a moisture correcting electrostatic capacity sensor 50 is stood on the surface of a grain flowing plate of a first receiver gutter 23 arranged in the downstream of the electrostatic capacity sensor 45 (46). In this case, an electrically insulated board is stood so that a wide width surface thereof is arranged along the flow direction of the passing grain, and one comb-shaped electrode unit and the other comb-shaped electrode unit are arranged in the wide width surface of the board so that the longitudinal part of the comb-shaped part is engaged with each other along the flow direction of the grain, and a difference between the electrostatic capacity between one comb-shaped electrode surface, which gets into layers of the flow of the grains, and the other comb-shaped electrode surface is computed so as to accurately measure the flow of the passing grains independently of the moisture content of the grains.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、自走自脱式コンバ
イン及び据え置き式の脱穀装置における脱穀穀粒等の粒
状被処理物の単位時間あたりの流量を測定するための装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a self-propelled self-decombining combine and a stationary threshing device for measuring a flow rate of a granular object to be treated such as threshing grains per unit time.

【0002】[0002]

【従来の技術】例えば、コンバイン等の脱穀装置におけ
る扱室にて脱穀された籾や穀粒等の粒状被処理物は、扱
室の下方に備えられた揺動選別機構と、その前方下部に
配置された唐箕フアンによる選別風とにより穀粒と藁屑
とに選別され、精粒としての穀粒を一番樋に集める一
方、枝梗付着粒や穂切れ粒等の二番還元物は二番受樋に
集め、その二番還元スロワーから二番還元筒を介して前
記扱室に還元して再処理する。
2. Description of the Related Art For example, a granular object to be threshed in a handling room in a threshing device such as a combine is a rocking / sorting mechanism provided below the handling room and a front lower part thereof. It is sorted into grain and straw waste by the sorting wind by the placed Kara Min Juan, and the grain as the fine grain is collected in the most gutter, while the second reduced products such as the branch shoot attached grain and the spike cutting grain are The waste is collected in a guard trough, and is returned from the second reduction thrower to the handling room through a second reduction cylinder for reprocessing.

【0003】この場合、単位時間あたりの脱穀量が多過
ぎるとこれにつれて二番還元物の量が多くなり、扱室内
での処理量が多過ぎて過負荷の状態が生じる。この状態
を感知して扱室への穀稈の供給量を減少させたり、揺動
選別機構におけるチャフシーブの水平に対する傾斜角度
を変更したり、コンバインの前進速度を減速させて脱穀
量を減少させたりするため、実開昭60−121741
号公報では、二番還元筒に超音波センサを設けて、当該
二番還元筒内の単位時間当たりの穀粒の流量を測定する
ことが開示されている。
In this case, if the amount of threshing per unit time is too large, the amount of the second reduced product increases accordingly, and the amount of treatment in the handling chamber becomes too large, resulting in an overload condition. Detecting this condition reduces the amount of grain culm supplied to the handling room, changes the inclination angle of the chaff sheave in the swing selection mechanism with respect to the horizontal, and reduces the forward speed of the combine to reduce the amount of threshing. In order to do so,
The publication discloses that an ultrasonic sensor is provided in the second reducing cylinder to measure the flow rate of grain in the second reducing cylinder per unit time.

【0004】他方、特開平3−8480号公報では、揺
動選別機における穀粒選別用の傾斜板に静電容量形セン
サを配置して、流落ちる穀粒の有無を判断することを提
案しているが、穀粒の流下量を計測するまでには至って
いないのであった。そこで本出願人は、先に、特願平7
−310198号等において、静電容量形センサでは、
自由電荷を持たない非導電性物(誘電体)であっても、
これを電極に接近させると誘電体(絶縁物)の分子レベ
ルで電荷が移動するという分極が発生して、結果的に
は、誘電体(絶縁物)の量に応じて電極の静電容量が増
減するという現象を利用して、電気的に絶縁物である籾
などの穀粒の流量を測定することを提案した。即ち、脱
穀装置における揺動選別機構やその下方の受け樋等の流
穀板上に静電容量形センサを配置して、当該流穀板上を
流れ落ちる穀粒の層厚さを検出することにより、単位時
間当たりの穀粒流量を正確に測定することを提案した。
On the other hand, Japanese Patent Laid-Open No. 3-8480 proposes that a capacitance type sensor is arranged on an inclined plate for grain selection in a swing sorting machine to determine the presence or absence of falling grain. However, it was not yet possible to measure the amount of grain flow. Therefore, the applicant has previously filed Japanese Patent Application No.
-310198 and the like, in the capacitance type sensor,
Even non-conductive materials (dielectrics) that have no free charge,
When this is brought close to the electrode, polarization occurs in which charges move at the molecular level of the dielectric (insulator), and as a result, the capacitance of the electrode changes depending on the amount of the dielectric (insulator). We proposed to measure the flow rate of grain such as paddy, which is an electrical insulator, by using the phenomenon of increase and decrease. That is, by arranging a capacitance type sensor on a rocking plate such as a swing selection mechanism in the threshing device or a receiving gutter below it, and detecting the layer thickness of the grain flowing down on the rock plate. , Proposed to measure the grain flow rate per unit time accurately.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、脱穀装
置では、脱穀する穀稈ひいては籾(穀粒)等が朝露や雨
で濡れる等、処理する時点で穀粒の水分の保有量は様々
である。他方、静電容量形センサでは、流量が同一でも
被検出物である穀粒等の水分保有量により、検出される
静電容量が変化するという問題があるから、静電容量形
センサにて前記測定を実行するには、その水分に関する
補正を行なわなければ、正確な穀粒流量測定ができない
という問題があった。
However, in the threshing device, the amount of water held in the grains varies at the time of processing, such as the grain cullets to be threshed, and thus the paddy (grain), get wet with morning dew or rain. On the other hand, the capacitance type sensor has a problem that the capacitance to be detected changes depending on the amount of water held in the grain or the like that is the object to be detected even if the flow rate is the same. In order to carry out the measurement, there was a problem that the grain flow rate could not be measured accurately unless the water content was corrected.

【0006】本発明は、この問題を解決すべくなされた
ものである。
The present invention has been made to solve this problem.

【0007】[0007]

【課題を解決するための手段】そのため、請求項1に記
載の発明の穀粒等の粒状被処理物流量の測定装置は、扱
室の下方に、揺動選別機構とその下方位置の一番穀粒受
け樋とを備えてなるコンバイン等の穀粒収穫機等の脱穀
装置において、前記揺動選別機構におけるチャフシーブ
またはグレーンパンのいずれか一方もしくは双方には、
その個所を通過する穀粒等の粒状被処理物の通過量によ
って変化する静電容量を計測するように構成した静電容
量形センサを配置する一方、前記一番穀粒受け樋には穀
粒の水分補正用静電容量形センサを配置し、当該水分補
正用静電容量形センサにて穀粒の通過を検出してから、
流量測定開始するようにしたものである。
Therefore, the measuring apparatus for measuring the flow rate of a granular material to be processed such as a grain of the invention according to claim 1 is provided with a swing sorting mechanism and a lowermost position below the handling chamber. In a threshing device such as a grain harvester such as a combine harvester comprising a grain receiving gutter, either or both of the chaff sheave or the grain pan in the swing selection mechanism,
While placing a capacitance type sensor configured to measure the capacitance that changes depending on the amount of passage of the granular processing object such as grain passing through that location, the grain is placed in the first grain receiving trough. After arranging the capacitance sensor for moisture correction of, and detecting the passage of the grain by the capacitance sensor for moisture correction,
The flow rate measurement is started.

【0008】また、請求項2に記載の発明は、請求項1
に記載の穀粒等の粒状被処理物流量の測定装置におい
て、前記一番穀粒受け樋には、前記水分補正用の静電容
量形センサの配置位置に向かって穀粒を誘導するための
誘導手段を備えたものである。そして、請求項3に記載
の静電容量形センサは、請求項1または請求項2に記載
の穀粒等の粒状被処理物流量の測定装置において、前記
各静電容量形センサは、粒状被処理物の流れ方向に沿う
広幅面を備えた電気絶縁性の基板と、該基板の広幅面に
沿って形成した一対の櫛歯状電極を、その各櫛歯部の先
端が相互に相手側の櫛歯部の根元側に挿し込むように構
成したものである。
The invention described in claim 2 is the same as claim 1.
In the apparatus for measuring the flow rate of a granular material to be treated such as the grain described in (1), the first grain receiving trough is for guiding the grain toward the arrangement position of the capacitance-type sensor for moisture correction. It is provided with a guiding means. And the electrostatic capacitance type sensor according to claim 3 is the measuring device for the flow rate of granular processed material such as grain according to claim 1 or 2, wherein each of the electrostatic capacitance type sensors is An electrically insulating substrate having a wide surface along the flow direction of the object to be treated and a pair of comb-teeth-shaped electrodes formed along the wide surface of the substrate are provided such that the tips of the comb-teeth parts are opposite to each other. It is configured to be inserted into the base side of the comb tooth portion.

【0009】[0009]

【発明の効果】即ち、本発明では、脱穀装置における揺
動選別機構のチャフシーブまたはグレーンパンのいずれ
か一方もしくは双方に静電容量形センサを配置する一
方、その揺動選別機構の下方に配置した一番穀粒受け樋
に水分補正用の静電容量形センサを設けることで、測定
すべき穀粒等の粒状被処理物が揺動選別機構を通過して
から一番受け樋に到達するから、当該一番受け樋側で穀
粒等の粒状被処理物の通過を検出して、その時の粒状被
処理物の水分測定することにより、一定流量に対する静
電容量の補正値を算出することができ、その後、この補
正値を元にして揺動選別機構側を通過する穀粒等の粒状
被処理物の流量による静電容量値を測定すれば、正確に
通過する穀粒等の粒状被処理物の流量を測定できること
になるのである。
That is, according to the present invention, the capacitance type sensor is arranged on one or both of the chaff sheave and the grain pan of the rocking / sorting mechanism in the threshing device, and is arranged below the rocking / sorting mechanism. By installing a capacitance-type sensor for moisture correction in the first grain receiving trough, the granular material to be measured, such as the grain, reaches the first receiving trough after passing through the swing sorting mechanism. It is possible to calculate the correction value of the capacitance with respect to a constant flow rate by detecting the passage of the granular processing object such as grain on the first receiving trough side and measuring the water content of the granular processing object at that time. After that, if the capacitance value is measured based on this correction value according to the flow rate of the granular processing object such as grains passing through the swing selection mechanism side, the granular processing of granular particles passing correctly can be performed. The flow rate of the material can be measured.

【0010】また、請求項2に記載の発明は、請求項1
に記載の穀粒等の粒状被処理物流量の測定装置におい
て、前記一番穀粒受け樋には、前記水分補正用の静電容
量形センサの配置位置に向かって穀粒を誘導するための
誘導手段を備えたものであるから、粒状被処理物の流量
の少ない脱穀開始直後において、この誘導手段にて水分
補正用の静電容量形センサの配置個所に粒状被処理物を
集めることができ、水分補正用の静電容量形センサの個
所にて一定流量に対する前記補正値の算出を迅速にでき
るという効果を奏するのである。
[0010] The invention described in claim 2 is the same as the claim 1.
In the apparatus for measuring the flow rate of a granular material to be treated such as the grain described in (1), the first grain receiving trough is for guiding the grain toward the arrangement position of the capacitance-type sensor for moisture correction. Since the guide means is provided, immediately after the start of threshing when the flow rate of the granular material to be processed is low, the granular material can be collected at the location of the capacitance type sensor for moisture correction by the guiding means. The effect of being able to quickly calculate the correction value for a constant flow rate at the location of the capacitance type sensor for water content correction is obtained.

【0011】そして、請求項3に記載の静電容量形セン
サは、請求項1または請求項2に記載の穀粒等の粒状被
処理物流量の測定装置において、前記各静電容量形セン
サは、粒状被処理物の流れ方向に沿う広幅面を備えた電
気絶縁性の基板と、該基板の広幅面に沿って形成した一
対の櫛歯状電極を、その各櫛歯部の先端が相互に相手側
の櫛歯部の根元側に挿し込むように構成したものである
から、静電容量形センサの表面を通過する粒状被処理物
の層が両電極部に跨がって配置されるときの粒状被処理
物による分極現象にて、通過する粒状被処理物の層厚さ
に比例する静電容量を計測することになり、これによっ
て、単位時間当たりの穀粒の流量測定を正確に行えると
いう効果を奏する。
According to a third aspect of the present invention, in the capacitance type sensor according to the first aspect or the second aspect of the present invention, each of the capacitance type sensors is a device for measuring the flow rate of a granular material such as a grain. An electrically insulating substrate having a wide surface along the flow direction of the granular material to be processed, and a pair of comb-tooth-shaped electrodes formed along the wide surface of the substrate, the tips of each comb-tooth portion being mutually Since it is configured to be inserted into the base side of the mating comb tooth portion, when the layer of the granular processing object passing through the surface of the capacitance type sensor is arranged across both electrode portions. By the polarization phenomenon caused by the granular object to be processed, the electrostatic capacity proportional to the layer thickness of the granular object to be passed will be measured, whereby the flow rate of the grain per unit time can be accurately measured. Has the effect.

【0012】[0012]

【発明の実施の形態】次に本発明をコンバインに適用し
た実施例について説明すると、図1は左右一対の走行ク
ローラ2を有するコンバインの走行機体1の側面図であ
り、図2は走行機体1の平面図、図3は走行機体1上の
脱穀装置3の側断面図、図4は図3のIV−IV線矢視断面
図である。
BEST MODE FOR CARRYING OUT THE INVENTION Next, an embodiment in which the present invention is applied to a combine will be described. FIG. 1 is a side view of a traveling machine body 1 of a combine having a pair of left and right traveling crawlers 2, and FIG. 3 is a side sectional view of the threshing device 3 on the traveling machine body 1, and FIG. 4 is a sectional view taken along the line IV-IV of FIG.

【0013】走行機体1の進行方向に向かって左側には
脱穀装置3を搭載し、走行機体1の前部には図示しない
油圧シリンダにより昇降動可能な刈取前処理装置4を配
置する。刈取前処理装置4の下部フレームの下部側には
バリカン式の刈取装置5を、前方には6条分の穀稈引起
装置6が配置され、穀稈引起装置6と脱穀装置3におけ
るフイードチェン7前端との間には穀稈搬送装置が配置
され、穀稈引起装置6の下部前方には分草体9が突出し
ている。
A threshing device 3 is mounted on the left side in the traveling direction of the traveling machine body 1, and a cutting pretreatment device 4 which can be moved up and down by a hydraulic cylinder (not shown) is arranged at the front part of the traveling machine body 1. A clipper-type cutting device 5 is provided on the lower side of the lower frame of the pre-cutting device 4, and a grain culm raising device 6 for six rows is arranged in the front side, and a front end of a feed chain 7 in the grain culm raising device 6 and the threshing device 3 is arranged. A grain culm transporting device is disposed between and, and a grass body 9 projects in the lower front of the grain culm raising device 6.

【0014】脱穀装置3における扱室10内の扱胴11
の回転軸線が走行機体1の進行方向に沿うように配置
し、扱室10の左端に配置されたフイードチェン7にて
根元部を挟持されて搬送される穀稈の穂先部が扱胴11
の下面側で脱穀される。扱室10の下部の処理室12に
は、排塵口13を除いてクリンプ網14が張設され、こ
のクリンプ網14を漏下した被処理物は、その下方で走
行機体1の進行方向に沿って前後揺動する揺動選別機構
15における前後対のフイードパン16,17に受けら
れ、チャフシーブ18にて揺動選別を受ける。そのと
き、その下方の唐箕フアン19及び前記前後対のフイー
ドパン16,17に送風する送塵フアン20にて被処理
物は風選別を受けつつグレンパン21及び選別網22か
ら一番受け樋23方向に落下する。なお、扱室10の側
方には処理胴29が配置され、扱胴11後部側方にて被
処理物の一部が処理胴29方向に送られてさらに脱穀処
理される。
The handling barrel 11 in the handling chamber 10 of the threshing device 3
Are arranged along the traveling direction of the traveling body 1, and the tip portion of the grain culm conveyed while being clamped at the root by the feed chain 7 arranged at the left end of the handling chamber 10 is used as the handling cylinder 11.
Is threshed on the underside of. A crimping net 14 is provided in the processing chamber 12 below the handling room 10 except for the dust outlet 13, and the processing object leaking from the crimping net 14 is moved downward in the traveling direction of the traveling machine 1. It is received by a pair of feed pans 16 and 17 in a swing sorting mechanism 15 swinging forward and backward along the same, and undergoes swing sorting by a chaff sheave 18. At that time, the object to be processed is subjected to the wind selection by the dust blower fan 20 that blows to the Karawan fan 19 and the feed pans 16 and 17 of the front and rear pairs below it, from the Glen pan 21 and the selection net 22 toward the most receiving gutter 23 direction. To fall. A processing drum 29 is arranged on the side of the handling chamber 10, and a part of the object to be processed is sent in the direction of the processing drum 29 at the rear side of the handling drum 11, and is further threshed.

【0015】揺動選別機構15の後部チャフシーブから
落下した二番処理物は、二番受け樋24にて受けられ、
そのスクリューコンベヤ24a及び二番還元コンベヤ2
5を介して篩線26上に放出されて、再度の選別を受け
る。前記揺動選別及び風選別を受けて清粒となった穀粒
は一番受け樋23のスクリューコンベヤ23aを介して
穀粒タンク27に集められ、排出オーガ28を介して機
外に搬出される。処理室12内の塵は吸引フアン30に
て機外に排出され、フイードチェン7の後端で受け継が
れた排藁は、排藁チェン31を介して長い状態で走行機
体1の後方に排出されるか、または排藁カッタ33にて
適宜短く切断した後排出される。なお、符号32は、走
行機体1の前部右側に配置した運転室である。
The second treated material dropped from the rear chaff sheave of the swing selecting mechanism 15 is received by the second receiving trough 24,
The screw conveyor 24a and the second reduction conveyor 2
It is discharged onto the sieve line 26 via 5 and undergoes another sorting. The grains that have become fine grains by the swing sorting and the wind sorting are collected in the grain tank 27 via the screw conveyor 23a of the first receiving trough 23, and carried out of the machine via the discharge auger 28. . The dust in the processing chamber 12 is discharged outside the machine by the suction fan 30, and the straw inherited at the rear end of the feed chain 7 is discharged to the rear of the traveling machine 1 in a long state via the straw chain 31. Alternatively, it is discharged after being appropriately cut by the straw cutter 33. Reference numeral 32 denotes an operator's cab arranged on the front right side of the traveling body 1.

【0016】前記処理室12内にてリンクに支持され、
図示しない揺動用のアクチュエータにて前後揺動する揺
動選別機構15におけるチャフシーブ18は、処理室1
2の一側板12aと他側板12bに沿って配設する左右
両側板35,35間に前記揺動方向と略直角方向に長手
の細幅板製のフイン36を適宜間隔にて多数枚並設配置
し、各フイン36の左右両側上端の枢支ピンを各側板3
5に回動可能に枢支する一方、各フイン36の左右両側
下端の枢支ピンをチャフ連結バー37に回動可能に連結
し、このチャフ連結バー37に連結した回動レバー機構
38をワイヤ39を介して開き度制御手段における扇型
ギヤ40に連結し、この扇型ギヤ40に開き度制御モー
タ41のピニオンギヤ42を噛み合わせる。そして、開
き度制御モータ41を正回転方向に回動すると、フイン
36の傾斜角度を水平面に対して大きくするようにチャ
フ連結バー37を後移動させ、唐箕フアン15からの選
別風を上向き斜め後方に通過させる風量が多くなり、開
き度制御モータ41を逆回転方向に回動すると、フイン
36の傾斜角度を水平面に対して小さくするようにチャ
フ連結バー37を前移動させ、唐箕フアン19からの選
別風を上向き斜め後方に通過させる風量が少なくなるよ
うに制御するのである(図5参照)。
In the processing chamber 12, supported by a link,
The chaff sheave 18 in the swing selection mechanism 15, which swings back and forth by a swing actuator (not shown), is used in the processing chamber 1.
2. A plurality of fins 36 made of narrow plates, which are long in the direction substantially perpendicular to the swinging direction, are arranged in parallel between the left and right side plates 35, 35 arranged along the one side plate 12a and the other side plate 12b. Arrange them, and attach the pivot pins at the left and right upper ends of each fin 36 to each side plate 3
5, the pivot pins at the lower left and right sides of each fin 36 are rotatably connected to the chaff connecting bar 37, and the turning lever mechanism 38 connected to the chaff connecting bar 37 is connected to the wire. The fan-shaped gear 40 in the opening degree control means is connected via 39, and the pinion gear 42 of the opening degree control motor 41 is meshed with the fan-shaped gear 40. Then, when the opening degree control motor 41 is rotated in the forward rotation direction, the chaff connecting bar 37 is moved rearward so as to increase the inclination angle of the fin 36 with respect to the horizontal plane, and the selection wind from the Karafu Juan 15 is directed upward and obliquely rearward. When the amount of air to be passed is increased and the opening degree control motor 41 is rotated in the reverse rotation direction, the chaff connecting bar 37 is moved forward so as to reduce the inclination angle of the fin 36 with respect to the horizontal plane, and the chaff connecting bar 37 moves from It is controlled so that the amount of air that passes the sorted air upward and obliquely backward is reduced (see FIG. 5).

【0017】そして、前記揺動選別機構15におけるチ
ャフシーブ18の中途部上方及び/またはその下方の傾
斜状のグレンパン21の上面側に、それらの箇所を通過
する穀粒の流量を検出するための静電容量形センサ4
5,46を配置する。他方、一番受け樋24における流
穀板上面側には、前記脱穀した穀粒の水分による静電容
量の変位を補正するための静電容量形センサ50を配置
する(図3及び図6参照)。この場合、各静電容量形セ
ンサ45,46,50は、図7〜図9に示すように、セ
ラミックス製等の電気絶縁材料からなる基板51の表面
に、一方の電極部52aと他方の電極部52bとを、平
面視で相互に櫛歯状に並ぶように平板状に配置するもの
である。この場合、両電極部52a,52bの各櫛歯部
同士が互いに相手の櫛歯部の隙間に位置するよう噛み合
わせ状に配置し、且つ隣接する電極部52a,52bの
各櫛歯部同士の間に適宜寸法の隙間があるように配置す
る。換言すると、気絶縁性の基板51の広幅面に沿って
形成した一対の櫛歯状の電極部52a,52bを、その
各櫛歯部の先端が相互に相手側の櫛歯部の根元側に挿し
込むように構成したものである。そして、粒状被処理物
の流れ方向(図7の矢印E)が、両電極部52a,52
bの各櫛歯部の長手方向にほぼ沿うようにしても良い
し、図8に示すように、櫛歯部の長手方向と直交する等
交叉するように、各静電容量形センサを配置しても良
い。なお、各静電容量形センサの各電極部の表面を、合
成樹脂製のフイルム、例えば、ポリプロピレンやポリイ
ミド樹脂などの膜体53で覆って(図9参照)、湿度等
による電極の劣化を防止することが好ましい。
Then, on the upper surface side of the inclined Glen pan 21 above and / or below the midway portion of the chaff sheave 18 in the swing selection mechanism 15, there is a static pressure for detecting the flow rate of the grain passing through those points. Capacitive sensor 4
Place 5,46. On the other hand, on the upper surface side of the shed board in the first receiving trough 24, a capacitance type sensor 50 for correcting the displacement of the capacitance due to the water content of the threshed grain is arranged (see FIGS. 3 and 6). ). In this case, as shown in FIGS. 7 to 9, each of the capacitance type sensors 45, 46, 50 has one electrode portion 52a and the other electrode on the surface of the substrate 51 made of an electrically insulating material such as ceramics. The portions 52b are arranged in a flat plate shape so as to be arranged in a comb shape in a plan view. In this case, the comb-teeth portions of the electrode portions 52a and 52b are arranged in mesh with each other so as to be positioned in the gaps between the comb-teeth portions of the other, and the comb-teeth portions of the adjacent electrode portions 52a and 52b are Arrange them so that there is a gap between them as appropriate. In other words, the pair of comb-teeth-shaped electrode portions 52a and 52b formed along the wide surface of the air-insulating substrate 51 are arranged such that the tips of the comb-teeth portions are located on the base side of the other comb-teeth portion. It is configured to be inserted. The direction of flow of the granular material to be processed (arrow E in FIG. 7) is the same as that of the electrode portions 52a, 52a.
It may be arranged to extend substantially along the longitudinal direction of each comb tooth portion of b. Alternatively, as shown in FIG. 8, each capacitance type sensor may be arranged so as to intersect at right angles with the longitudinal direction of the comb tooth portion. May be. The surface of each electrode portion of each capacitance type sensor is covered with a film 53 made of synthetic resin, for example, polypropylene or polyimide resin (see FIG. 9) to prevent deterioration of the electrode due to humidity or the like. Preferably.

【0018】これらの静電容量形センサ45,46,5
0は、流穀板(グレンパン21や受け樋板)の表面に前
記基板51または該基板51を表面に張りつけた支持板
54をその広幅面が穀粒の流れ方向に沿うように立設す
ることにより、流下する層厚さH1の穀粒の層55が一
方の電極部52aと他方の電極部52bとに跨がってい
る部分の静電容量の増大変化を計測することで、前記と
同様に単位時間当たりの穀粒流量を計測できるのであ
る。なお、チャフシーブ18の中途部上方に静電容量形
センサ45を配置する場合、揺動選別機構15の側板3
5から突出するブラケット(図示せず)に静電容量形セ
ンサ45を取付けする。
These capacitance type sensors 45, 46, 5
0 means that the substrate 51 or a support plate 54 having the substrate 51 attached to the surface thereof is erected on the surface of a shedding board (the Glen pan 21 or the receiving gutter board) so that the wide surface thereof extends along the grain flow direction. As a result, by measuring the increase change in the capacitance of the portion where the grain layer 55 having the layer thickness H1 flowing down extends over the one electrode portion 52a and the other electrode portion 52b, Moreover, the grain flow rate per unit time can be measured. When the capacitance type sensor 45 is arranged above the middle part of the chaff sheave 18, the side plate 3 of the swing selecting mechanism 15 is arranged.
A capacitance type sensor 45 is attached to a bracket (not shown) protruding from 5.

【0019】また、前記傾斜状の一番受け樋23の表面
には、水分補正用の静電容量形センサ50に向かって穀
粒等の粒状被処理物を集めて通過させるように穀粒を誘
導するための誘導手段としての、左右一対のガイド板5
6a,56bを平面視略逆「ハ」字状等に配置し、左右
一対のガイド板56a,56bの配置間隔の短い下流側
に、水分補正用の静電容量形センサ50を立設するので
ある(図6及び図10参照)。このように誘導手段とし
ての左右一対のガイド板56a,56bの下流側等に水
分補正用の静電容量形センサ50を立設すれば、図11
に示すごとく、流下する穀粒等の粒状被処理物を一箇所
に集めて、その層54の厚さH2を、水分補正用の静電
容量形センサ50の高さより大きくなるようにすること
ができるから、立設した水分補正用の静電容量形センサ
50の広幅面を完全に埋めた状態になる一定流量で流下
する穀粒等の粒状被処理物の静電容量値を迅速且つ確実
に検出することができるのである。
Further, on the surface of the inclined first receiving trough 23, grains are collected so that granular objects such as grains can be collected and passed toward the capacitance-type sensor 50 for moisture correction. A pair of left and right guide plates 5 as guiding means for guiding
6a and 56b are arranged in a substantially inverted "C" shape in a plan view, and the capacitance type sensor 50 for moisture correction is erected on the downstream side where the arrangement interval of the pair of left and right guide plates 56a and 56b is short. Yes (see FIGS. 6 and 10). Thus, if the capacitance type sensor 50 for moisture correction is erected on the downstream side of the pair of left and right guide plates 56a and 56b as the guiding means, as shown in FIG.
As shown in FIG. 7, the granular processing objects such as the falling grain can be collected at one place, and the thickness H2 of the layer 54 thereof can be made larger than the height of the capacitance-type sensor 50 for moisture correction. Therefore, the electrostatic capacitance value of the granular processing object such as grains flowing down at a constant flow rate that completely fills the wide surface of the vertically installed electrostatic capacitance type sensor 50 for moisture correction can be quickly and surely obtained. It can be detected.

【0020】図12は、一つの静電容量形センサ46を
代表してその測定回路図(ブロック図)の第1実施例を
示すものであり、粒状被処理物の流量を測定すべき静電
容量形センサ46の一方の電極52a側と、比較用(基
準用)のコンデンサセンサ57の一方の電極とに発振回
路60に接続して、交流電界を加える。この場合、比較
用のコンデンサ57は、その静電容量が温度、湿度等の
使用環境によって変化しないものであり、粒状被処理物
を通過させないことは勿論であって、いわゆる基準の静
電容量を知るためのセンサとなるものであって、通常、
所定の静電容量値のコンデンサを使用する。
FIG. 12 shows, as a representative of one capacitance type sensor 46, a first embodiment of a measuring circuit diagram (block diagram) of the capacitance type sensor 46. An alternating electric field is applied by connecting one electrode 52a side of the capacitive sensor 46 and one electrode of a comparison (reference) capacitor sensor 57 to the oscillation circuit 60. In this case, the electrostatic capacity of the comparison capacitor 57 does not change depending on the use environment such as temperature and humidity, and it goes without saying that the granular object is not passed, and the so-called reference electrostatic capacity is used. It is a sensor to know, usually
Use a capacitor with a specified capacitance value.

【0021】そして、静電容量形センサ46の他方の電
極52bからの検出信号を電気容量/電圧変換回路(C
/V変換)61aを介して、前記検出した静電容量を電
圧に変換した後、電圧比較回路62に入力する。同様
に、比較用(基準用)のコンデンサ57の他方の電極か
らの検出信号を電気容量/電圧変換回路(C/V変換)
61bを介して、前記検出した静電容量を電圧に変換し
た後、電圧比較回路62に入力し、前記基準コンデンサ
57の静電容量に対する測定用の静電容量形センサ46
の電圧値の差の出力値を求めるべく差動増幅回路63に
入力する。
Then, the detection signal from the other electrode 52b of the capacitance type sensor 46 is converted into a capacitance / voltage conversion circuit (C
/ V conversion) 61a to convert the detected capacitance into a voltage, and then input the voltage to the voltage comparison circuit 62. Similarly, a detection signal from the other electrode of the comparison (reference) capacitor 57 is converted into a capacitance / voltage conversion circuit (C / V conversion).
The detected electrostatic capacitance is converted into a voltage through 61b and then input to the voltage comparison circuit 62 to measure the electrostatic capacitance of the reference capacitor 57.
It is input to the differential amplifier circuit 63 in order to obtain the output value of the difference between the voltage values.

【0022】同様に、水分補正用の静電容量形センサ5
0の一方の電極52a側と、比較用(基準用)のコンデ
ンサセンサ58の一方の電極とに発振回路60に接続し
て、交流電界を加える。この場合のコンデンサセンサ5
8もその静電容量が温度、湿度等の使用環境によって変
化しないものである。そして、水分補正用の静電容量形
センサ50の他方の電極52bからの検出信号を電気容
量/電圧変換回路(C/V変換)64aを介して、前記
検出した静電容量を電圧に変換した後、電圧比較回路6
5に入力する。同様に、比較用(基準用)のコンデンサ
58の他方の電極からの検出信号を電気容量/電圧変換
回路(C/V変換)64bを介して、前記検出した静電
容量を電圧に変換した後、電圧比較回路65に入力し、
前記基準コンデンサ58の静電容量に対する水分補正用
の静電容量形センサ50の電圧値の差の出力値を求める
べく差動増幅回路66に入力する。そして、両差動増幅
回路63,66の出力信号をマイクロコンピュータ式の
コントローラユニット67に入力して、流下する穀粒の
水分保有量と、その流量とを演算により算出するのであ
る。
Similarly, a capacitance type sensor 5 for moisture correction is used.
An AC electric field is applied by connecting one electrode 52a of 0 and one electrode of the capacitor sensor 58 for comparison (for reference) to the oscillation circuit 60. Capacitor sensor 5 in this case
8 also has a capacitance that does not change depending on the use environment such as temperature and humidity. Then, the detection signal from the other electrode 52b of the capacitance sensor 50 for moisture correction is converted into a voltage through the capacitance / voltage conversion circuit (C / V conversion) 64a. After that, the voltage comparison circuit 6
Enter in 5. Similarly, after the detection signal from the other electrode of the comparison (reference) capacitor 58 is converted into a voltage through the electric capacitance / voltage conversion circuit (C / V conversion) 64b, , Input to the voltage comparison circuit 65,
It is input to the differential amplifier circuit 66 in order to obtain the output value of the difference in voltage value of the capacitance sensor 50 for moisture correction with respect to the capacitance of the reference capacitor 58. Then, the output signals of both the differential amplifier circuits 63 and 66 are input to the microcomputer type controller unit 67, and the water holding amount of the flowing down grain and its flow rate are calculated.

【0023】即ち、差動増幅回路66では、流量が一定
量、例えば、流量100における穀粒の水分保有量によ
る静電容量の変化値が求められるから、差動増幅回路6
6の出力自体で穀粒の水分保有量の大小関係が数値的に
演算できる。そして、他方の差動増幅回路63にて得ら
れた検出値(水分保有量は同じであるが流量が未知数の
ものに対する検出値)と、前記差動増幅回路66の検出
値との比較により、グレンパン21の箇所を通過する穀
粒の単位時間当たりの流量が測定できるのである。
In other words, the differential amplifier circuit 66 obtains a change value of the electrostatic capacity due to the water content of the grain at a constant flow rate, for example, a flow rate of 100.
From the output itself of 6, it is possible to numerically calculate the magnitude relationship of the water content of the grain. Then, by comparing the detection value obtained by the other differential amplification circuit 63 (the detection value for the one having the same water content but the unknown flow rate) with the detection value of the differential amplification circuit 66, The flow rate of grain passing through the grain pan 21 per unit time can be measured.

【0024】これにより、コントローラユニット67
は、水分保有量が大きいと判別したときには、湿材が刈
取られたものと判断して、通常より大きい風量を送るべ
く送塵フアン20及び/又は唐箕19の空気吸引口の開
口面積を比例的に大きくするように図示しないアクチュ
エータを作動させるのである。また、コントローラユニ
ット67にて前記穀粒流量が大きいと判断し、または、
電圧値が低いと穀粒流量が小さいと判断して、所定の駆
動回路68を作動させてアクチュエータ69を駆動する
のである。例えば、一番受け樋23への穀粒流量が大き
過ぎるときには、揺動選別機構5におけるフイン36の
傾斜角度を小さくして穀粒の漏下量を少なくし、反対に
流量が少な過ぎるときにはフイン36の傾斜角度を大き
くなるようにして漏下量を増大させるというように前記
フイン36の角度を増減させる開き度制御モータ41を
駆動する一方、表示メータ70にてその状態の表示をす
るのである。
As a result, the controller unit 67
When it is determined that the water content is large, it is determined that the moist material has been cut, and the opening area of the air suction port of the dust-feeding fan 20 and / or the sardines 19 is proportionally increased in order to send a larger amount of air than usual. The actuator (not shown) is actuated so as to make it larger. Further, the controller unit 67 determines that the grain flow rate is large, or
When the voltage value is low, it is determined that the grain flow rate is low, and the predetermined drive circuit 68 is operated to drive the actuator 69. For example, when the grain flow rate to the receiving trough 23 is too large, the inclination angle of the fin 36 in the swing selection mechanism 5 is reduced to reduce the grain leakage amount, and conversely, when the flow rate is too small, the fin flow rate is reduced. The open degree control motor 41 for increasing or decreasing the angle of the fins 36 is driven such that the leakage angle is increased by increasing the inclination angle of 36, while the display meter 70 displays the state. .

【0025】その他、例えば、二番還元コンベヤ25内
の被処理物の流量が大きくなれば、コンバインの走行速
度を減速して刈取り脱穀量を減少せしめたり、揺動選別
機構15におけるフイン36を立てて一番受樋側への穀
粒落下量を増大させたりし、反対に被処理物の流量が少
ない時には、刈取り脱穀量を増大するためコンバインの
走行速度を早めたり、さらには、揺動選別機構15の振
動数や振動振幅を大きくして揺動選別作用を増大せしめ
たり、唐箕フアン19の回転速度を上げるなどにより単
位時間当たりの穀粒選別能力を増大させる等の制御を実
行しても良い。
In addition, for example, if the flow rate of the object to be treated in the second reduction conveyor 25 becomes large, the traveling speed of the combine is reduced to reduce the amount of threshing, and the fin 36 of the swing selection mechanism 15 is set up. If the flow rate of the object to be treated is small, the traveling speed of the combine is increased to increase the grain threshing amount, and further the swing sorting is performed. Even if control is performed such that the vibration frequency or vibration amplitude of the mechanism 15 is increased to increase the swing selection action, or the rotation speed of the Karafu Juan 19 is increased to increase the grain selection capability per unit time. good.

【0026】なお、この実施例では、図13に示すフロ
ーチャートのように、測定開始の制御を実行する。即
ち、制御のスタートに続いて、刈取及び脱穀作業に先立
ち、静電容量形センサ46及び水分補正用の静電容量形
センサ50の各検出値を読み込んでその値(データ)を
記憶する(S1)。これは、静電容量形センサ46及び
水分補正用の静電容量形センサ50の箇所には空気しか
ない状態の静電容量形センサ46の静電容量値(第1基
準値=α1)及び水分補正用の静電容量形センサ50の
静電容量値(第2基準値=α2)を検出することにな
る。次いで、刈取脱穀作業を開始し(S2)、次に適宜
時間間隔毎に静電容量形センサ46及び水分補正用の静
電容量形センサ50の各検出値(β1、β2)を読み込
む(S3)。そして、水分補正用の静電容量形センサ5
0の検出値β2が前記第2基準値(α2)と異なるか否
かを判断する(S4)。異なっていれば(S4:yes
)、脱穀開始直後の漏下した穀粒が水分補正用の静電
容量形センサ50の箇所まで到達しているのだから、そ
の検出値β2に基づいて、穀粒の水分保有量を算出し
(S5)次いで、β1とβ2との比較により、穀粒の流
量を算出するのである(S6)。
In this embodiment, the control for starting the measurement is executed as in the flow chart shown in FIG. That is, following the start of control, prior to the cutting and threshing operations, the respective detection values of the capacitance sensor 46 and the capacitance sensor 50 for moisture correction are read and the values (data) are stored (S1). ). This is because the capacitance value of the capacitance sensor 46 (first reference value = α1) and the moisture content of the capacitance sensor 46 and the moisture correction capacitance sensor 50 where only air is present. The capacitance value (second reference value = α2) of the capacitance sensor for correction 50 is detected. Next, the reaping threshing work is started (S2), and then the detection values (β1, β2) of the capacitance sensor 46 and the moisture correction capacitance sensor 50 are read at appropriate time intervals (S3). . Then, the capacitance type sensor 5 for moisture correction
It is determined whether the detected value β2 of 0 is different from the second reference value (α2) (S4). If they are different (S4: yes
), Since the leaked grain immediately after the start of threshing has reached the location of the capacitance type sensor 50 for moisture correction, the moisture retention amount of the grain is calculated based on the detected value β2 ( S5) Next, the flow rate of the grain is calculated by comparing β1 and β2 (S6).

【0027】このように、水分補正用の静電容量形セン
サ50の検出値β2と第2基準値α2との比較により流
量測定の開始を実行するよう制御すれば、一番受け樋2
3の箇所に穀粒が到達した状態で直ちに各種の制御も開
始でき、脱穀作業の制御が迅速にできるという効果を奏
するのである。図14に示す測定回路の第2実施例で
は、粒状被処理物の流量を測定すべき静電容量形センサ
46の一方の電極52a側と、水分補正用の静電容量形
センサ50の一方の電極部52aとに発振回路60に接
続して、交流電界を加え、静電容量形センサ46の他方
の電極部52bからの検出信号を電気容量/電圧変換回
路(C/V変換)61aを介して、前記検出した静電容
量を電圧に変換した後、電圧比較回路62に入力する。
同様に、水分補正用の静電容量形センサ50の他方の電
極部52bからの検出信号を電気容量/電圧変換回路
(C/V変換)61bを介して、前記検出した静電容量
を電圧に変換した後、電圧比較回路62に入力し、一定
流量での水分補正用の静電容量形センサ50の静電容量
に対する測定用の静電容量形センサ46の電圧値の差の
出力値を求めるべく差動増幅回路63に入力する。この
場合、水分補正用の静電容量形センサ50であっても、
直接的には水分の保有量は測定することができないが、
同じ水分保有量の穀粒の流量の変動により、静電容量形
センサ46の静電容量が変動することを利用して両静電
容量形センサ46,50の検出値の差分を以て、差動増
幅回路63では、通過する箇所の穀粒の単位時間当たり
の流量を測定することができるのである。なお、測定回
路のその他の構成は前記第1実施例と同じであるので、
同じ符号を付して説明を省略する。
In this way, if control is performed so that the flow rate measurement is started by comparing the detection value β2 of the capacitance sensor 50 for moisture correction with the second reference value α2, the most receiving gutter 2
Various controls can be started immediately in the state where the grains have reached the position 3 and the threshing work can be quickly controlled. In the second embodiment of the measuring circuit shown in FIG. 14, one of the electrodes 52a of the capacitance type sensor 46 for measuring the flow rate of the granular object to be measured and one of the capacitance type sensor 50 for moisture correction are used. The oscillation circuit 60 is connected to the electrode portion 52a, an AC electric field is applied, and a detection signal from the other electrode portion 52b of the capacitance type sensor 46 is passed through the capacitance / voltage conversion circuit (C / V conversion) 61a. Then, the detected capacitance is converted into a voltage and then input to the voltage comparison circuit 62.
Similarly, the detected capacitance from the other electrode portion 52b of the capacitance type sensor 50 for moisture correction is converted into a voltage through the capacitance / voltage conversion circuit (C / V conversion) 61b. After the conversion, the voltage is input to the voltage comparison circuit 62, and the output value of the difference between the voltage values of the capacitance sensor for measurement 46 and the capacitance of the capacitance sensor for moisture correction 50 at a constant flow rate is obtained. Therefore, it is input to the differential amplifier circuit 63. In this case, even if the capacitance type sensor 50 for moisture correction is used,
The amount of water held cannot be measured directly,
Using the fact that the capacitance of the capacitance sensor 46 fluctuates due to fluctuations in the flow rate of grains with the same water content, differential amplification is performed using the difference between the detection values of both capacitance sensors 46 and 50. The circuit 63 can measure the flow rate of the grain at the passing location per unit time. Since the other construction of the measuring circuit is the same as that of the first embodiment,
The same reference numerals are given and the description is omitted.

【図面の簡単な説明】[Brief description of drawings]

【図1】コンバインの側断面図である。FIG. 1 is a side sectional view of a combine.

【図2】コンバインの平面図である。FIG. 2 is a plan view of the combine.

【図3】脱穀装置の側断面図である。FIG. 3 is a side sectional view of the threshing apparatus.

【図4】図3のIV−IV線矢視断面図である。FIG. 4 is a sectional view taken along line IV-IV in FIG. 3;

【図5】チャフシーブの開き度制御手段の概略側面図で
ある。
FIG. 5 is a schematic side view of the opening degree control means of the chaff sheave.

【図6】グレンパン及び一番受け樋部分の要部斜視図で
ある。
FIG. 6 is a perspective view of essential parts of a Glen pan and a first receiving gutter portion.

【図7】静電容量形センサの第1実施例の正面図であ
る。
FIG. 7 is a front view of the first embodiment of the capacitance type sensor.

【図8】静電容量形センサの第2実施例の正面図であ
る。
FIG. 8 is a front view of a second embodiment of the capacitance type sensor.

【図9】図8及び図9のIX−IX線断面図である。FIG. 9 is a sectional view taken along line IX-IX of FIGS. 8 and 9.

【図10】一番受け樋部分における水分補正用静電容量
形センサの配置状態を示す平面図である。
FIG. 10 is a plan view showing an arrangement state of the moisture correcting capacitance type sensor in the first receiving gutter portion.

【図11】図10のXI−XI線矢視側面図である。11 is a side view taken along the line XI-XI of FIG.

【図12】静電容量形センサによる測定回路の第1実施
例を示すブロック図である。
FIG. 12 is a block diagram showing a first embodiment of a measuring circuit using a capacitance type sensor.

【図13】第1実施例による測定開始の制御フローチャ
ートを示す。
FIG. 13 shows a control flowchart of measurement start according to the first embodiment.

【図14】静電容量形センサによる測定回路の第2実施
例を示すブロック図である。
FIG. 14 is a block diagram showing a second embodiment of a measuring circuit using a capacitance type sensor.

【符号の説明】[Explanation of symbols]

3 脱穀装置 15 揺動選別機構 18 チャフシーブ 21 グレンパン 23 一番受け樋 45,46,50 静電容量形センサ 51 基板 52a,52b 電極部 63,66 差動増幅回路 67 コントローラユニット 3 Threshing device 15 Swing selection mechanism 18 Chaf sheave 21 Glen pan 23 Ichiban receiving gutter 45, 46, 50 Capacitive sensor 51 Substrate 52a, 52b Electrode part 63, 66 Differential amplification circuit 67 Controller unit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 扱室の下方に、揺動選別機構とその下方
位置の一番穀粒受け樋とを備えてなるコンバイン等の脱
穀装置において、前記揺動選別機構におけるチャフシー
ブまたはグレーンパンのいずれか一方もしくは双方に
は、その個所を通過する穀粒等の粒状被処理物の通過量
によって変化する静電容量を計測するように構成した静
電容量形センサを配置する一方、前記一番穀粒受け樋に
は穀粒の水分補正用静電容量形センサを配置し、水分補
正用静電容量形センサにて穀粒の通過を検出してから、
流量測定開始することを特徴とする穀粒等の粒状被処理
物流量の測定装置。
1. A threshing device, such as a combine, having a swinging selection mechanism and a first grain receiving trough located below the handling chamber, wherein either a chaff sheave or a grain pan is provided in the swinging selection mechanism. On one or both sides, a capacitance type sensor configured to measure the capacitance that changes depending on the amount of passage of a granular object to be processed, such as grains passing through that location, is arranged while A capacitance type sensor for moisture correction of the grain is arranged in the grain receiving trough, and after detecting the passage of the grain by the capacitance type sensor for moisture correction,
An apparatus for measuring the flow rate of a granular material to be processed, such as a grain, characterized by starting a flow rate measurement.
【請求項2】 前記一番穀粒受け樋には、前記水分補正
用静電容量形センサの配置位置に向かって穀粒を誘導す
るための誘導手段を備えたことを特徴とする請求項1に
記載の穀粒等の粒状被処理物流量の測定装置。
2. The first grain receiving trough is provided with a guiding means for guiding the grain toward a position where the capacitance sensor for moisture correction is arranged. The apparatus for measuring the flow rate of a granular material to be processed such as the grain described in.
【請求項3】 前記各静電容量形センサは、粒状被処理
物の流れ方向に沿う広幅面を備えた電気絶縁性の基板
と、該基板の広幅面に沿って形成した一対の櫛歯状電極
を、その各櫛歯部の先端が相互に相手側の櫛歯部の根元
側に挿し込むように構成したことを特徴とする請求項1
または請求項2に記載の穀粒等の粒状被処理物流量の測
定装置。
3. Each of the capacitance type sensors includes an electrically insulating substrate having a wide surface along the flow direction of the granular object to be processed, and a pair of comb teeth formed along the wide surface of the substrate. The electrode is configured such that the tips of the comb tooth portions are inserted into the root sides of the comb tooth portions on the other side of each other.
Alternatively, the apparatus for measuring the flow rate of a granular material to be processed such as a grain according to claim 2.
JP6331196A 1996-03-19 1996-03-19 Device for measuring flow of granular material to be worked such as grain Pending JPH09257535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6331196A JPH09257535A (en) 1996-03-19 1996-03-19 Device for measuring flow of granular material to be worked such as grain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6331196A JPH09257535A (en) 1996-03-19 1996-03-19 Device for measuring flow of granular material to be worked such as grain

Publications (1)

Publication Number Publication Date
JPH09257535A true JPH09257535A (en) 1997-10-03

Family

ID=13225621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6331196A Pending JPH09257535A (en) 1996-03-19 1996-03-19 Device for measuring flow of granular material to be worked such as grain

Country Status (1)

Country Link
JP (1) JPH09257535A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100425113C (en) * 2003-12-05 2008-10-15 中国农业机械化科学研究院 Method and apparatus for monitoring grain output and flow rate of complete harvester
WO2015181143A1 (en) 2014-05-26 2015-12-03 Cnh Industrial Belgium Nv Sensor arrangement for combine harvester
KR20200020031A (en) 2018-08-16 2020-02-26 엘에스엠트론 주식회사 Combine
EP3913807A1 (en) * 2020-05-20 2021-11-24 CLAAS Selbstfahrende Erntemaschinen GmbH Combine harvester with a sensor system
US11582915B2 (en) 2018-12-19 2023-02-21 Agco International Gmbh Combine harvester and method of controlling a combine harvester

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100425113C (en) * 2003-12-05 2008-10-15 中国农业机械化科学研究院 Method and apparatus for monitoring grain output and flow rate of complete harvester
WO2015181143A1 (en) 2014-05-26 2015-12-03 Cnh Industrial Belgium Nv Sensor arrangement for combine harvester
US9832927B2 (en) 2014-05-26 2017-12-05 Cnh Industrial America Llc Sensor arrangement for combine harvester
KR20200020031A (en) 2018-08-16 2020-02-26 엘에스엠트론 주식회사 Combine
US11582915B2 (en) 2018-12-19 2023-02-21 Agco International Gmbh Combine harvester and method of controlling a combine harvester
EP3913807A1 (en) * 2020-05-20 2021-11-24 CLAAS Selbstfahrende Erntemaschinen GmbH Combine harvester with a sensor system

Similar Documents

Publication Publication Date Title
US10390484B2 (en) Combine harvester improvement
RU2406289C2 (en) Device and method of detecting vibration from mechanical shocks
US7362233B2 (en) Method and apparatus for ascertaining the quantity of a crop harvested in a combine
BR102014006336B1 (en) METHOD AND SYSTEM FOR DETECTING A STATIONARY OPERATING STATE OF A HARVEST, AND, HARVEST
EP0753720A1 (en) Mass flow metering device
US7048627B2 (en) Measuring device for measuring harvested crop throughput
US20030199291A1 (en) Apparatus and method for determining grain loss in combine harvesters
JPH09257535A (en) Device for measuring flow of granular material to be worked such as grain
JP3828837B2 (en) Aircraft position calculation method
JPH11266668A (en) Combined harvester
BR102014014799B1 (en) combine machine having a state of operation
CA1146661A (en) Grain loss indicator having a sensor member secured to a shaken with a sieve frame
JPH09257536A (en) Erroneous detection preventing device for grain flow measuring device of grain thresher
JPH09257537A (en) Grain thresher
JP3528113B2 (en) Measuring device for flow rate of granular materials such as grains
CN113766827B (en) Combine harvester
JP3497305B2 (en) Measuring device for flow rate of granular materials such as grains
CA3113324A1 (en) Sensor system for detecting elements of a crop flow
US20220046857A1 (en) Grain cleaning system and method of controlling such
JPH09159500A (en) Measuring apparatus flow rate of granular object, to be treated, such as grain, etc.
JPH09159502A (en) Measuring device for flow rate of granular treated product such as grain
JPH09159501A (en) Device for measuring flow rate of granular object such as grain to be processed
JP4340609B2 (en) Combine
US20220217911A1 (en) Threshing Apparatus
JPH09159499A (en) Measuring apparatus for flow rate of granular object, to be treated, such as grain, etc.