JPH09256017A - Production of metallic iron - Google Patents

Production of metallic iron

Info

Publication number
JPH09256017A
JPH09256017A JP5980196A JP5980196A JPH09256017A JP H09256017 A JPH09256017 A JP H09256017A JP 5980196 A JP5980196 A JP 5980196A JP 5980196 A JP5980196 A JP 5980196A JP H09256017 A JPH09256017 A JP H09256017A
Authority
JP
Japan
Prior art keywords
iron
metallic iron
reduction
slag
iron oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5980196A
Other languages
Japanese (ja)
Other versions
JP3845893B2 (en
Inventor
Takuya Negami
卓也 根上
Kazusuke Kunii
和扶 国井
Isao Kobayashi
勲 小林
Toshihide Matsumura
俊秀 松村
Yoshimichi Takenaka
芳通 竹中
Shoken Shimizu
正賢 清水
Shinichi Inaba
晉一 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP05980196A priority Critical patent/JP3845893B2/en
Priority to ZA9702125A priority patent/ZA972125B/en
Priority to NZ332283A priority patent/NZ332283A/en
Priority to SK1253-98A priority patent/SK125398A3/en
Priority to CZ982794A priority patent/CZ279498A3/en
Priority to DE69717609T priority patent/DE69717609T2/en
Priority to BR9707996-0A priority patent/BR9707996A/en
Priority to TR1998/01833T priority patent/TR199801833T2/en
Priority to EP97907310A priority patent/EP0888462B1/en
Priority to IL12044097A priority patent/IL120440A0/en
Priority to AU19404/97A priority patent/AU715276C/en
Priority to PCT/JP1997/000806 priority patent/WO1997034018A1/en
Priority to CA2694865A priority patent/CA2694865A1/en
Priority to HU99023399902339A priority patent/HUP9902339A3/en
Priority to ES97907310T priority patent/ES2188900T3/en
Priority to AT97907310T priority patent/ATE229083T1/en
Priority to CA2248273A priority patent/CA2248273C/en
Priority to PL97328812A priority patent/PL328812A1/en
Priority to PE1997000194A priority patent/PE21298A1/en
Priority to KR10-1998-0707316A priority patent/KR100516507B1/en
Priority to ARP970100993A priority patent/AR006206A1/en
Priority to EA199800828A priority patent/EA001158B1/en
Priority to CN97194517A priority patent/CN1080315C/en
Priority to US08/818,954 priority patent/US6036744A/en
Priority to IDP970865A priority patent/ID16250A/en
Publication of JPH09256017A publication Critical patent/JPH09256017A/en
Priority to BG102721A priority patent/BG102721A/en
Priority to NO984161A priority patent/NO984161L/en
Priority to US09/478,409 priority patent/US6432533B1/en
Priority to CNB011179414A priority patent/CN1198945C/en
Priority to US09/891,653 priority patent/US6506231B2/en
Priority to US10/289,290 priority patent/US20030061909A1/en
Publication of JP3845893B2 publication Critical patent/JP3845893B2/en
Application granted granted Critical
Priority to US11/855,793 priority patent/US7938883B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method, by which a metallic iron having extremely high metallization can efficiently be obtd. as solid metallic iron or molten metallic iron in a simple treatment even from iron ore, etc., having comparatively low iron component content, as a matter of course from iron oxide having high iron component content without developing the erosion of refractory. SOLUTION: In the method for producing the metallic iron by heating and reducing an iron oxide formed material 1 containing carbonaceous reducing agent, the metallic iron outer shell 1a is produced and grown by heating and reducing, and the reduction is progressed until the iron oxide does not exist substantially in the inner part. Then, coagulating material of the produced slag Sg is formed in the inner part, or the slag Sg produced in the inner part is flowed out to the outside of the metallic iron outer shell 1a by succeeding further heating, and the slag Sg is separated to obtain the metallic iron having high metallization.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鉄鉱石等の酸化鉄
を炭材等の炭素質還元剤と共に加熱還元して金属鉄を得
る方法の改良に技術に関し、より詳しくは、鉄鉱石等の
酸化鉄を炭材などの炭素質還元剤と共に加熱還元して金
属鉄を得る際に、酸化鉄を金属鉄にまで効率よく還元す
ると共に、鉄鉱石などの酸化鉄源中に脈石成分等として
混入してくるスラグ成分をうまく溶融分離し、高純度の
金属鉄を効率よく製造することのできる方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for improving a method for obtaining metallic iron by heating and reducing iron oxide such as iron ore together with a carbonaceous reducing agent such as carbonaceous material, and more specifically, to a technique for improving iron ore and the like. When iron oxide is heated and reduced with a carbonaceous reducing agent such as carbonaceous material to obtain metallic iron, iron oxide is efficiently reduced to metallic iron, and as a gangue component etc. in the iron oxide source such as iron ore. The present invention relates to a method capable of efficiently melting and separating mixed slag components to efficiently produce high-purity metallic iron.

【0002】[0002]

【従来の技術】鉄鉱石や酸化鉄ペレット等の酸化鉄を炭
材や還元性ガスにより直接還元して還元鉄を得る直接製
鉄法としては、従来よりミドレックス法に代表されるシ
ャフト炉法が知られている。この種の直接製鉄法は、天
然ガス等から製造される還元ガスをシャフト炉下部の羽
口より吹き込み、その還元力を利用し酸化鉄を還元して
還元鉄を得る方法である。また最近では、天然ガスに代
わる還元剤として石炭等の炭材を使用する還元鉄製造プ
ロセスが注目されており、具体的には、鉄鉱石等の焼成
ペレットを石炭粉と共にロータリーキルンで加熱還元す
る、所謂SL/RN法がすでに実用化されている。
2. Description of the Related Art As a direct iron making method of directly reducing iron oxide such as iron ore and iron oxide pellets with a carbon material or a reducing gas to obtain reduced iron, a shaft furnace method represented by the Midrex method has been conventionally used. Are known. This type of direct iron-making method is a method in which a reducing gas produced from natural gas or the like is blown from the tuyere at the bottom of a shaft furnace, and the reducing power is used to reduce iron oxide to obtain reduced iron. Further, recently, a reduced iron manufacturing process using a carbonaceous material such as coal as a reducing agent instead of natural gas has been attracting attention, and specifically, a fired pellet of iron ore or the like is heated and reduced in a rotary kiln together with coal powder, The so-called SL / RN method has already been put to practical use.

【0003】また他の還元鉄製造法として米国特許第
3,443,931号公報には、炭材と粉状酸化鉄を混
合して塊状化し、ロータリーハース上で加熱還元して還
元鉄を製造するプロセスが開示されている。このプロセ
スは、粉鉱石と粉炭を混合して塊状化し、これを高温雰
囲気下で加熱還元するものである。
As another method for producing reduced iron, US Pat. No. 3,443,931 discloses a method in which carbonaceous material and powdered iron oxide are mixed and agglomerated, and reduced by heating on a rotary hearth to produce reduced iron. A process for doing so is disclosed. In this process, powdered ore and powdered coal are mixed and agglomerated, and this is heated and reduced in a high temperature atmosphere.

【0004】これらの方法で製造された還元鉄は、その
まま或はブリケット状等に成形してから電気炉へ装入
し、鉄源として用いられる。近年、鉄スクラップのリサ
イクルが活発化するにつれて、上記方法によって得られ
る還元鉄はスクラップ中に混入してくる不純物元素の希
釈材として注目されている。
The reduced iron produced by these methods is used as an iron source by charging it into an electric furnace as it is or after forming it into a briquette shape or the like. In recent years, as the recycling of iron scrap has become more active, reduced iron obtained by the above method has attracted attention as a diluent for impurity elements mixed into the scrap.

【0005】ところが従来の還元製鉄法によって得られ
る還元鉄には、原料として用いた酸化鉄(鉄鉱石など)
や炭材(石炭など)に含まれるSiO2 、Al23
CaO等のスラグ成分がそのまま混入してくるため、製
品の鉄品位(金属鉄としての純度)は低くなる。実用に
当たっては、次の精錬工程でこれらのスラグ成分は分離
除去されるが、スラグ量の増加は精錬溶湯の歩留りを低
下させるばかりでなく電気炉の操業コストにも大きな影
響を及ぼすので、鉄品位が高くスラグ成分含有量の少な
い還元鉄が求められているが、前述の如き従来の還元鉄
の製法でこうした要求に応えるには、還元鉄製造原料と
して鉄品位の高い鉄鉱石を使用しなければならず、実用
可能な製鉄原料の選択の幅を大幅に狭めることになる。
However, in the reduced iron obtained by the conventional reduced iron manufacturing method, the iron oxide (iron ore etc.) used as a raw material is used.
SiO 2, Al 2 O 3 contained in or carbonaceous material (such as coal),
Since the slag component such as CaO is mixed in as it is, the iron quality (purity as metallic iron) of the product becomes low. In practical use, these slag components are separated and removed in the next refining process, but an increase in the amount of slag not only lowers the yield of the refining molten metal, but also has a large effect on the operating cost of the electric furnace. There is a demand for reduced iron with a high content of slag, but in order to meet these demands with the conventional method for producing reduced iron as described above, iron ore with high iron quality must be used as a raw material for producing reduced iron. Not only that, the range of practical ironmaking raw materials to be selected is significantly narrowed.

【0006】更に上記の様な従来法は、還元された固体
製品を中間製品として得ることを最終の目的としてお
り、実用化に当たっては、次の工程となる精練工程へ送
るまでに搬送、貯蔵、ブリケット化あるいは冷却といっ
た工程が必要であり、この間に大きなエネルギー損失が
生じたり、ブリケット化のための余分のエネルギーや特
殊な装置が必要になるといった欠点がある。
Furthermore, the conventional method as described above has the final purpose of obtaining a reduced solid product as an intermediate product, and in practical use, it is transported, stored, and stored before being sent to the scouring process which is the next process. A process such as briquetting or cooling is required, and there are disadvantages that a large energy loss occurs during this process, and extra energy or a special device is required for briquetting.

【0007】他方、酸化鉄を直接還元して還元鉄を得る
方法としてDIOS法等の溶融還元法も知られている。
この方法は、酸化鉄を予め鉄純度で30〜50%程度に
まで予備還元しておき、その後、鉄浴中で炭素との直接
還元反応させることによって金属鉄にまで還元を行う方
法であるが、この方法は予備還元と鉄浴中での最終還元
の2工程が必須になるため作業が煩雑であるばかりでな
くで、鉄浴中に存在する溶融酸化鉄(FeO)と耐火物
が直接接触するため、耐火物の損耗が激しいという問題
も指摘される。
On the other hand, as a method of directly reducing iron oxide to obtain reduced iron, a smelting reduction method such as a DIOS method is also known.
In this method, iron oxide is preliminarily reduced to an iron purity of about 30 to 50%, and then reduced to metallic iron by direct reduction reaction with carbon in an iron bath. This method requires two steps of pre-reduction and final reduction in an iron bath, which not only complicates the operation, but also makes direct contact between the molten iron oxide (FeO) present in the iron bath and the refractory. Therefore, it is pointed out that the refractory is severely worn.

【0008】[0008]

【発明が解決しようとする課題】上記の様に、スラグ成
分含有量の少ない金属鉄を製造する方法の実現は、製品
金属鉄としての付加価値を高めるばかりでなく、電気炉
を用いた製鉄コストの低減、更には金属鉄製造における
使用原料の選択の柔軟性という観点から極めて重要にな
ってくる。
As described above, the realization of the method for producing metallic iron having a small slag component content not only enhances the added value as the metallic iron product, but also the cost of ironmaking using an electric furnace. It becomes extremely important from the viewpoint of reduction of the amount of waste and flexibility of selection of raw materials used in the production of metallic iron.

【0009】本発明はこうした状況に着目してなされた
ものであって、その目的は、鉄成分含有量の高い酸化鉄
はもとより鉄成分含有量の比較的低い鉄鉱石等からで
も、耐火物の溶損などを生じることなく鉄純度の極めて
高い金属鉄を、固形金属鉄もしくは溶融金属鉄として簡
単な処理で効率よく得ることのできる方法を提供しよう
とするものである。
The present invention has been made in view of such a situation, and its purpose is to obtain refractory materials from iron ore having a relatively low iron content as well as iron oxide having a high iron content. An object of the present invention is to provide a method by which metallic iron having an extremely high iron purity can be efficiently obtained as solid metallic iron or molten metallic iron by a simple treatment without causing melting loss or the like.

【0010】[0010]

【課題を解決するための手段】上記課題を解決すること
のできた本発明に係る金属鉄の製法とは、炭素質還元剤
が存在する酸化鉄の成形物を加熱還元して金属鉄を製造
する方法において、 加熱還元により金属鉄外皮を生成且つ成長させ、内部
には酸化鉄が実質的に存在しなくなるまで還元を進める
と共に、内部に生成スラグの凝集物を形成し、 加熱還元により金属鉄外皮を生成且つ成長させ、内部
には酸化鉄が実質的に存在しなくなるまで還元を進め、
更に加熱を続けて内部に生成するスラグを金属鉄外皮の
外側へ流出させ、 加熱還元により金属鉄外皮を生成且つ成長させ、内部
には酸化鉄が実質的に存在しなくなるまで還元を進め、
更に加熱を続けて金属鉄とスラグを溶融分離し、あるい
は 加熱還元により金属鉄外皮を生成且つ成長させ、内部
には酸化鉄が実質的に存在しなくなるまで還元を進める
と共に、内部に生成スラグの凝集物を形成させ、次いで
生成スラグを金属鉄から分離するところに特徴を有して
いる。
The method for producing metallic iron according to the present invention, which has been able to solve the above-mentioned problems, is a method for producing metallic iron by heating and reducing an iron oxide molding containing a carbonaceous reducing agent. In the method, a metallic iron crust is produced and grown by heat reduction, the reduction is promoted until iron oxide is substantially absent inside, and an aggregate of generated slag is formed inside, and a metallic iron crust is caused by heat reduction. Generate and grow, and proceed with reduction until iron oxide is substantially absent inside,
Continue heating and let the slag generated inside flow out to the outside of the metallic iron crust, generate and grow the metallic iron crust by heat reduction, and proceed with reduction until iron oxide is substantially absent inside.
Further heating is continued to melt and separate metallic iron and slag, or metallic iron skin is generated and grown by heat reduction, and reduction is promoted until iron oxide is substantially absent inside, and the generated slag is internally generated. It is characterized by forming agglomerates and then separating the produced slag from metallic iron.

【0011】上記の方法を実施するに当たっては、金
属鉄外皮の一部を溶融させることによって、内部の溶融
スラグを金属鉄外皮外へ流出させればよい。この際、あ
るいは前記の方法を実施するに当たり、金属鉄外皮の
一部もしくは全部を溶融させるには、金属外皮内に存在
する炭素質還元剤による浸炭を進めて当該金属外皮の融
点を降下させれば、容易に行なうことができる。
In carrying out the above method, a part of the metallic iron shell may be melted so that the molten slag in the inside flows out of the metallic iron shell. At this time, or in carrying out the above method, in order to melt a part or the whole of the metallic iron shell, advance the carburization by the carbonaceous reducing agent present in the metallic shell to lower the melting point of the metallic shell. You can do it easily.

【0012】また上記〜の発明を実施するに当たっ
ては、加熱還元工程の最高加熱温度を、生成スラグの融
点以上で且つ生成する金属鉄外皮の融点以下の温度に制
御することによって、金属鉄生成反応をより効率よく進
めることができ、この還元工程では、固相還元により酸
化鉄を低減し、更に液相還元によりFeOを主体とする
酸化鉄が実質的に存在しなくなるまで還元すれば、得ら
れる金属鉄の品位をより効率よく高めることが可能とな
る。
Further, in carrying out the above inventions (1) to (4), the maximum heating temperature in the heat reduction step is controlled to a temperature not lower than the melting point of the produced slag and not higher than the melting point of the produced metallic iron shell, thereby producing the metallic iron producing reaction. In this reduction step, iron oxide can be reduced by solid-phase reduction, and further, iron oxide mainly composed of FeO can be reduced by liquid-phase reduction until substantially no iron oxide is obtained. It is possible to improve the quality of metallic iron more efficiently.

【0013】尚上記本発明において、「金属鉄外皮内部
に酸化鉄が実質的に存在しなくなるまで還元を進める」
ことの好ましい定量的基準としては、加熱還元工程で、
「FeOを主体とする酸化鉄の含有率が5重量%以下、
より好ましくは2重量%以下となるまで還元を進めるこ
と」が好ましく、また別の観点からすると、本発明によ
って金属鉄から分離される生成スラグ中のFeOを主体
とする酸化鉄の含有量が、5重量%以下、より好ましく
は2重量%以下となるまで還元を進めることが望まし
い。
In the present invention, "reduction is carried out until iron oxide is substantially absent in the metallic iron shell".
As a preferable quantitative criterion of the above, in the heat reduction step,
"The content of iron oxide mainly composed of FeO is 5% by weight or less,
It is more preferable to proceed with the reduction until it becomes 2% by weight or less. ”From another viewpoint, the content of iron oxide mainly composed of FeO in the produced slag separated from metallic iron according to the present invention is It is desirable to proceed with the reduction until the amount becomes 5% by weight or less, more preferably 2% by weight or less.

【0014】上記方法によって得られる高純度の金属鉄
および生成スラグは、加熱溶融して比重差により分離
し、あるいは冷却凝固させてから破砕し磁選などによっ
て高純度の金属鉄のみを選別回収すれば、金属化率で9
5%程度以上、更には98%以上といった非常に高純度
の金属鉄を得ることが可能となる。
The high-purity metallic iron and the produced slag obtained by the above method are melted by heating and separated by a difference in specific gravity, or cooled and solidified and then crushed, and only high-purity metallic iron is selectively recovered by magnetic separation. , Metallization rate is 9
It is possible to obtain very high-purity metallic iron of about 5% or more, and further 98% or more.

【0015】[0015]

【発明の実施の形態】上記の様に本発明では、第1の特
徴点として、石炭等の炭素質還元剤と鉄鉱石等の酸化鉄
の粉粒体を粒状、ペレット状など任意の形状に形成した
成形物を加熱還元する際に、加熱還元により金属鉄外皮
を生成且つ成長させ、内部に酸化鉄が実質的に存在しな
くなるまで還元を進める点が挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION As described above, according to the present invention, as a first characteristic point, a carbonaceous reducing agent such as coal and an iron oxide powder such as iron ore can be formed into an arbitrary shape such as granules or pellets. When heat-reducing the formed product, it is possible to generate and grow a metal iron crust by heat reduction, and proceed with the reduction until iron oxide is substantially absent inside.

【0016】即ち本発明者らは、高炉を用いた製鉄法に
代表される間接製鉄法や前記SL/RN法等に代表され
る直接製鉄法に代わる新たな金属鉄の製造技術の開発を
期して種々研究を進めるうち、上記の様に、炭素質還元
剤と酸化鉄の粉粒体を粒状、ペレット状など任意の形状
に成形し、これを非酸化性雰囲気下で加熱すると、次の
様な現象が起こることをつきとめた。即ち該成形物を加
熱すると、該成形物中に含まれる炭素質還元剤によって
酸化鉄が還元されて金属鉄が生成するが、当該還元は上
記成形物の外周側から進行し、加熱還元の初期過程で生
成する金属鉄が成形物の表面で拡散接合して上記成形物
の外周側に金属鉄外皮を形成する。そしてその後、当該
外皮内で炭素質還元剤による酸化鉄の還元が効率よく進
行し、内部に残存する酸化鉄は、その後極く短時間のう
ちに実質的に酸化鉄が存在しなくなるまで速やかに還元
され、生成する金属鉄は前記外皮の内面側に逐次付着し
て成長し、一方、鉄鉱石等の酸化鉄源中に含まれる脈石
成分に由来して、あるいは炭素質還元剤に含まれる灰分
に由来して副生するスラグの大部分は、該金属鉄外皮内
に凝集(集合)し、外皮を構成する高純度の金属鉄とそ
の内部に凝集するスラグとに効率よく分離することをつ
きとめた。
[0016] That is, the inventors of the present invention have aimed for the development of a new metallic iron production technique which replaces the indirect iron production method represented by the iron production method using a blast furnace and the direct iron production method represented by the SL / RN method. As we proceeded with various researches, as described above, when the carbonaceous reducing agent and iron oxide powder particles were molded into an arbitrary shape such as granules or pellets and heated in a non-oxidizing atmosphere, I found out that such a phenomenon occurs. That is, when the molded product is heated, iron oxide is reduced by the carbonaceous reducing agent contained in the molded product to produce metallic iron, but the reduction proceeds from the outer peripheral side of the molded product, and the initial heat reduction is performed. The metallic iron generated in the process is diffusion bonded on the surface of the molded product to form a metallic iron outer cover on the outer peripheral side of the molded product. Then, after that, the reduction of iron oxide by the carbonaceous reducing agent efficiently proceeds in the outer skin, and the iron oxide remaining inside is promptly until substantially no iron oxide is present in a very short time thereafter. The metal iron that is reduced and produced successively adheres and grows on the inner surface side of the outer skin, while it is derived from the gangue component contained in the iron oxide source such as iron ore or contained in the carbonaceous reducing agent. Most of the slag that is produced as a by-product from ash is aggregated (aggregated) in the metallic iron shell, and it is possible to efficiently separate it into high-purity metallic iron that constitutes the shell and the slag that is aggregated inside. I stopped.

【0017】この還元時に生じる現象は、後述する実施
例で実際の写真を示して説明するが、次の様な経緯を辿
っていると考えられる。即ち図1は、本発明を実施する
際に生じている現象を概念的に示す断面模式図であり、
例えば図1(A)に示す様な形状の、炭素質還元剤と酸
化鉄の混合物よりなる成形物1を、非酸化性雰囲気中で
例えば1450〜1500℃程度に加熱すると、該成形
物1の外側から炭素質還元剤による酸化鉄の還元が進
み、生成する金属鉄は相互に拡散接合して金属鉄外皮1
aを形成する[図1(B)]。その後更に加熱を続ける
と、図1(C)に示す如く外皮1a内の酸化鉄は、内部
に存在する炭素質還元剤による還元作用、更には当該炭
素質還元剤と酸化鉄との反応によって生成するCOによ
る還元作用によって速やかに還元され、生成する金属鉄
Feは上記外皮1Aの内面側へ逐次付着して成長すると
共に、前記脈石成分等に由来して副生するスラグSgの
大部分は相互に付着・成長しつつ、図1(D)に示す如
く上記外皮1a内に形成される空洞内で集合していく。
The phenomenon that occurs during this reduction will be explained by showing actual photographs in the examples described later, but it is considered that the following process is followed. That is, FIG. 1 is a schematic sectional view conceptually showing a phenomenon occurring when the present invention is carried out.
For example, when a molded product 1 made of a mixture of a carbonaceous reducing agent and iron oxide having a shape as shown in FIG. 1 (A) is heated to, for example, about 1450 to 1500 ° C. in a non-oxidizing atmosphere, the molded product 1 The reduction of iron oxide by the carbonaceous reducing agent proceeds from the outside, and the produced metallic irons are diffusion-bonded to each other and the metallic iron skin 1
a is formed [FIG. 1 (B)]. When heating is further continued thereafter, as shown in FIG. 1 (C), the iron oxide in the outer skin 1a is produced by the reducing action of the carbonaceous reducing agent present inside and further by the reaction of the carbonaceous reducing agent and iron oxide. The metallic iron Fe that is rapidly reduced by the reducing action of CO that is produced and is successively deposited and grown on the inner surface side of the outer cover 1A, and most of the slag Sg that is a by-product derived from the gangue component, etc. While mutually adhering and growing, they gather in the cavity formed in the outer skin 1a as shown in FIG. 1 (D).

【0018】この間に生じる加熱還元反応は下記式に示
す通りであり、 FeOX +xC→Fe+xCO (1) FeOX +(x/2)C→Fe+(x/2)CO2 (2) Y=y1 +y2 (3) 但し、Y:還元に必要な炭素の化学等量(mol) y1 :(1)式の反応に必要な炭素量(mol) y2 :(2)式の反応に必要な炭素量(mol) 成形物を製造する際の酸化鉄に対する炭素質還元剤の配
合量が、上記(3)式で示される理論当量以上となる様
に両者の配合比率を調整することによって、加熱還元反
応を効率よく進めることが可能となる。
The heat reduction reaction occurring during this period is as shown in the following formula: FeO x + xC → Fe + xCO (1) FeO x + (x / 2) C → Fe + (x / 2) CO 2 (2) Y = y 1 + y 2 (3) However, Y: Chemical equivalent amount of carbon required for reduction (mol) y 1 : Carbon amount required for reaction of formula (1) (mol) y 2 : Required for reaction of formula (2) Amount of carbon (mol) By adjusting the blending ratio of the two so that the blending amount of the carbonaceous reducing agent with respect to the iron oxide in the production of the molded product is equal to or more than the theoretical equivalent represented by the above formula (3), It is possible to efficiently proceed the heating reduction reaction.

【0019】この様に本発明では、加熱還元の初期過程
で成形物外周側に金属鉄外皮1aを形成し、該外皮1a
で囲まれた内部で更に還元反応を進めることによって、
還元効率を飛躍的に高めることができるのである。更に
好ましくは、加熱還元の最高到達温度を、生成する金属
鉄外皮1aの溶融温度未満で且つ生成するスラグの溶融
温度以上に設定する。該最高到達温度が金属外皮1aの
溶融温度以上になると、生成する金属鉄は直ちに溶融し
て相互に融着し、前述の様な金属鉄外皮1aが形成され
なくなり、その後の還元反応が効率よく進行しなくな
る。また内部の未還元の酸化鉄が溶融して流出すると、
耐火物が損傷する可能性も高まる。上記最高到達温度が
生成スラグの溶融温度以上では、加熱還元に伴って副生
するスラグが溶融してスラグ同士の融着・集合が進み、
金属鉄同士の拡散接合も促進されて図1(C),(D)
に示す様な金属鉄外皮1aの成長とスラグSg分離が進
むからである。
As described above, in the present invention, the metallic iron outer skin 1a is formed on the outer peripheral side of the molded product in the initial stage of the heat reduction, and the outer skin 1a is formed.
By further advancing the reduction reaction inside the
The reduction efficiency can be dramatically increased. More preferably, the maximum attainable temperature of the heat reduction is set to be lower than the melting temperature of the metallic iron shell 1a to be generated and higher than the melting temperature of the slag to be generated. When the maximum temperature reaches or exceeds the melting temperature of the metal shell 1a, the generated metal irons are immediately melted and fused to each other, the metal iron skin 1a as described above is not formed, and the subsequent reduction reaction is efficient. It will not progress. Also, when unreduced iron oxide inside melts and flows out,
The risk of damaging the refractory is also increased. When the highest temperature above is higher than the melting temperature of the generated slag, the slag produced as a by-product of the heat reduction is melted and the fusion / aggregation of the slags proceeds,
Diffusion bonding between metallic irons is also promoted and the results are shown in FIGS. 1 (C) and (D).
This is because the growth of the metallic iron outer skin 1a and the separation of the slag Sg proceed as shown in FIG.

【0020】上記の様に本発明では、従来の間接製鉄法
や直接製鉄法では全く採用されたことのない「金属鉄外
皮の形成とその内部での還元反応の効率的進行」を活用
して加熱還元反応を飛躍的に高めるところに最大の特徴
を有するものであり、金属鉄外皮1aの形成は成形物中
に含まれる炭素質還元剤による還元反応によって進行
し、金属鉄外皮1aの形成後は、外皮1a内での炭素質
還元剤と生成したCOによる還元によって進行するの
で、加熱還元雰囲気を還元性雰囲気とする必要はなく、
例えば窒素ガスの如き非酸化性ガス雰囲気とすればよい
点でも、従来法とは顕著な違いを有している。
As described above, the present invention utilizes "the formation of the metallic iron shell and the efficient progress of the reduction reaction therein" which has never been adopted in the conventional indirect iron manufacturing method or direct iron manufacturing method. It has the greatest feature in dramatically increasing the heating and reduction reaction. The formation of the metallic iron skin 1a proceeds by the reduction reaction by the carbonaceous reducing agent contained in the molded product, and after the formation of the metallic iron skin 1a. Is promoted by the reduction by the carbonaceous reducing agent and the generated CO in the outer skin 1a, it is not necessary to make the heating reducing atmosphere a reducing atmosphere,
For example, a non-oxidizing gas atmosphere such as nitrogen gas may be used, which is a significant difference from the conventional method.

【0021】尚上記の加熱還元反応は、基本的に金属鉄
外皮1aが溶融しない固相還元によって進行するが、前
記の説明からも明らかである様に金属鉄外皮1a内は炭
素質還元剤およびその還元反応によって生成するCOの
存在によって高度の還元性雰囲気に保たれ、これが還元
効率の飛躍的上昇に繋がっているものと考えられるが、
内部に生成する金属鉄はこの様な高い還元性の内部雰囲
気下で浸炭を受け、次第に融点が低下してくる。そのた
め、還元反応の末期ないし後半期では原料の一部が溶融
し液相還元により酸化鉄の最終還元が進行していること
も考えられる。還元温度を低めに設定してやれば、すべ
てを固相還元によって進めることも可能であるが、還元
反応速度は高温になるほど早くなるので、より短時間で
還元反応を完結させるうえでは、反応温度を高めに設定
する方が有利であり、そうなると、前述の如く還元反応
の末期では液相還元によって還元反応が完結する様にす
る方が望ましいと言える。
The above-mentioned heat reduction reaction basically proceeds by solid-phase reduction in which the metallic iron shell 1a does not melt, but as is clear from the above description, the inside of the metallic iron shell 1a contains a carbonaceous reducing agent and It is considered that the presence of CO produced by the reduction reaction maintains a highly reducing atmosphere, which leads to a dramatic increase in reduction efficiency.
The metallic iron generated inside is carburized in such a highly reducing internal atmosphere, and the melting point gradually decreases. Therefore, it is conceivable that a part of the raw material is melted in the final stage or the latter half of the reduction reaction and the final reduction of iron oxide is progressed by the liquid phase reduction. If the reduction temperature is set lower, it is possible to proceed with everything by solid-state reduction, but the reduction reaction rate increases as the temperature increases, so in order to complete the reduction reaction in a shorter time, increase the reaction temperature. It is more advantageous to set to, and if so, it can be said that it is desirable to complete the reduction reaction by liquid phase reduction at the end of the reduction reaction as described above.

【0022】尚、上記還元反応が終了したかどうかの簡
便な確認法としては、加熱還元雰囲気ガス中のCOまた
はCO2 濃度によって確認する方法が例示される。即ち
加熱還元工程では、前述の如く炭素質還元剤自体による
還元反応および該還元剤と酸化鉄との反応によって生成
するCOガスによる還元反応が進行し、酸化鉄の全てが
還元された後は、COおよびCO2 は生成しなくなるの
で、還元反応炉内の生成ガスを逐次抜き出し、COおよ
びCO2 ガスが生成しなくなった時点で還元反応が完了
したことを知ることができるのである。
As a simple confirmation method for confirming whether or not the reduction reaction is completed, a method for confirming the CO or CO 2 concentration in the heating reducing atmosphere gas is exemplified. That is, in the heating reduction step, the reduction reaction by the carbonaceous reducing agent itself and the reduction reaction by the CO gas generated by the reaction between the reducing agent and iron oxide proceed as described above, and after all the iron oxide is reduced, Since CO and CO 2 are no longer produced, it is possible to know that the reduction reaction has been completed when the produced gas in the reduction reaction furnace is sequentially withdrawn and CO and CO 2 gas are no longer produced.

【0023】但し、実用化に当たってはCOやCO2
スが完全に放出されなくなるまで反応を行なはなければ
ならない訳ではなく、本発明者らが確認したところによ
ると、反応炉の空間容積等にもよるが、炉内ガス中のC
OおよびCO2 ガス濃度が2体積%程度以下にまで減少
した時点で、酸化鉄の95重量%以上が還元され、同ガ
ス濃度が1体積%程度以下にまで減少した時点では、酸
化鉄の98重量%以上が還元されていることを確認して
いる。
However, in practical use, it is not necessary to carry out the reaction until CO or CO 2 gas is completely released, and the inventors of the present invention have confirmed that the space volume of the reaction furnace, etc. C in the gas in the furnace, depending on
When the O and CO 2 gas concentrations were reduced to about 2% by volume or less, 95% by weight or more of the iron oxide was reduced, and when the concentration of the gas was reduced to about 1% by volume or less, 98% of the iron oxide was reduced. It is confirmed that more than weight% is reduced.

【0024】上記図1(D)に示した状態では、成形物
中のFeOを主体とする酸化鉄は実質的に全てが還元さ
れて金属鉄に変化し(通常は、酸化鉄含有率で5重量%
以下、実験で確認したところでは2重量%以下、あるい
は1重量%以下にまで還元されている)、内部に凝集し
た溶融スラグSg内に一部溶け込んだFeOを主体とす
る酸化鉄もその殆んどが還元されている(通常は、スラ
グ中のFeOを主体とする酸化鉄の含有率で5重量%以
下、実験で確認したところでは2重量%以下、あるいは
1重量%以下)。従って、この状態で冷却して取り出
し、破砕機等によって金属鉄外皮1aを破砕し、磁選な
どによって金属鉄のみを選別して取り出せば、凝集した
スラグ成分の全てが除去され、高純度の金属鉄を効率よ
く得ることができる。また、その後同温度に保って更に
加熱を続け、あるいは温度を高めて更に加熱を続け、以
下に示す様に金属鉄外皮1aの一部もしくは全部を溶融
させて生成スラグと金属鉄を分離する方法を採用するこ
とも好ましい。
In the state shown in FIG. 1 (D), substantially all of the iron oxide mainly composed of FeO in the molded product is reduced to metallic iron (usually, the iron oxide content is 5%). weight%
In the following, it was confirmed by experiment that the iron oxide was reduced to 2% by weight or less, or 1% by weight or less), and most of the iron oxide was FeO mainly dissolved in the molten slag Sg aggregated inside. The throat is reduced (usually, the content of iron oxide mainly composed of FeO in the slag is 5% by weight or less, 2% by weight or less, or 1% by weight or less as confirmed by experiments). Therefore, by cooling and taking out in this state, crushing the metallic iron outer shell 1a with a crusher, etc., and selecting and taking out only metallic iron by magnetic separation, etc., all of the aggregated slag components are removed, and high-purity metallic iron is obtained. Can be obtained efficiently. Further, a method of separating the generated slag from the metallic iron by melting a part or all of the metallic iron outer shell 1a as shown below by further maintaining the same temperature and continuing heating, or further raising the temperature and further continuing heating. It is also preferable to adopt.

【0025】即ち、前記図1(D)の状態から、必要に
より温度を若干高めて更に加熱を続けると、例えば図1
(E)に示す如く金属鉄外皮1aの一部が溶融し、内部
の生成スラグSgが外皮1a外へ流出するので、その後
の分離を一層容易にすることができる。あるいはその後
更に加熱を続けると、例えば図1(F)に示す如く金属
鉄外皮の全てが溶融して凝集し、先に溶融して凝集した
スラグSgと分離する。従って、この様な状態としてか
ら冷却凝固させて取り出し、破砕機などにかけると、脆
弱なスラグのみが破砕され金属鉄は塊として残るので、
これを適度の篩目のスクリーンに通し或は磁選すると、
高純度の金属鉄を簡単に選別することができる。金属鉄
と生成スラグの他の分離法としては、前述の如く加熱溶
融した金属鉄とスラグを溶融状態のままで比重差によっ
て分離することが勿論可能である。
That is, if the temperature is raised slightly from the state shown in FIG. 1D and the heating is continued, for example, as shown in FIG.
As shown in (E), a part of the metallic iron outer skin 1a is melted and the generated slag Sg inside flows out of the outer skin 1a, so that the subsequent separation can be further facilitated. Alternatively, if the heating is further continued thereafter, for example, as shown in FIG. 1 (F), the entire metallic iron shell is melted and aggregated, and separated from the slag Sg that was previously melted and aggregated. Therefore, if it is cooled and solidified in such a state and then taken out and put on a crusher etc., only the fragile slag is crushed and the metallic iron remains as a lump,
If this is passed through a screen of moderate sieve or magnetically selected,
High-purity metallic iron can be easily selected. As another method of separating the metallic iron and the generated slag, it is of course possible to separate the metallic iron and the slag that have been heated and melted in the molten state by the difference in specific gravity as described above.

【0026】上記において金属鉄外皮の加熱溶融は、還
元反応の終了後更に加熱温度を高めて加熱することによ
って行なうこともできるが、金属鉄外皮内での還元末期
には、前述の如く内部の強い還元性雰囲気により還元鉄
が浸炭を受けてその融点はかなり降下してくるので、還
元温度でそのまま加熱を続けるだけでも、浸炭の進行に
伴う融点降下によって金属鉄外皮を溶融させることも可
能である。
In the above, the heating and melting of the metallic iron shell can be performed by further raising the heating temperature after completion of the reduction reaction, but at the final stage of reduction within the metallic iron shell, as described above, Since the reduced iron undergoes carburization due to the strong reducing atmosphere and its melting point drops considerably, it is possible to melt the metallic iron shell by the melting point drop as the carburization progresses, just by continuing heating at the reducing temperature. is there.

【0027】上記本発明を実施する際に使用される炭素
質還元剤としては、採掘後、粉砕・篩い分け等の処理を
加えただけの石炭粉、乾留等の熱処理に付した例えばコ
ークスを粉砕したもの、石油コークス等、その種類の如
何は一切問わず、例えば炭素質を含む廃棄物として回収
される高炉ダスト等であっても勿論構わない。ただし本
発明で使用する炭素質還元剤は、加熱還元反応を効率よ
く進行させるため炭素含有量が70重量%以上、より好
ましくは80重量%以上のものを選択し、且つ比表面積
を高めるため粒径が2mm以下、望ましくは1mm以下
の粉状のものを使用することが望ましい。また鉄鉱石等
の酸化鉄についても、同様に比表面積を大きくして還元
反応効率を高めるため、粒径が2mm以下、望ましくは
1mm以下の粉状のものを使用するのがよい。
As the carbonaceous reducing agent used when carrying out the present invention, coal powder that has just been subjected to treatments such as crushing and sieving after mining, and coke that has been subjected to heat treatment such as carbonization is crushed. It does not matter what kind of material is used, such as petroleum coke and petroleum coke, and of course, for example, blast furnace dust or the like recovered as waste containing carbonaceous matter. However, the carbonaceous reducing agent used in the present invention is selected to have a carbon content of 70% by weight or more, more preferably 80% by weight or more, in order to efficiently proceed the heat reduction reaction, and to increase the specific surface area, It is desirable to use a powdery material having a diameter of 2 mm or less, preferably 1 mm or less. Further, iron oxide such as iron ore is also preferably used in the form of powder having a particle size of 2 mm or less, preferably 1 mm or less in order to similarly increase the specific surface area and enhance the reduction reaction efficiency.

【0028】本発明では、これらの炭素質還元剤と酸化
鉄を均一に混合し、必要により適当なバインダーを併用
して塊状、粒状、ブリケット状、ペレット状、棒状など
任意の形状に成形して前述の加熱還元に供されるが、こ
のとき配合される炭素質還元剤の量は、併用される酸化
鉄中の酸素量に応じて、前記式(1)〜(3)で示した
様に還元反応に必要な化学量論量以上、好ましくは金属
鉄外皮の融点降下に必要な浸炭量も加味してやや過剰量
配合するのが良い。
In the present invention, these carbonaceous reducing agents and iron oxide are uniformly mixed and, if necessary, a suitable binder is used in combination to form an arbitrary shape such as a lump, a granule, a briquette, a pellet or a rod. It is subjected to the above-mentioned heat reduction, and the amount of the carbonaceous reducing agent blended at this time is as shown in the above formulas (1) to (3) depending on the amount of oxygen in the iron oxide used in combination. It is preferable to add a stoichiometric amount or more necessary for the reduction reaction, preferably a slightly excessive amount in consideration of the carburizing amount necessary for lowering the melting point of the metallic iron shell.

【0029】また、加熱還元時の最高到達温度を生成ス
ラグの融点以上で且つ金属鉄外皮の融点以下にすること
が望ましいことは先に述べた通りであるが、生成スラグ
の温度は使用する鉄鉱石等の酸化鉄源中に含まれる脈石
成分や酸化鉄の混入等によって変わり、また還元鉄外皮
の融点も浸炭量によってかなり変わってくるので、上記
最高到達温度を絶対値として規定することは必ずしも適
当とは言えない。しかしながら、標準的な好適還元温度
としては1400〜1540℃、より好ましくは143
0〜1500℃の範囲が推奨され、この様な温度条件を
採用することによって、金属化率で少なくとも95重量
%以上、通常は98重量%以上、更には99重量%以上
といった極めて高純度の金属鉄を得ることが可能とな
る。
As described above, it is desirable to set the maximum temperature at the time of heat reduction to be not less than the melting point of the produced slag and not more than the melting point of the metallic iron shell, but the temperature of the produced slag is It changes depending on the mixing of gangue components and iron oxide contained in iron oxide sources such as stones, and the melting point of the reduced iron crust also changes considerably depending on the carburizing amount. Not necessarily appropriate. However, a standard suitable reduction temperature is 1400 to 1540 ° C, more preferably 143
The range of 0 to 1500 ° C. is recommended. By adopting such temperature conditions, the metallization rate is at least 95% by weight or more, usually 98% by weight or more, and further 99% by weight or more, which is an extremely high purity metal. It becomes possible to obtain iron.

【0030】また、副生するスラグについても、前述の
如くその中に含まれるFeOを主体とする酸化鉄の含有
率で5重量%以下、通常は2重量%以下、加熱還元条件
をより適正に制御すれば1重量%以下にまで低減するこ
とができ、これは処理炉の耐火壁の溶損防止に極めて有
利となる。即ち前述の様な従来の還元製鉄法では、鉄鉱
石等の酸化鉄を炭材によって加熱還元し、あるいは還元
により生成した金属鉄を生成スラグと分離するに際に、
スラグ中にかなり多量のFeOを主体とする酸化鉄が未
還元状態で混在しており、これが処理炉の耐火物を溶損
するといった問題を引き起こすが、本発明では上記の様
にスラグ中のFeOを主体とする酸化鉄についてもその
殆んど全てが還元され、スラグ中に酸化鉄は殆んど存在
せず、残っているとしてもその量は極く少量であるの
で、還元工程はもとよりその後のスラグ分離工程でも処
理炉耐火物の溶損といった問題を生じることもなくな
る。
As for the slag produced as a by-product, as described above, the content of iron oxide mainly composed of FeO is 5% by weight or less, usually 2% by weight or less. If it is controlled, it can be reduced to 1% by weight or less, which is extremely advantageous for preventing melting damage of the refractory wall of the processing furnace. That is, in the conventional reduction iron making method as described above, when iron oxide such as iron ore is heated and reduced by the carbonaceous material, or when the metallic iron produced by the reduction is separated from the produced slag,
Iron oxide mainly composed of FeO is mixed in a non-reduced state in the slag, which causes a problem of melting and destroying the refractory material of the processing furnace. In the present invention, however, FeO in the slag is removed as described above. Almost all of the iron oxide, which is the main component, is reduced, and there is almost no iron oxide in the slag, and even if it remains, the amount is very small, so the reduction process and subsequent Even in the slag separation step, problems such as melting damage of the refractory of the processing furnace will not occur.

【0031】かくして得られる金属鉄は、上記の様に鉄
純度の高いものであり、スラグ成分も含まれていないの
で、製鋼時の希釈材等として使用する限りそのままで支
障なく用いることができるが、該金属鉄の中には不純物
元素として相当量のS,Pなどが含まれているので、こ
れらの不純物が障害となる場合は、必要に応じて精錬処
理を行ってこれらの不純物元素の低減を図り、あるいは
炭素量の調整を行うことも勿論可能である。
The metallic iron thus obtained has a high iron purity as described above and contains no slag component, so that it can be used as it is without any problem as long as it is used as a diluent or the like during steelmaking. Since the metallic iron contains a considerable amount of S, P, etc. as impurity elements, if these impurities interfere, refining treatment is performed as necessary to reduce these impurity elements. Of course, it is also possible to adjust the amount of carbon.

【0032】尚、本発明を実施する際に、成長した金属
鉄外皮を溶融させないで溶融スラグを凝集させる方法を
採用し、その後も金属鉄を溶融させることなくスラグを
分離除去する方法を採用すれば、得られる金属鉄中のS
やP量も可及的に少なく抑えることができるので好まし
い。即ち還元後にスラグと共に金属鉄を溶融させると、
溶融スラグ中に取り込まれたSやPの一部が溶融金属鉄
中に溶け込む復硫・復燐に似た現象を起こす可能性があ
るが、還元工程およびその後の工程で金属鉄を固形状態
に保ち、生成スラグのみを溶融させて分離する方法を採
用すると、石炭分などの炭素質還元剤中に混入している
SやPは溶融スラグ中に溶け込んで生成スラグと共に分
離除去され、金属鉄への混入が可及的に抑えられるから
である。
In practicing the present invention, a method of aggregating the molten slag without melting the grown metal iron shell may be adopted, and a method of separating and removing the slag without melting the metal iron may be adopted thereafter. For example, S in the obtained metallic iron
It is preferable because the amount of P and P can be suppressed as low as possible. That is, when the metallic iron is melted together with the slag after reduction,
There is a possibility that a part of S and P taken into the molten slag will dissolve into the molten metallic iron and cause a phenomenon similar to re-sulfurization / re-phosphorus, but the metallic iron will be solidified in the reduction step and the subsequent steps. If a method is adopted in which only the produced slag is melted and separated by melting, the S and P mixed in the carbonaceous reducing agent such as coal are dissolved in the molten slag and separated and removed together with the produced slag to form metallic iron. The reason for this is that the contamination of is suppressed as much as possible.

【0033】[0033]

【実施例】次に、具体的な実施例を示して本発明をより
詳細に説明するが、本発明はもとより下記実施例によっ
て制限を受けるものではなく、前後記の趣旨に適合し得
る範囲で適当に変更を加えて実施することも勿論可能で
あり、それらはいずれも本発明の技術的範囲に含まれ
る。
EXAMPLES Next, the present invention will be described in more detail with reference to specific examples, but the present invention is not limited by the following examples, and is within a range applicable to the spirit of the preceding and following. It is needless to say that appropriate modifications can be implemented, and all of them are included in the technical scope of the present invention.

【0034】実施例 表1に示した組成の炭素質還元剤(石炭粉)と酸化鉄
(鉄鉱石)およびバインダーとしてベントナイト(いず
れも平均粒子径45μm以下のものを使用)を、表1に
示す比率で混合してから略球形のペレット状に予備成形
し、これを非酸化性雰囲気(窒素ガス雰囲気)中140
0℃、1450℃および1500℃で20分間加熱還元
した後冷却し、ペレットの断面状態を観察した。そのう
ち代表的な断面写真を図2に示す。
Example Table 1 shows a carbonaceous reducing agent (coal powder) and iron oxide (iron ore) having the composition shown in Table 1 and bentonite as a binder (all having an average particle size of 45 μm or less). After mixing in a ratio, preform it into a substantially spherical pellet, and put it in a non-oxidizing atmosphere (nitrogen gas atmosphere) 140
After heating and reducing at 0 ° C., 1450 ° C. and 1500 ° C. for 20 minutes and then cooling, the cross-sectional state of the pellet was observed. A typical cross-sectional photograph is shown in FIG.

【0035】[0035]

【表1】 [Table 1]

【0036】これらの図からも明らかである様に、14
00℃および1450℃で加熱還元したものでは、ペレ
ット表面に金属鉄外皮が形成されその内側に金属鉄が付
着成長すると共に、内部空間に生成スラグが固まり合っ
た状態で分離している状態が観察される。また1500
℃で加熱還元を行なったものでは、一旦形成された金属
鉄外皮が還元反応の後で溶融し、溶融スラグと分離した
状態で凝固したものと思われ、金属光沢を呈する金属鉄
と黒色のガラス状スラグに分離している(写真は、破砕
後スラグを除去して選別された金属鉄のみを示してい
る)。このときの還元後ペレットの化学組成を表2に、
ガラス状スラグの化学組成を表3に示す。
As is clear from these figures, 14
In the case of heat reduction at 00 ° C and 1450 ° C, it was observed that the metallic iron crust was formed on the pellet surface, metallic iron adhered and grew inside, and the generated slag was separated in the state of being solidified in the internal space. To be done. Again 1500
In the case of heat reduction at ℃, it is thought that the metallic iron shell once formed melted after the reduction reaction and solidified in a state where it separated from the molten slag, and metallic iron showing a metallic luster and black glass The slag is separated into pieces (the photograph shows only the metallic iron that has been selected by removing the slag after crushing). The chemical composition of the reduced pellets at this time is shown in Table 2,
Table 3 shows the chemical composition of the glassy slag.

【0037】[0037]

【表2】 [Table 2]

【0038】[0038]

【表3】 [Table 3]

【0039】表2より、還元温度を1500℃に高めた
ものでは、楕円形状に固まった金属光沢を有する金属鉄
(図2参照)にはスラグ成分が殆んど含まれておらず、
還元によって生成した金属化率99重量%以上の金属鉄
とスラグをほぼ完全に分離し得ることが分かる。一方、
還元温度を1400℃または1450℃にしたもので
は、金属鉄外皮がまだ残っており、還元後のペレットの
化学組成を見ると酸化鉄の還元はやや不十分に見える
が、図2によっても確認できる様に、ペレット内部では
外皮を構成する金属鉄と内部に凝集したスラグとの分離
が既に起こっている。従って、これを粉砕し磁選などに
よって選別し、或は温度を高めて更に加熱を続け金属鉄
外皮の一部を溶融させてスラグを金属鉄外皮外に流出さ
せ、あるいは金属鉄外皮の全てを溶融させて金属鉄とス
ラグを凝集させてから分離すると、高純度の粒状金属鉄
が得られることが分かる。
From Table 2, when the reduction temperature was raised to 1500 ° C., the metallic iron having an elliptical solidified metallic luster (see FIG. 2) contained almost no slag component,
It can be seen that metallic iron having a metallization rate of 99% by weight or more produced by the reduction can be almost completely separated from the slag. on the other hand,
When the reduction temperature was set to 1400 ° C or 1450 ° C, the metallic iron crust still remained, and the reduction of iron oxide appeared to be slightly insufficient when looking at the chemical composition of the pellets after reduction, but it can also be confirmed by Fig. 2. Similarly, inside the pellets, the metallic iron forming the outer skin and the slag aggregated inside have already been separated. Therefore, this is crushed and selected by magnetic separation, or the temperature is raised and heating is continued to melt a part of the metallic iron shell to let the slag flow out of the metallic iron shell, or to melt the entire metallic iron shell. It can be seen that when the metallic iron and the slag are aggregated and then separated, high-purity granular metallic iron is obtained.

【0040】次に、加熱還元温度を1500℃に設定
し、処理時間を3分から15分の間で変化させたときに
見られるペレットの外観変化を図3に、また各還元後ペ
レットの化学組成を表4に、更に各処理時間における金
属化率、スラグ成分含有量、酸化鉄含有量、炭素量を夫
々図4〜図7に示す。
Next, FIG. 3 shows the appearance change of the pellets observed when the heat reduction temperature was set to 1500 ° C. and the treatment time was changed from 3 minutes to 15 minutes, and the chemical composition of the pellets after the reduction is shown in FIG. Is shown in Table 4, and the metallization rate, slag component content, iron oxide content, and carbon content at each treatment time are shown in FIGS. 4 to 7, respectively.

【0041】[0041]

【表4】 [Table 4]

【0042】図3から見ると、加熱開始後3分では極端
な外観変化は認められないが、表4からも明らかである
様にペレット中の酸化鉄の還元は既にかなり進んでお
り、加熱開始から5分後にはペレット表面が明らかな金
属光沢を呈しており金属鉄外皮が形成されていること、
しかもその時点で金属鉄中のT.Fe量は90重量%を
超えており、6分後の金属鉄のT.Feは98重量%以
上にまで高まっていることが分かる。
As seen from FIG. 3, no extreme change in appearance is observed 3 minutes after the start of heating, but as is clear from Table 4, the reduction of iron oxide in the pellets has already progressed considerably, and the start of heating has started. 5 minutes after, the pellet surface has a clear metallic luster and a metallic iron skin is formed.
Moreover, at that time, the T. The amount of Fe exceeds 90% by weight, and the T. It can be seen that Fe has been increased to 98% by weight or more.

【0043】この時点で、金属鉄外皮の一部が溶融して
外皮外へのスラグの流出が認められ、9分後には金属鉄
外皮の殆んど全てが溶融・凝集し、目玉焼き状となって
黄身に対応する位置に金属鉄が固まると共に、白身に対
応する外側にガラス状の生成スラグが凝集している。こ
の時点以降、金属鉄とスラグの形状は若干変化するが、
表4によっても確認できる様に金属鉄中のT.Fe濃度
の上昇はそれ以上殆んど進んでおらず、このことからペ
レット中の酸化鉄の還元反応は、金属鉄外皮が形成され
るまでの間と、外皮が形成された後その内部での強化さ
れた還元条件下で速やかに且つほぼ完全に進行し、その
後は時間の経過と共に金属鉄とスラグの分離が進行して
いる。また、表4および図4〜図7からも分かる様に、
加熱還元開始後6分で、生成する金属鉄に含まれるスラ
グ含有量およびFeO含有量は非常に低いレベルまで低
減し、金属化率99%以上の非常に高品質の金属鉄が得
られることが分かる。
At this point, a part of the metallic iron crust was melted and the outflow of slag was observed outside the crust, and after 9 minutes, almost all of the metallic iron crust was melted and agglomerated to form a fried egg. The metallic iron hardens at the position corresponding to the yolk, and the glass-like slag is aggregated on the outside corresponding to the white. After this point, the shapes of metallic iron and slag change slightly,
As can be confirmed from Table 4, the T. The increase in the Fe concentration has hardly progressed any more, and therefore, the reduction reaction of iron oxide in the pellets is observed until the metallic iron crust is formed and after the crust is formed. Under the enhanced reducing conditions, the reaction proceeds rapidly and almost completely, and thereafter, the separation of metallic iron and slag progresses over time. Further, as can be seen from Table 4 and FIGS. 4 to 7,
Six minutes after the start of heat reduction, the slag content and FeO content contained in the produced metallic iron are reduced to a very low level, and a very high-quality metallic iron having a metallization rate of 99% or more can be obtained. I understand.

【0044】以上の結果からも明らかである様に、鉄原
料となる酸化鉄に対し当量比以上の炭素質還元剤を混合
し成形した成形物を、1400℃程度以上の温度で加熱
すると、成形物の外周側に初期段階で金属鉄外皮が形成
され、その後金属鉄外皮内で酸化鉄の還元が速やかに進
行すると共に、生成するスラグ成分は溶融状態で金属鉄
から分離する。そして処理温度を1500℃にまで高め
ると、還元反応および金属鉄と生成スラグの分離が非常
に短い時間で進行し、鉄分純度の非常に高い金属鉄を高
い収率で得ることができる。
As is clear from the above results, when a molded product obtained by mixing a carbonaceous reducing agent in an equivalent ratio or more with iron oxide, which is an iron raw material, and molding is heated at a temperature of about 1400 ° C. or more, A metallic iron crust is formed on the outer peripheral side of the object at an initial stage, and thereafter, iron oxide is rapidly reduced in the metallic iron crust, and the generated slag component is separated from the metallic iron in a molten state. Then, when the treatment temperature is raised to 1500 ° C., the reduction reaction and the separation of metallic iron and the generated slag proceed in a very short time, and metallic iron having a very high iron content purity can be obtained in a high yield.

【0045】図8は、本発明を実施する際の代表的なフ
ロー図を示したものであり、原料酸化鉄粉粒体を炭素質
還元剤粉末およびバインダーと共に混合し、次いでペレ
ット状など任意の形状に成形してから加熱還元炉内へ装
入し、1400℃以上の温度で加熱還元を行なう。還元
工程では、初期段階で金属鉄外皮が形成された後、その
内部で還元反応が進行し、生成したスラグ成分は外皮の
内側に溶融状態で凝集する。これから鉄分を選別するに
当たっては、一旦冷却凝固させてから破砕し磁選等によ
って金属鉄のみを収集し、或は更に加熱を続けこれらを
金属鉄の融点以上の温度にまで昇温して比重差によって
金属鉄のみを収集すればよい。また必要によっては、収
集された該金属鉄を精錬処理することによってS,P等
の不純物を除去し、更には炭素量を調整することも勿論
可能である。
FIG. 8 shows a typical flow chart for carrying out the present invention. Raw iron oxide powder particles are mixed with a carbonaceous reducing agent powder and a binder, and then pelletized. After being formed into a shape, it is charged into a heating reduction furnace, and heating reduction is performed at a temperature of 1400 ° C. or higher. In the reduction step, after the metallic iron crust is formed in the initial stage, the reduction reaction proceeds inside the crust, and the generated slag component aggregates inside the crust in a molten state. When selecting iron from this, once it is cooled and solidified, it is crushed and crushed and only metallic iron is collected by magnetic separation, or further heating is continued until the temperature rises to a temperature above the melting point of metallic iron and the difference in specific gravity Only metallic iron needs to be collected. If necessary, the collected metallic iron may be refined to remove impurities such as S and P and further adjust the carbon content.

【0046】[0046]

【発明の効果】以上の様に本発明によれば、炭素質還元
剤を含む酸化鉄の成形物を加熱還元しし、初期段階で金
属鉄外皮を形成させ、該外皮内に形成される強化された
還元条件下で酸化鉄の還元を進めることによって還元反
応を極めて効率よく速やかに進めることができ、金属化
率が95重量%、更には98重量%以上といった、従来
の直接製鉄法では到底得ることのできない高純度の金属
鉄を極めて短時間の加熱還元で効率よく製造することが
できる。得られる高品位の金属鉄は、その後冷却して破
砕し磁選等によって、あるいは溶融した後比重差によっ
てスラグと簡単に選別することができる。
As described above, according to the present invention, a molded product of iron oxide containing a carbonaceous reducing agent is heated and reduced to form a metallic iron crust at an initial stage, and strengthening formed in the crust. The reduction reaction of iron oxide can be carried out extremely efficiently and rapidly by promoting the reduction of iron oxide under the specified reducing conditions, and the metallization rate is 95% by weight or even 98% by weight or more. High-purity metallic iron that cannot be obtained can be efficiently produced by heating and reducing for an extremely short time. The obtained high-grade metallic iron can be easily separated from the slag by cooling and crushing and then magnetic separation or the like or by melting and then the specific gravity difference.

【0047】また本発明によれば、生成スラグ中の酸化
鉄含有量を可及的に少なくすることができるので、酸化
鉄に起因する処理炉耐火物の溶損も起こらず、設備保全
の観点からしても極めて実用性の高い技術と言える。
Further, according to the present invention, since the iron oxide content in the produced slag can be reduced as much as possible, the melting loss of the refractory of the processing furnace due to the iron oxide does not occur and the viewpoint of equipment maintenance It can be said that this technology is extremely highly practical.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施する際の還元反応の進行状況を模
式的に示す断面説明図である。
FIG. 1 is a cross-sectional explanatory diagram schematically showing the progress of a reduction reaction when carrying out the present invention.

【図2】本発明により温度を変えて加熱還元したときの
還元ペレットの断面形状を示す図面代用写真である。
FIG. 2 is a drawing-substituting photograph showing a cross-sectional shape of reduced pellets when heated and reduced at different temperatures according to the present invention.

【図3】加熱還元温度を1500℃に設定し、同温度で
の保持時間を変えた時の還元ぺレットの外観変化を示す
図面代用写真である。
FIG. 3 is a drawing-substituting photograph showing the appearance change of a reducing pellet when the heating reduction temperature is set to 1500 ° C. and the holding time at the same temperature is changed.

【図4】加熱還元温度を1500℃に設定し、同温度で
の保持時間を変えた時の還元ぺレットの金属化率変化を
示すグラフである。
FIG. 4 is a graph showing changes in metallization rate of reducing pellets when the heating and reducing temperature is set to 1500 ° C. and the holding time at the same temperature is changed.

【図5】加熱還元温度を1500℃に設定し、同温度で
の保持時間を変えた時の還元ぺレット中のスラグ含有量
変化を示すグラフである。
FIG. 5 is a graph showing changes in the slag content in the reducing pellet when the heating and reducing temperature is set to 1500 ° C. and the holding time at the same temperature is changed.

【図6】加熱還元温度を1500℃に設定し、同温度で
の保持時間を変えた時の還元ぺレット中のFeO含有量
変化を示すグラフである。
FIG. 6 is a graph showing changes in the FeO content in the reducing pellet when the heating and reducing temperature is set to 1500 ° C. and the holding time at the same temperature is changed.

【図7】加熱還元温度を1500℃に設定し、同温度で
の保持時間を変えた時の還元ぺレット中の炭素量変化を
示すグラフである。
FIG. 7 is a graph showing changes in the amount of carbon in the reducing pellet when the heating reduction temperature is set to 1500 ° C. and the holding time at the same temperature is changed.

【図8】本発明の実施例を示す還元鉄製造プロセスの概
略フロー図である。
FIG. 8 is a schematic flow diagram of a reduced iron manufacturing process showing an example of the present invention.

フロントページの続き (72)発明者 松村 俊秀 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内 (72)発明者 竹中 芳通 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内 (72)発明者 清水 正賢 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内 (72)発明者 稲葉 晉一 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内Front page continuation (72) Inventor Toshihide Matsumura 1 Kanazawa-machi, Kakogawa, Hyogo Prefecture Kamido Steel Works, Ltd. Kakogawa Works (72) Inventor Yoshimichi Takenaka 1, Kanazawa-machi, Kakogawa City, Hyogo Kamido Steel Works, Ltd. Kakogawa Steel Works (72) Inventor Masaken Shimizu 1 Kanazawa-machi, Kakogawa City, Hyogo Prefecture Kado Steel Works, Ltd. Kakogawa Steel Works (72) Inventor Shinichi Inaba 1 Kanazawa-machi, Kakogawa City, Hyogo Prefecture Kakogawa Steel Works Co., Ltd. Inside the steel mill

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 炭素質還元剤が存在する酸化鉄の成形物
を加熱還元して金属鉄を製造する方法において、加熱還
元により金属鉄外皮を生成且つ成長させ、内部には酸化
鉄が実質的に存在しなくなるまで還元を進めると共に、
内部に生成スラグの凝集物を形成することを特徴とする
金属鉄の製法。
1. A method for producing metallic iron by heating and reducing an iron oxide molding containing a carbonaceous reducing agent, wherein a metallic iron crust is produced and grown by thermal reduction, and iron oxide is substantially present inside. And proceed with the reduction until it no longer exists,
A method for producing metallic iron, characterized in that an aggregate of generated slag is formed inside.
【請求項2】 炭素質還元剤が存在する酸化鉄の成形物
を加熱還元して金属鉄を製造する方法において、加熱還
元により金属鉄外皮を生成且つ成長させ、内部には酸化
鉄が実質的に存在しなくなるまで還元を進め、更に加熱
を続けて内部に生成するスラグを金属鉄外皮の外側へ流
出させることを特徴とする金属鉄の製法。
2. A method for producing metallic iron by heating and reducing an iron oxide molding containing a carbonaceous reducing agent, wherein a metallic iron crust is produced and grown by the heating reduction, and iron oxide is substantially present inside. A process for producing metallic iron, characterized in that the reduction is advanced until it no longer exists in the metallic iron, and further heating is continued to allow the slag generated inside to flow out to the outside of the metallic iron crust.
【請求項3】 金属鉄外皮の一部を溶融させ、金属鉄と
溶融スラグを分離する請求項2に記載の製法。
3. The method according to claim 2, wherein a part of the metallic iron shell is melted to separate the metallic iron and the molten slag.
【請求項4】 金属鉄外皮の融点を浸炭により降下さ
せ、該金属鉄外皮の一部を溶融させる請求項3に記載の
製法。
4. The method according to claim 3, wherein the melting point of the metallic iron crust is lowered by carburization to melt a part of the metallic iron crust.
【請求項5】 炭素質還元剤が存在する酸化鉄の成形物
を加熱還元して金属鉄を製造する方法において、加熱還
元により金属鉄外皮を生成且つ成長させ、内部には酸化
鉄が実質的に存在しなくなるまで還元を進め、更に加熱
を続けて金属鉄とスラグを溶融分離することを特徴とす
る金属鉄の製法。
5. A method for producing metallic iron by heating and reducing an iron oxide molding containing a carbonaceous reducing agent, wherein a metallic iron crust is produced and grown by heating and iron oxide is substantially present inside. A process for producing metallic iron, characterized in that the reduction is advanced until it no longer exists, and heating is further continued to melt and separate metallic iron and slag.
【請求項6】 金属鉄外皮の融点を浸炭により降下さ
せ、該金属鉄外皮を溶融させてスラグとの溶融分離を行
なう請求項5に記載の製法。
6. The method according to claim 5, wherein the melting point of the metallic iron shell is lowered by carburization, and the metallic iron shell is melted and separated from the slag by melting.
【請求項7】 炭素質還元剤が存在する酸化鉄の成形物
を加熱還元して金属鉄を製造する方法において、加熱還
元により金属鉄外皮を生成且つ成長させ、内部には酸化
鉄が実質的に存在しなくなるまで還元を進めると共に、
内部に生成スラグの凝集物を形成させ、次いで生成スラ
グを金属鉄から分離することを特徴とする金属鉄の製
法。
7. A method for producing metallic iron by heating and reducing an iron oxide molding containing a carbonaceous reducing agent, wherein a metallic iron crust is produced and grown by the heating reduction, and iron oxide is substantially present inside. And proceed with the reduction until it no longer exists,
A method for producing metallic iron, which comprises forming an aggregate of the produced slag inside and then separating the produced slag from the metallic iron.
【請求項8】 加熱還元工程の最高加熱温度を、生成ス
ラグの融点以上で且つ生成する金属鉄外皮の融点以下と
する請求項1〜7のいずれかに記載の製法。
8. The production method according to claim 1, wherein the maximum heating temperature in the heat reduction step is not less than the melting point of the produced slag and not more than the melting point of the produced metallic iron shell.
【請求項9】 加熱還元工程で固相還元により酸化鉄を
低減し、更に液相還元によりFeOを主体とする酸化鉄
が実質的に存在しなくなるまで還元する請求項1〜8の
いずれかに記載の製法。
9. The method according to claim 1, wherein iron oxide is reduced by solid phase reduction in the heating reduction step, and further iron oxide mainly composed of FeO is reduced by liquid phase reduction until substantially no iron oxide is present. The manufacturing method described.
【請求項10】 加熱還元工程で、FeOを主体とする
酸化鉄の含有率が5重量%以下となるまで還元する請求
項1〜9のいずれかに記載の製法。
10. The production method according to claim 1, wherein in the heating reduction step, reduction is performed until the content of iron oxide mainly composed of FeO becomes 5% by weight or less.
【請求項11】 加熱還元工程で、FeOを主体とする
酸化鉄の含有率が2重量%以下となるまで還元する請求
項10に記載の製法。
11. The method according to claim 10, wherein in the heating reduction step, reduction is performed until the content of iron oxide mainly composed of FeO becomes 2% by weight or less.
【請求項12】 生成スラグ中のFeOを主体とする酸
化鉄の含有量が5重量%以下である請求項1〜11のい
ずれかに記載の製法。
12. The method according to claim 1, wherein the content of iron oxide mainly composed of FeO in the produced slag is 5% by weight or less.
【請求項13】 生成スラグ中のFeOを主体とする酸
化鉄の含有量が2重量%以下である請求項12に記載の
製法。
13. The method according to claim 12, wherein the content of iron oxide mainly composed of FeO in the produced slag is 2% by weight or less.
JP05980196A 1996-03-15 1996-03-15 Metal iron manufacturing method Expired - Fee Related JP3845893B2 (en)

Priority Applications (32)

Application Number Priority Date Filing Date Title
JP05980196A JP3845893B2 (en) 1996-03-15 1996-03-15 Metal iron manufacturing method
ZA9702125A ZA972125B (en) 1996-03-15 1997-03-12 Method and apparatus for making metallic iron.
KR10-1998-0707316A KR100516507B1 (en) 1996-03-15 1997-03-13 Method and apparatus for making metallic iron
CZ982794A CZ279498A3 (en) 1996-03-15 1997-03-13 Process for producing iron and apparatus for making the same
SK1253-98A SK125398A3 (en) 1996-03-15 1997-03-13 Method and apparatus for making metallic iron
BR9707996-0A BR9707996A (en) 1996-03-15 1997-03-13 Method for making metallic iron, object and apparatus for the production of metallic iron
ARP970100993A AR006206A1 (en) 1996-03-15 1997-03-13 METHOD FOR MANUFACTURING METALLIC IRON, DEVICE FOR ITS MANUFACTURE AND REDUCED CONGLOMERATE OBTAINED BY SUCH METHOD AND THROUGH SUCH DEVICE
EP97907310A EP0888462B1 (en) 1996-03-15 1997-03-13 Method for making reduced compacts comprising iron and such compacts
IL12044097A IL120440A0 (en) 1996-03-15 1997-03-13 Method and apparatus for making metallic iron
AU19404/97A AU715276C (en) 1996-03-15 1997-03-13 Method and apparatus for making metallic iron
PCT/JP1997/000806 WO1997034018A1 (en) 1996-03-15 1997-03-13 Method and apparatus for making metallic iron
CA2694865A CA2694865A1 (en) 1996-03-15 1997-03-13 Method for making metallic iron
HU99023399902339A HUP9902339A3 (en) 1996-03-15 1997-03-13 Method and apparatus for making metallic iron method and apparatus for making metallic iron
ES97907310T ES2188900T3 (en) 1996-03-15 1997-03-13 PROCEDURE FOR MANUFACTURING COMPACTED BODIES THAT INCLUDE IRON AND SUCH BODIES.
AT97907310T ATE229083T1 (en) 1996-03-15 1997-03-13 METHOD FOR PRODUCING REDUCED IRON-CONTAINING COMPACT BODY AND BODY SUCH
CA2248273A CA2248273C (en) 1996-03-15 1997-03-13 Method and apparatus for making metallic iron
NZ332283A NZ332283A (en) 1996-03-15 1997-03-13 Method and apparatus for making metallic iron
PL97328812A PL328812A1 (en) 1996-03-15 1997-03-13 Method of and apparatus for obtaining metallic iron
DE69717609T DE69717609T2 (en) 1996-03-15 1997-03-13 Process for producing reduced iron-containing compact bodies and such bodies
TR1998/01833T TR199801833T2 (en) 1996-03-15 1997-03-13 Method and apparatus for producing metallic iron.
EA199800828A EA001158B1 (en) 1996-03-15 1997-03-13 Method and apparatus for making metallic iron
CN97194517A CN1080315C (en) 1996-03-15 1997-03-13 Method and apparatus for making metallic iron
PE1997000194A PE21298A1 (en) 1996-03-15 1997-03-13 METHOD AND APPARATUS FOR MAKING METALLIC IRON
US08/818,954 US6036744A (en) 1996-03-15 1997-03-14 Method and apparatus for making metallic iron
IDP970865A ID16250A (en) 1996-03-15 1997-03-17 METHODS AND EQUIPMENT FOR MAKING METAL IRON (METALIC IRON).
BG102721A BG102721A (en) 1996-03-15 1998-08-24 Method and device for the production of metallic iron
NO984161A NO984161L (en) 1996-03-15 1998-09-10 Method and apparatus for producing metallic iron
US09/478,409 US6432533B1 (en) 1996-03-15 2000-01-06 Metallic iron containing slag
CNB011179414A CN1198945C (en) 1996-03-15 2001-05-08 Intermediate for producing metal iron, its making method and equipment
US09/891,653 US6506231B2 (en) 1996-03-15 2001-06-26 Method and apparatus for making metallic iron
US10/289,290 US20030061909A1 (en) 1996-03-15 2002-11-07 Method and apparatus for making metallic iron
US11/855,793 US7938883B2 (en) 1996-03-15 2007-09-14 Method and apparatus for making metallic iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05980196A JP3845893B2 (en) 1996-03-15 1996-03-15 Metal iron manufacturing method

Publications (2)

Publication Number Publication Date
JPH09256017A true JPH09256017A (en) 1997-09-30
JP3845893B2 JP3845893B2 (en) 2006-11-15

Family

ID=13123747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05980196A Expired - Fee Related JP3845893B2 (en) 1996-03-15 1996-03-15 Metal iron manufacturing method

Country Status (2)

Country Link
JP (1) JP3845893B2 (en)
ZA (1) ZA972125B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013125A (en) * 2001-06-25 2003-01-15 Midrex Internatl Bv Zurich Branch Granular metal iron and manufacturing method therefor
EP1764420A2 (en) 2000-03-30 2007-03-21 Kabushiki Kaisha Kobe Seiko Sho Method of producing metallic iron and raw material feed device
JP2010189762A (en) * 2009-01-23 2010-09-02 Kobe Steel Ltd Process for manufacturing granular iron
JP2011208241A (en) * 2010-03-30 2011-10-20 Nippon Steel Corp Method for producing reduced iron
WO2014007174A1 (en) * 2012-07-05 2014-01-09 株式会社神戸製鋼所 Method for producing reduction product
JP2014214330A (en) * 2013-04-23 2014-11-17 株式会社神戸製鋼所 Method for manufacturing metal iron
KR20200045720A (en) * 2018-10-23 2020-05-06 한국기초과학지원연구원 non-oxidative iron and a method of manufacturing the same
WO2023100707A1 (en) * 2021-11-30 2023-06-08 Jfeスチール株式会社 Production method for metal iron

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1764420A2 (en) 2000-03-30 2007-03-21 Kabushiki Kaisha Kobe Seiko Sho Method of producing metallic iron and raw material feed device
EP2221388A1 (en) 2000-03-30 2010-08-25 Kabushiki Kaisha Kobe Seiko Sho "Method of producing metallic iron and raw material feed device"
JP2003013125A (en) * 2001-06-25 2003-01-15 Midrex Internatl Bv Zurich Branch Granular metal iron and manufacturing method therefor
JP4654542B2 (en) * 2001-06-25 2011-03-23 株式会社神戸製鋼所 Granular metallic iron and its manufacturing method
JP2010189762A (en) * 2009-01-23 2010-09-02 Kobe Steel Ltd Process for manufacturing granular iron
JP2011208241A (en) * 2010-03-30 2011-10-20 Nippon Steel Corp Method for producing reduced iron
WO2014007174A1 (en) * 2012-07-05 2014-01-09 株式会社神戸製鋼所 Method for producing reduction product
JP2014012879A (en) * 2012-07-05 2014-01-23 Kobe Steel Ltd Method for producing reduced product
JP2014214330A (en) * 2013-04-23 2014-11-17 株式会社神戸製鋼所 Method for manufacturing metal iron
KR20200045720A (en) * 2018-10-23 2020-05-06 한국기초과학지원연구원 non-oxidative iron and a method of manufacturing the same
WO2023100707A1 (en) * 2021-11-30 2023-06-08 Jfeスチール株式会社 Production method for metal iron
JPWO2023100707A1 (en) * 2021-11-30 2023-06-08
TWI842235B (en) * 2021-11-30 2024-05-11 日商Jfe鋼鐵股份有限公司 Method for manufacturing metal iron

Also Published As

Publication number Publication date
JP3845893B2 (en) 2006-11-15
ZA972125B (en) 1997-09-25

Similar Documents

Publication Publication Date Title
JP4330257B2 (en) Metal iron manufacturing method
JP5975093B2 (en) Nickel oxide ore smelting method
CA2306805C (en) Method and apparatus for making metallic iron
CN106795585B (en) The smelting process of nickel oxide mine
JPH10195513A (en) Production of metallic iron
EP3252178B1 (en) Method for smelting saprolite ore
AU2006284620B2 (en) Ore reduction process and titanium oxide and iron metallization product
TW201215682A (en) Process for producing molten steel using particulate metallic iron
JP3845893B2 (en) Metal iron manufacturing method
JP4540172B2 (en) Production of granular metallic iron
JP2020527192A (en) Method of manufacturing metallic iron
JP4572435B2 (en) Method for producing reduced iron from iron-containing material
JP2000045007A (en) Production of metallic iron and device therefor
JP5000593B2 (en) Manufacturing method of granular metallic iron and manufacturing method of molten steel using the metallic iron
JP3844873B2 (en) Metal iron manufacturing method
JP2011179090A (en) Method for producing granulated iron
JPH10102117A (en) Production of metallic iron and production equipment thereof
JP3848453B2 (en) Manufacturing method of metallic iron
JP4149531B2 (en) Metallic iron manufacturing method and manufacturing equipment
JPH10102116A (en) Production of metallic iron and production equipment thereof
JPH10102114A (en) Production of metallic iron and production equipment thereof
JPH10102115A (en) Production of metallic iron and production equipment thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060814

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees