JPH09257427A - Method and apparatus for measurement of size and shape of object - Google Patents

Method and apparatus for measurement of size and shape of object

Info

Publication number
JPH09257427A
JPH09257427A JP6591296A JP6591296A JPH09257427A JP H09257427 A JPH09257427 A JP H09257427A JP 6591296 A JP6591296 A JP 6591296A JP 6591296 A JP6591296 A JP 6591296A JP H09257427 A JPH09257427 A JP H09257427A
Authority
JP
Japan
Prior art keywords
measured
area
measurement
size
reference object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6591296A
Other languages
Japanese (ja)
Inventor
Toshiro Matsubara
俊郎 松原
Kenji Ueda
健司 植田
Hideyuki Hamamura
秀行 濱村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6591296A priority Critical patent/JPH09257427A/en
Publication of JPH09257427A publication Critical patent/JPH09257427A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus, for the precise measurement of the size and the shape of an object, in which, when the size and the shape of the object to be measured are measured by using a plurality of sensors, their measurement is not affected even when the positional relationship between the sensors is changed and in which their measurement is not affected even when the position and the posture of the object to be measured are changed. SOLUTION: A reference object 5 which has at least two sets of mutually corresponding cross planes whose mutual positional relationship is known in such a way that the direction of an intersection line is different and whose size is known is arranged so as to be close to an object 4 to be measured. Then, the reference object 5 and the object 4 to be measured are measured simultaneously. On the basis of information on the reference object 5, measured results by a plurality of sensors are integrated so as to align their positions and directions precisely. On the basis of the positional relationship between respective faces of the object 4, to be measured, after their integration, its size is computed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は工業製品などの物体
の厚み,幅等の寸法や形状を高精度で計測する物体の寸
法形状の計測方法及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for measuring the size and shape of an object such as an industrial product with high accuracy for measuring the size and shape of the object such as thickness and width.

【0002】[0002]

【従来の技術】物体の厚みや幅等の寸法、或いは凹凸や
曲がり等の形状を計測するのに、例えばレーザ距離計の
ような距離を測るセンサーを複数個用いて所定位置から
の距離を複数箇所求め、これらを組み合わせて所望の寸
法を算出する方法が従来から良く行われているが、この
方法にはセンサー相互の位置関係を厳密に保たなければ
ならないという困難さがある。この間題を解決するため
に、本出願人は先にエリア3次元センサーを用いた方法
を提案した(特願平06−072723号)。この出願
の方法によると、物体の寸法を求めるのに複数のセンサ
ーを用いた時にセンサー相互の位置関係が変動してもそ
の影響を受けない計測が可能である。
2. Description of the Related Art In order to measure the dimensions such as thickness and width of an object, or the shapes such as irregularities and bends, a plurality of distance measuring sensors such as a laser range finder are used to measure a plurality of distances from a predetermined position. Conventionally, a method for obtaining a location and calculating a desired dimension by combining these has been conventionally performed, but this method has a difficulty in that a positional relationship between sensors must be strictly maintained. In order to solve this problem, the present applicant has previously proposed a method using an area three-dimensional sensor (Japanese Patent Application No. 06-072723). According to the method of this application, even when a plurality of sensors are used to determine the size of an object, even if the positional relationship between the sensors is changed, it is possible to perform measurement without being affected by the change.

【0003】以下、先の発明を図3、図4を用いて説明
する。図3は物体の厚みを計測する場合の装置配置の1
例である。図3において、1a,1bはエリア3次元セ
ンサーで、物体表面にパターンを投影する投影装置2
a,2b及び物体表面に投影されたパターンを投影とは
異なる方向から撮像する撮像装置3a,3bから構成さ
れており、撮像されたパターン画像の歪みを処理して計
測エリア内の物体表面の多数の点の3次元座標を計測す
る。エリア3次元センサー1a,1bは被計測物体4と
寸法既知の基準物体5(この場合は厚みdが既知)を厚
み方向に挟む形で両側から計測するように配置されてい
る。エリア3次元センサーによって計測された多数の点
の空間座標は、それぞれどの物体のどの面のものである
かが識別され、各面毎に統計的にもっとも良く当てはま
るように面の式が決定される。
The above invention will be described below with reference to FIGS. Fig. 3 shows 1 of the device arrangement for measuring the thickness of an object.
It is an example. In FIG. 3, reference numerals 1a and 1b are area three-dimensional sensors, which are projection devices 2 for projecting a pattern on the surface of an object.
a, 2b and image pickup devices 3a, 3b for picking up an image of a pattern projected on the object surface from a direction different from the projection, and processing distortion of the picked-up pattern image to obtain a large number of object surfaces in the measurement area. Measure the three-dimensional coordinates of the point. The area three-dimensional sensors 1a, 1b are arranged so as to measure from both sides of the object to be measured 4 and a reference object 5 whose dimensions are known (in this case, the thickness d is known) so as to sandwich it in the thickness direction. The spatial coordinates of a large number of points measured by the area three-dimensional sensor are respectively identified to which surface of which object, and the surface expression is determined so that each surface is statistically best fitted. .

【0004】図4(a)はエリア3次元センサー1aに
よって計測された結果で、被計測物体4のうちエリア3
次元センサー1a側の面の計測あてはめ結果4−1と寸
法既知の基準物体5のうちエリア3次元センサー1a側
の面の計測あてはめ結果5−1が、エリア3次元センサ
ー1a固有のX1 1 1 −座標系で表されている。同
様に図4(b)はエリア3次元センサー1bによって計
測された結果で、被計測物体4のうちエリア3次元セン
サー1b側の面の計測あてはめ結果4−2と寸法既知の
基準物体5のうちエリア3次元センサー1b側の面の計
測あてはめ結果5−2が、エリア3次元センサー1b固
有のX2 2 2 −座標系で表されている。ここで基準
物体5の面の計測あてはめ結果5−1と5−2は厚みd
だけ離れて平行であるという条件を用いると、各々の計
測あてはめ結果を図4(c)のように統合することがで
き、被計測物体4の面の計測あてはめ結果4−1と4−
2の関係から被計測物体4の厚みTを求めることができ
る。
FIG. 4A shows the result of measurement by the area three-dimensional sensor 1a, which shows the area 3 of the object 4 to be measured.
The measurement fitting result 4-1 of the surface on the side of the dimension sensor 1a and the measurement fitting result 5-1 of the surface of the area 3D sensor 1a on the side of the area 3D sensor 1a among the reference objects 5 of known dimensions are X 1 Y 1 peculiar to the area 3D sensor 1a. Z 1 - is represented in the coordinate system. Similarly, FIG. 4B shows the result measured by the area three-dimensional sensor 1b, which is the result of measurement fitting 4-2 of the surface of the measured object 4 on the side of the area three-dimensional sensor 1b and the reference object 5 whose dimensions are known. The measurement fitting result 5-2 of the surface on the area three-dimensional sensor 1b side is represented by the X 2 Y 2 Z 2 -coordinate system unique to the area three-dimensional sensor 1b. Here, the measurement fitting results 5-1 and 5-2 of the surface of the reference object 5 are the thickness d.
By using the condition that the distances are parallel to each other, the respective measurement fitting results can be integrated as shown in FIG. 4C, and the measurement fitting results 4-1 and 4-of the surface of the measured object 4 can be integrated.
The thickness T of the measured object 4 can be obtained from the relationship of 2.

【0005】以上説明したように先の発明では、エリア
3次元センサー1a固有のX1 11 −座標系で測っ
た計測結果とエリア3次元センサー1b固有のX2 2
2−座標系で測った計測結果を統合するのに、寸法既
知の基準物体5の厚み情報、より正確には寸法既知の基
準物体5の2面が平行であるという方向に関する情報と
その2面間の距離がdであるという位置情報を用いてお
り、従来行われていたような両座標系間の位置関係言い
替えれば両センサー相互の位置関係を全く用いていない
ので、両センサーの位置関係が変動してもその影響を受
けない正確な厚み測定を行うことができる。
As described above, in the above invention, the X 3 Y 1 Z 1 specific to the area three-dimensional sensor 1a and the measurement result measured by the coordinate system and the X 2 Y 2 specific to the area three dimensional sensor 1b.
In order to integrate the measurement results measured in the Z 2 -coordinate system, the thickness information of the reference object 5 whose dimensions are known, more accurately, the information regarding the direction in which the two surfaces of the reference object 5 whose dimensions are known are parallel, and its 2 The positional information that the distance between the surfaces is d is used, and the positional relationship between both coordinate systems as used in the past, in other words, the positional relationship between both sensors is not used at all, so the positional relationship between both sensors is not used. Even if fluctuates, it is possible to perform accurate thickness measurement without being affected by it.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、図3に
示した厚み測定法の場合、エリア3次元センサー1aの
計測結果とエリア3次元センサー1bの計測結果を統合
するのに、寸法既知の基準物体4の厚み情報を用いるた
め、厚み方向には正確に位置合わせができるものの、物
体の高さ方向や長さ方向には正確な位置合わせができな
いため、被計測物体4の姿勢によって計測誤差が発生す
るという問題があった。このことを図5を用いて詳しく
説明する。
However, in the case of the thickness measuring method shown in FIG. 3, in order to integrate the measurement result of the area three-dimensional sensor 1a and the measurement result of the area three-dimensional sensor 1b, a reference object of known size is used. Since the thickness information of No. 4 is used, accurate alignment can be performed in the thickness direction, but accurate alignment cannot be performed in the height direction and the length direction of the object. Therefore, a measurement error occurs depending on the posture of the measured object 4. There was a problem of doing. This will be described in detail with reference to FIG.

【0007】図5は物体の長さ方向から見た時の統合後
の様子を表したものである。図5(a),(b)は被計
測物体と寸法既知の基準物体が平行な場合で、いずれの
場合も厚み方向には正確に位置が合っている。図5
(a)は高さ方向の位置合わせが正確な場合,図5
(b)は高さ方向の位置合わせが狂っている場合である
が、この場合は高さ方向の位置合わせの狂いは、被計測
物体の厚み計測結果には影響を与えず、どちらも正確な
厚みTを計測することができる。
FIG. 5 shows a state after integration when viewed from the length direction of the object. 5A and 5B show the case where the object to be measured and the reference object whose dimensions are known are parallel to each other. In either case, the positions are accurately aligned in the thickness direction. FIG.
Fig. 5 (a) shows the case in which the alignment in the height direction is accurate.
(B) is a case where the height direction alignment is incorrect. In this case, the height direction alignment error does not affect the thickness measurement result of the measured object, and both are accurate. The thickness T can be measured.

【0008】次に、図5(c),(d)は被計測物体と
寸法既知の基準物体が平行でない場合、即ち被計測物体
が寸法既知の基準物体に対して傾いている場合で、図5
(c)では高さ方向の位置合わせが正確な場合、図5
(d)は高さ方向の位置合わせが狂っている場合であ
る。図からわかるように、図5(c)では正確な厚みT
を計測することができるが、図5(d)では上下方向の
ずれのために正確な厚みTを計測できず、ΔTだけの計
測誤差を発生させる。ここでΔT=ΔY・ sinθ(ΔY
は高さ方向の位置ずれ量、θは平行からのずれ角度)で
あって、位置合わせのずれが大きいほどまた平行からの
傾きが大きいほど厚み計測誤差が大きくなる。全く同様
に長さ方向の位置合わせが正確にできていない場合に
は、被計測物体と寸法既知の基準物体との長さ方向の平
行性が狂っている時の厚みの計測が不正確になる。先の
発明では、寸法既知の基準物体が厚み方向の情報しかも
っていなかったため、高さ方向及び長さ方向の位置を正
確に合わせることができず、以上説明したように被計測
物体に姿勢の変化があった時に計測が不正確になるとい
う問題があった。
Next, FIGS. 5 (c) and 5 (d) show the case where the measured object is not parallel to the reference object whose dimensions are known, that is, when the measured object is tilted with respect to the reference object whose dimensions are known. 5
In (c), if the alignment in the height direction is accurate,
(D) is a case where the alignment in the height direction is incorrect. As can be seen from the figure, in FIG.
However, in FIG. 5D, the accurate thickness T cannot be measured due to the vertical shift, and a measurement error of ΔT occurs. Where ΔT = ΔY · sin θ (ΔY
Is a position displacement amount in the height direction, and θ is a displacement angle from parallel), and the greater the displacement in alignment and the greater the inclination from parallel, the greater the thickness measurement error. Similarly, if the alignment in the length direction is not accurate, the measurement of the thickness becomes inaccurate when the parallelism in the length direction between the measured object and the reference object whose dimensions are known is wrong. . In the above invention, since the reference object whose dimensions are known has only the information in the thickness direction, it is not possible to accurately align the positions in the height direction and the length direction, and as described above, the posture of the measured object is changed. There was a problem that the measurement became inaccurate when there was a change.

【0009】寸法既知の共通物体5の高さ方向の位置及
び長さ方向の位置を、図3に示した撮像装置3a及び3
bで撮像された画像から、例えば共通物体のエッジ位置
を求める等の方法で正確に求めることができれば、高さ
方向及び長さ方向にも正確に位置を合わせて統合できる
が、投影装置2a,2bから投影される光は均一な明る
さ分布をもつ光ではなく、空間座標を計測するためにパ
ターン化された光であるため、図3のような板状の寸法
既知の基準物体5のエッジ位置を計測するのには適して
いない。そのため正確にエッジ位置を計測することがで
きず、高さ方向及び長さ方向に関してはどうしても位置
合わせが不正確になっていた。
The position in the height direction and the position in the length direction of the common object 5 whose dimensions are known are shown in the image pickup devices 3a and 3 shown in FIG.
If it is possible to accurately determine the edge position of the common object from the image captured in b, for example, the position can be accurately aligned in the height direction and the length direction, and the projection device 2a, Since the light projected from 2b is not light having a uniform brightness distribution but light patterned for measuring spatial coordinates, the edge of the reference object 5 having a plate-like dimension as shown in FIG. 3 is known. Not suitable for measuring position. Therefore, the edge position cannot be accurately measured, and the alignment is inaccurate in the height direction and the length direction.

【0010】本発明はかかる問題点を解決するためにな
されたもので、両センサーの位置関係が変動してもその
影響を受けない正確な寸法測定を行うことができるだけ
でなく、被計測物体の姿勢が変化した場合でも正確な寸
法測定を行うことができる物体の寸法の計測方法及び装
置を提供することを目的とする。
The present invention has been made in order to solve such a problem, and not only is it possible to perform accurate dimension measurement which is not affected even if the positional relationship between the two sensors fluctuates, but also to measure the object to be measured. An object of the present invention is to provide a method and apparatus for measuring the size of an object, which enables accurate size measurement even when the posture changes.

【0011】[0011]

【課題を解決するための手段】以上説明したように、被
計測物体の姿勢が変化した場合でも正確な寸法測定を行
うためには、各エリア3次元センサーの計測結果を組み
合わせる際に、正確に位置及び方向を合わせなければな
らない。このことを実現するため、本発明の寸法計測方
法及び装置では、基準物体の既知の寸法情報に基づき組
み合わせる際に、全ての方向に関して位置及び方向を正
確に組み合わせられるように、基準物体の形状が位置及
び方向に関する全情報を有するようにしている。具体的
には、基準物体はそれぞれのエリア3次元センサーの計
測エリア内に、相互の位置関係が既知である相対応する
交差平面の組を、交線の方向が異なるように少なくとも
2組有するようにしている。以下図を用いて詳しく説明
する。
As described above, in order to perform accurate dimension measurement even when the posture of the object to be measured changes, it is necessary to accurately measure when combining the measurement results of the three-dimensional area sensors. The position and direction must be adjusted. In order to realize this, in the dimension measuring method and apparatus of the present invention, when combining based on the known dimension information of the reference object, the shape of the reference object is changed so that the position and the direction can be accurately combined in all directions. It has all the information about the position and orientation. Specifically, the reference object should have at least two sets of corresponding intersecting planes whose mutual positional relations are known so that the directions of the intersecting lines are different, in the measurement area of each area three-dimensional sensor. I have to. This will be described in detail with reference to the drawings.

【0012】図6(a)において、寸法既知の基準物体
5は交差平面6,8で構成されている。交差平面6は交
線7で交わる2平面から成っており、交差平面8は交線
9で交わる2平面から成っている。また、交差面6と8
は相互の位置関係が既知であって対応する1つの組をな
している。第1のエリア3次元センサー(図示せず)は
交差面6の側を計測し、その計測結果は図6(b)に示
すように交差面6に対する計測あてはめ結果5−1a及
び5−1b及び交線5−1cが、第1のエリア3次元セ
ンサー固有のX1 1 1 −座標系で表されている。
In FIG. 6 (a), a reference object 5 of known dimensions is composed of intersecting planes 6 and 8. The intersecting plane 6 is composed of two planes intersecting at the intersecting line 7, and the intersecting plane 8 is composed of two planes intersecting at the intersecting line 9. Also, intersections 6 and 8
Have a known mutual positional relationship and form a corresponding set. The first area three-dimensional sensor (not shown) measures the side of the intersecting surface 6, and the measurement result is the measurement fitting results 5-1a and 5-1b for the intersecting surface 6 as shown in FIG. 6B. The intersection line 5-1c is represented by the X 1 Y 1 Z 1 -coordinate system unique to the first area three-dimensional sensor.

【0013】また、第2のエリア3次元センサー(図示
せず)は交差面8の側を計測し、その計測結果は図6
(c)に示すように交差面8に対する計測あてはめ結果
5−2a及び5−2b及び交線5−2cが、第2のエリ
ア3次元センサー固有のX2 2 2 −座標系で表され
ている。交差面6,8の位置関係は既知であるから計測
あてはめ結果5−1a,5−1b,5−2a,5−2b
及び交線5−1c,5−2cが既知の位置関係を満足す
る如く図6(d)に示すように、両エリア3次元センサ
ーの計測結果を統合することができる。しかしながら、
交差面の交線方向、即ち図6(d)の矢印方向に関して
は位置情報がないため正確に位置をあわせることはでき
ない。
A second area three-dimensional sensor (not shown) measures the side of the intersection 8 and the measurement result is shown in FIG.
As shown in (c), the measurement fitting results 5-2a and 5-2b and the intersection line 5-2c with respect to the intersecting surface 8 are expressed in the X 2 Y 2 Z 2 -coordinate system unique to the second area three-dimensional sensor. ing. Since the positional relationship between the intersecting surfaces 6 and 8 is known, the measurement fitting results 5-1a, 5-1b, 5-2a, 5-2b
As shown in FIG. 6D so that the intersection lines 5-1c and 5-2c satisfy the known positional relationship, the measurement results of both area three-dimensional sensors can be integrated. However,
Since there is no position information in the direction of the line of intersection, that is, the direction of the arrow in FIG. 6D, the position cannot be accurately aligned.

【0014】図7(a)はもう一つの寸法既知の基準物
体であって、交差平面10,12で構成されており、交
差平面10と12はやはり相互の位置関係が既知であっ
て対応する1つの組をなしている。11は交差平面10
の交線、13は交差平面12の交線である。交差面10
の側を第1のエリア3次元センサーで計測し、交差面1
2の側を第2のエリア3次元センサーで計測したとき、
計測結果を図7(b)のように統合できるが、同じよう
に交差面の交線方向(図7(b)の矢印方向)には正確
に位置を合わせることはできない。即ち、図6(a)に
示した基準物体と図7(a)に示した基準物体をいずれ
か単独で用いる場合には、各々のエリア3次元センサー
の計測結果を正確に位置、方向を合わせて統合すること
はできない。
FIG. 7 (a) is another reference object of known dimensions, which is composed of intersecting planes 10 and 12, and the intersecting planes 10 and 12 also correspond to each other because their mutual positional relationship is already known. It forms one group. 11 is an intersection plane 10
Is a line of intersection, and 13 is a line of intersection of the intersecting planes 12. Intersection 10
Side is measured by the first area three-dimensional sensor, and the intersection 1
When the side 2 is measured by the second area three-dimensional sensor,
The measurement results can be integrated as shown in FIG. 7B, but similarly, the positions cannot be accurately aligned in the direction of the intersecting line (the direction of the arrow in FIG. 7B). That is, when either the reference object shown in FIG. 6 (a) or the reference object shown in FIG. 7 (a) is used alone, the measurement results of the area three-dimensional sensors are accurately aligned in position and direction. Cannot be integrated.

【0015】図8は、図6(a)に示した基準物体と図
7(a)に示した基準物体の両方を用いる場合を示して
おり、この図の例では被計測物体4をはさんで上下に基
準物体5が配置されている。この場合、2組の交差面は
互いに交線方向が異なるため、両エリア3次元センサー
の計測結果を統合するのに必要な全ての情報がそろって
おり、位置,方向を全て正確に合わせて結果を統合する
ことができる。
FIG. 8 shows a case in which both the reference object shown in FIG. 6A and the reference object shown in FIG. 7A are used. In the example of this figure, the measured object 4 is sandwiched. The reference objects 5 are arranged above and below. In this case, since the intersecting directions of the two sets of intersecting directions are different from each other, all the information necessary to integrate the measurement results of both area three-dimensional sensors is available, and the results are obtained by accurately aligning all the positions and directions. Can be integrated.

【0016】このように、基準物体がそれぞれのエリア
3次元センサーの計測エリア内に、相互の位置関係が既
知である相対応する交差平面の組を、交線の方向が異な
るように少なくとも2組有するようにすれば、各エリア
3次元センサーの計測結果を組み合わせる際に必要な位
置及び方向に関する全情報を有するために、正確に位置
及び方向を合わせて計測結果を組み合わせることができ
るようになり、したがって被計測物体に姿勢の変化が生
じてもその影響を受けることなく正確な寸法計測ができ
るようになる。2組の交差面の交線の方向は同一でなけ
れば良いが、容易に分かるように直交に近いほど正確に
位置を合わせることができる。
As described above, at least two sets of corresponding intersecting planes whose positional relationships are known are provided in the measurement areas of the area three-dimensional sensors of the reference object so that the directions of the intersecting lines are different from each other. If it has, since it has all the information about the position and direction required when combining the measurement results of each area three-dimensional sensor, it becomes possible to accurately match the position and direction and combine the measurement results. Therefore, even if the posture of the object to be measured changes, the dimension can be measured accurately without being affected by the change. The directions of the lines of intersection of the two sets of intersecting planes need not be the same, but as can be easily understood, the closer they are to the right angles, the more accurately the positions can be aligned.

【0017】なお、図8は一つの例であって、基準物体
は被計測物体4の上下に2個に分かれている必要はな
く、図9(a)に示すように一体化されたものでも良
い。また形状もいろんなものが可能であり、例えば図9
(b)に示すような形でも良い。組をなす交差面の2本
の交線は平行でなければならないわけではないが、平行
にした方が製作が容易であり、さらに統合する場合の計
算も容易である。
Note that FIG. 8 is an example, and the reference object does not have to be divided into two parts above and below the object to be measured 4, and may be integrated as shown in FIG. 9 (a). good. Further, various shapes are possible, for example, as shown in FIG.
The shape shown in FIG. The two lines of intersection of the pair of intersecting surfaces do not have to be parallel, but it is easier to manufacture them if they are parallel, and it is easier to calculate when they are integrated.

【0018】[0018]

【発明の実施の形態】図1は本発明の方法または装置の
一つの実施形態である。被計測物体4に近接して下方に
寸法既知の基準物体5が配置され、2台のエリア3次元
センサー1a,1bで被計測物体4と寸法既知の基準物
体5を両側から計測する。図2(a)はエリア3次元セ
ンサー1aで計測された結果で、被計測物体4のうちエ
リア3次元センサー1a側の面の計測あてはめ結果4−
1と寸法既知の基準物体5のうちエリア3次元センサー
1a側の面の計測あてはめ結果5−1が、エリア3次元
センサー1a固有のX1 1 1 −座標系で表されてい
る。同様に図2(b)はエリア3次元センサー1bによ
って計測された結果で、被計測物体4のうちエリア3次
元センサー1b側の面の計測あてはめ結果4−2と寸法
既知の基準物体5のうちエリア3次元センサー1b側の
面の計測あてはめ結果5−2が、エリア3次元センサー
1b固有のX2 2 2 −座標系で表されている。
1 is one embodiment of the method or apparatus of the present invention. A reference object 5 having a known size is arranged below the measured object 4 and two area three-dimensional sensors 1a and 1b measure the measured object 4 and the reference object 5 having a known size from both sides. FIG. 2A shows the result measured by the area three-dimensional sensor 1a, and the result of measurement fitting of the surface of the measured object 4 on the side of the area three-dimensional sensor 1a 4-
1 and the measurement fitting result 5-1 of the surface of the reference object 5 of known dimensions on the side of the area three-dimensional sensor 1a is represented by the X 1 Y 1 Z 1 -coordinate system unique to the area three-dimensional sensor 1a. Similarly, FIG. 2B shows the result measured by the area three-dimensional sensor 1b, and the result of measurement fitting 4-2 of the surface of the measured object 4 on the side of the area three-dimensional sensor 1b and the reference object 5 whose dimensions are known. The measurement fitting result 5-2 of the surface on the area three-dimensional sensor 1b side is represented by the X 2 Y 2 Z 2 -coordinate system unique to the area three-dimensional sensor 1b.

【0019】すでに説明したように両エリア3次元セン
サーの計測結果は、寸法既知の基準物体5の計測あては
め結果5−1と5−2の関係が既知の位置関係になるよ
うに正確に統合され、その結果、被計測物体4の面の計
測あてはめ結果4−1と4−2の関係が図2(c)に示
すように関係づけられ、被計測物体4の厚みTが算出さ
れる。この値はすでに説明した理由によりエリア3次元
センサーの位置変動の影響もうけず、また被計測物体4
の位置や姿勢の変化の影響もうけない正確な値となる。
As described above, the measurement results of both area three-dimensional sensors are accurately integrated so that the relationship between the measurement fitting results 5-1 and 5-2 of the reference object 5 whose dimensions are known has a known positional relationship. As a result, the relationship between the measurement fitting results 4-1 and 4-2 of the surface of the measured object 4 is related as shown in FIG. 2C, and the thickness T of the measured object 4 is calculated. This value is not affected by the position variation of the area three-dimensional sensor for the reason already explained, and the measured object 4
It is an accurate value that will not be affected by changes in the position or posture of.

【0020】図1では厚み測定の例を示したが、本発明
は必ずしもこのような寸法計測用途に限定されるもので
はなく、曲がり測定や角度測定など広範囲の寸法形状計
測用途にも適用可能である。また、エリア3次元センサ
ーも2台に限定されるものではなく、さらに多くの台数
を用いる場合にも適用可能である。
Although FIG. 1 shows an example of thickness measurement, the present invention is not necessarily limited to such dimension measurement applications, and can be applied to a wide range of dimension and shape measurement applications such as bending measurement and angle measurement. is there. Also, the area three-dimensional sensor is not limited to two, and can be applied when a larger number is used.

【0021】[0021]

【発明の効果】以上説明したように、本発明の計測方法
及び装置によれば、寸法の計測値がセンサー相互の位置
変動の影響を受けないだけでなく、対象物の位置,姿勢
等あらゆる変動の影響を受けないため、きわめて正確な
寸法計測が可能となり、その適用範囲はきわめて広く、
その効果は多大である。
As described above, according to the measuring method and apparatus of the present invention, not only the measured value of the dimension is not affected by the positional variation between the sensors, but also the variation of the position and the posture of the target object. Since it is not affected by, it is possible to measure extremely accurate dimensions, and its application range is extremely wide.
The effect is enormous.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態を示す装置概略図。FIG. 1 is a schematic view of an apparatus showing an embodiment of the present invention.

【図2】図1により計測された結果を示す説明図。FIG. 2 is an explanatory diagram showing a result measured by FIG.

【図3】従来の寸法計測方法の装置概略図。FIG. 3 is a schematic view of an apparatus of a conventional dimension measuring method.

【図4】図3により計測された結果を示す説明図。FIG. 4 is an explanatory diagram showing a result measured by FIG.

【図5】従来の方法の問題点を説明するための説明図。FIG. 5 is an explanatory diagram for explaining problems of the conventional method.

【図6】第一の交差面の組の作用を説明する図。FIG. 6 is a view for explaining the action of the first set of intersecting surfaces.

【図7】第二の交差面の組の作用を説明する図。FIG. 7 is a view for explaining the action of the second set of intersecting surfaces.

【図8】第一と第二の交差面の組み合わせを示す図。FIG. 8 is a diagram showing a combination of first and second intersecting surfaces.

【図9】第一と第二の交差面の組み合わせの別の例を示
す図。
FIG. 9 is a diagram showing another example of a combination of first and second intersecting surfaces.

【符号の説明】[Explanation of symbols]

1a,1b エリア3次元センサー 2a,2b 投影装置 3a,3b 撮像装置 4 被計測物体 4−1,4−2 被計測物体4の面の計測あては
め結果 5 寸法既知の基準物体 5−1,5−1a,5−1b,5−1d,5−1e, 5−2,5−2a,5−2b,5−2d,5−2e寸法
既知の基準物体5の面の計測あてはめ結果 5−1c,5−1f,5−2c,5−2f 交線 6,8,10,12 交差面 7,9,11,13 交線
1a, 1b Area 3D sensor 2a, 2b Projection device 3a, 3b Imaging device 4 Object to be measured 4-1 and 4-2 Measurement result of surface of object 4 to be measured 5 Reference object with known dimensions 5-1 and 5- 1a, 5-1b, 5-1d, 5-1e, 5-2, 5-2a, 5-2b, 5-2d, 5-2e Measurement fitting result of the surface of the reference object 5 whose dimensions are known 5-1c, 5 -1f, 5-2c, 5-2f Intersection line 6,8,10,12 Intersection plane 7,9,11,13 Intersection line

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 近接して配置された被計測物体と寸法既
知の基準物体の各部の空間位置を複数のエリア3次元セ
ンサーで計測し、各エリア3次元センサーで計測された
被計測物体の空間位置を前記基準物体の既知の寸法に基
づき組み合わせることにより被計測物体の寸法を計測す
る物体の寸法の計測方法であって、相互の位置関係が既
知である相対応する交差平面の組を交線の方向が異なる
ように少なくとも2組有するようにした基準物体を、そ
れぞれのエリア3次元センサーの計測エリア内に配する
ことを特徴とする物体の寸法形状の計測方法。
1. A plurality of area three-dimensional sensors measure the spatial position of each part of an object to be measured and a reference object whose dimensions are known, and the space of the object to be measured is measured by each area three-dimensional sensor. A method for measuring a dimension of an object by combining a position on the basis of a known dimension of the reference object, wherein a pair of corresponding intersecting planes whose mutual positional relations are known intersect each other. A method for measuring the size and shape of an object, characterized in that at least two sets of reference objects having different directions are arranged in the measurement area of each area three-dimensional sensor.
【請求項2】 被計測物体と寸法既知の基準物体を近接
して配置し、これら物体の各部の空間位置を計測する複
数のエリア3次元センサーを設け、各エリア3次元セン
サーで計測された被計測物体の空間位置を前記基準物体
の既知の寸法に基づき組み合わせることにより被計測物
体の寸法を計測する物体の寸法の計測装置であって、基
準物体はそれぞれのエリア3次元センサーの計測エリア
内に、相互の位置関係が既知である相対応する交差平面
の組を、交線の方向が異なるように少なくとも2組有す
るようにしたことを特徴とする物体の寸法形状の計測装
置。
2. An object to be measured and a reference object whose dimensions are known are arranged close to each other, and a plurality of area three-dimensional sensors for measuring the spatial position of each part of these objects are provided, and the object measured by each area three-dimensional sensor is provided. An object size measuring apparatus for measuring the size of an object to be measured by combining the spatial position of a measurement object based on the known size of the reference object, wherein the reference object is within the measurement area of each area three-dimensional sensor. An apparatus for measuring the size and shape of an object, characterized in that at least two sets of corresponding intersecting planes whose positional relationships are known are provided so that the directions of the intersecting lines are different.
JP6591296A 1996-03-22 1996-03-22 Method and apparatus for measurement of size and shape of object Withdrawn JPH09257427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6591296A JPH09257427A (en) 1996-03-22 1996-03-22 Method and apparatus for measurement of size and shape of object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6591296A JPH09257427A (en) 1996-03-22 1996-03-22 Method and apparatus for measurement of size and shape of object

Publications (1)

Publication Number Publication Date
JPH09257427A true JPH09257427A (en) 1997-10-03

Family

ID=13300666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6591296A Withdrawn JPH09257427A (en) 1996-03-22 1996-03-22 Method and apparatus for measurement of size and shape of object

Country Status (1)

Country Link
JP (1) JPH09257427A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015102489A (en) * 2013-11-27 2015-06-04 株式会社ミツトヨ Precision measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015102489A (en) * 2013-11-27 2015-06-04 株式会社ミツトヨ Precision measuring device

Similar Documents

Publication Publication Date Title
KR101930796B1 (en) 3 Dimensional Coordinates Calculating Apparatus, 3 Dimensional Coordinates Calculating Method, 3 Dimensional Distance Measuring Apparatus and 3 Dimensional Distance Measuring Method Using Images
JP3728900B2 (en) Calibration method and apparatus, and calibration data generation method
US20030123707A1 (en) Imaging-based distance measurement and three-dimensional profiling system
EP2499616B1 (en) Three-dimensional measurement method
JPH09105613A (en) Non-contact type three-dimensional measuring device and measuring method
CN1536366A (en) Self-calibrating projection equation method for implementing stereo PIV method
JPH07234105A (en) Light spot position measuring method
CN110140023B (en) Marker, and attitude estimation method and position/attitude estimation method using same
JP2021146499A (en) System and method for three-dimensional calibration of vision system
JP2007147522A (en) Photogrammetry and photogrammetry program
Petz et al. Reflection grating method for 3D measurement of reflecting surfaces
JP3696336B2 (en) How to calibrate the camera
JP5098174B2 (en) 3D shape measuring device
JP2896539B2 (en) How to detect unique information such as object position and angle
JPH09257427A (en) Method and apparatus for measurement of size and shape of object
JP3048107B2 (en) Method and apparatus for measuring object dimensions
JPH09329440A (en) Coordinating method for measuring points on plural images
JPH1089957A (en) Three-dimensional measuring method for structure member
JP2000258121A (en) Master substrate for calibrating a plurality of cameras and calibration method for image recognition camera
JP2002005622A (en) Method for detecting arrangement parameter in optical shaping measuring apparatus provided with plural light- section sensors
Liu et al. Comparison study of three camera calibration methods considering the calibration board quality and 3D measurement accuracy
JP4900951B2 (en) Production line inspection system and inspection method
JPH09329425A (en) Measuring method for structural member and rule as its reference
Bui et al. The analysis of the effect of the parameters on indirect distance measurement using a digital camera
JP3138056B2 (en) 2D measuring machine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030603