JPH0925516A - Method for preventing surface flaw of hot rolled ferritic stainless steel strip - Google Patents

Method for preventing surface flaw of hot rolled ferritic stainless steel strip

Info

Publication number
JPH0925516A
JPH0925516A JP17257895A JP17257895A JPH0925516A JP H0925516 A JPH0925516 A JP H0925516A JP 17257895 A JP17257895 A JP 17257895A JP 17257895 A JP17257895 A JP 17257895A JP H0925516 A JPH0925516 A JP H0925516A
Authority
JP
Japan
Prior art keywords
slab
heating
hot
grain size
ferritic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17257895A
Other languages
Japanese (ja)
Other versions
JP3593182B2 (en
Inventor
Masamitsu Tsuchinaga
雅光 槌永
Hidehiko Sumitomo
秀彦 住友
Seisaburo Abe
征三郎 阿部
Yukihiro Kure
幸弘 久禮
Kiyoshi Yamaji
清 山地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP17257895A priority Critical patent/JP3593182B2/en
Publication of JPH0925516A publication Critical patent/JPH0925516A/en
Application granted granted Critical
Publication of JP3593182B2 publication Critical patent/JP3593182B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provent the occurrence of fine surface flaw at the surface of a hot rolled strip of ferritic stainless steel and to obtain a ferritic stainless steel minimal in surface flaw. SOLUTION: After 2.5-15% working strain is applied to a slab of ferritic stainless steel at 300-900 deg.C, the slab is heated to 1100-1300 deg.C to regulate the crystalline grain size in the surface layer part of the slab before hot rolling to <=5mm, by which the occurrence of surface flaw at the surface of hot rolled ferritic stainless steel strip can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、フェライト系ステ
ンレス鋼の熱間圧延鋼帯の表面疵発生防止方法に係わ
り、熱延後の鋼板表面に発生する皺状の凹み疵を効果的
に防止する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preventing surface defects from occurring in a hot rolled steel strip of ferritic stainless steel, and effectively prevents wrinkle-like dents from occurring on the surface of a steel sheet after hot rolling. Regarding the method.

【0002】[0002]

【従来の技術】フェライト系ステンレス鋼の冷延板の製
造は、表面研削を部分的に行ったり、研削をしない連続
鋳造スラブを、1100〜1300℃の温度域で加熱後
熱間圧延により2〜6mm厚の熱延鋼板とし、更に焼鈍、
酸洗もしくは焼鈍を省略し酸洗を経て冷間圧延される。
フェライト系ステンレス鋼はオーステナイト系ステンレ
ス鋼に比べ熱間加工が良好で、熱延に際しても鋼帯耳部
最エッジから15〜20mm内に発生する小さなエッジシ
ーム疵という割れの他には特に問題はないとされてい
た。
2. Description of the Related Art A cold-rolled sheet of ferritic stainless steel is manufactured by heating a continuous cast slab that is partially ground or not ground in a temperature range of 1100-1300 ° C. and then hot-rolled. 6mm thick hot rolled steel sheet, further annealed,
It is cold-rolled after the pickling or annealing is omitted.
Ferritic stainless steel has better hot working than austenitic stainless steel, and there is no particular problem other than the small edge seam flaws that occur within 15 to 20 mm from the outermost edge of the steel strip during hot rolling. It had been.

【0003】そしてこの鋼帯耳部に発生するエッジシー
ム疵に対しては、潤滑圧延を行って端部のバルジング量
を制御しエッジシーム疵発生幅を小さくする方法(特開
平4−279202号公報)や、水平圧延と幅圧延を行
う粗圧延の水平圧下率および幅圧下率を規定することに
よってエッジシーム疵発生を抑制する方法(特公平6−
241号公報)が開示されている。
With respect to the edge seam flaws generated in the selvages of the steel strip, a method of performing lubrication rolling to control the amount of bulging at the ends to reduce the width of the edge seam flaw generation (Japanese Patent Laid-Open No. 4-279202), or A method for suppressing the occurrence of edge seam flaws by defining the horizontal reduction rate and the width reduction rate of rough rolling for horizontal rolling and width rolling (Japanese Patent Publication No. 6-
No. 241) is disclosed.

【0004】しかし、フェライト系ステンレス鋼の酸洗
後の熱延鋼板の表面を詳細に調べると、最エッジから4
0〜70mmの位置に、その表面に目視観察で判別できる
かできない程度の、深さの浅い小さな凹み疵が存在する
ことがあった。この鋼板表層部の小さな疵は幅が0.3
〜0.5mm、長さが10〜30mmの紡錘形で、深さは7
0〜100μm程度の大きさで、エッジ近傍の40〜7
0mmの位置に発生しやすい傾向があることがわかった。
However, when the surface of the hot-rolled steel sheet after pickling of ferritic stainless steel is examined in detail, it is 4 from the outermost edge.
In some cases, a small dented flaw having a shallow depth was present on the surface at a position of 0 to 70 mm that could not be discriminated by visual observation. The small flaw on the surface of the steel plate has a width of 0.3.
~ 0.5mm, 10 ~ 30mm long spindle shape, depth 7
The size is 0 to 100 μm and 40 to 7 near the edge.
It was found that it tends to occur at the position of 0 mm.

【0005】この疵は熱延板の焼鈍を省略し、あるいは
800〜1000℃の高温短時間焼鈍後ショットブラス
ト等のメカニカルデスケーリングした後の酸洗後にスケ
ールを含有した疵として残存するため直接に冷延工程に
送ることができず、再酸洗を繰り返し行うか、コイルグ
ラインダーで鋼帯全体を表面研削せざるを得ず、このた
め材料の歩留り低下および納期延長等問題が生じ、フェ
ライト系ステンレス鋼製造においてコスト高の大きな原
因となっていた。かかる事情により、熱間圧延生成疵の
発生しないフェライト系ステンレス鋼の熱間圧延鋼帯の
効果的な製造方法の開発が渇望されていた。
[0007] This flaw is directly omitted because it does not require annealing of the hot rolled sheet, or remains as a flaw containing scale after pickling after mechanical descaling such as shot blasting after high temperature short time annealing at 800 to 1000 ° C. Since it cannot be sent to the cold rolling process, either repickling must be repeated or the entire surface of the steel strip must be ground with a coil grinder, which causes problems such as reduced material yield and extended delivery time. It was a major cause of high cost in steel production. Under such circumstances, there has been a strong demand for the development of an effective method for producing a ferritic stainless steel hot-rolled steel strip that is free from defects caused by hot-rolling.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上述のよう
なフェライト系ステンレス鋼熱延鋼帯に発生する微小な
熱間圧延鋼帯表面疵発生を防止し、表面疵の少ないフェ
ライト系ステンレス鋼の製造方法を提供することを目的
とするものである。
DISCLOSURE OF THE INVENTION The present invention prevents the generation of minute surface defects of hot-rolled steel strip that occurs in the above-described ferritic stainless steel hot-rolled steel strip, and is a ferritic stainless steel with few surface flaws. It is an object of the present invention to provide a manufacturing method of.

【0007】[0007]

【課題を解決するための手段】本発明の概要は、フェラ
イト系ステンレス鋼のスラブを所定の温度に加熱してか
ら熱間圧延する際に、該スラブ加熱時において生成する
スラブ表層部の粒径を5mm以下に制御することを特徴と
する。その要旨は、次のとおりである。 (1) フェライト系ステンレス鋼のスラブを、300〜9
00℃の温度域で2.5〜15%の加工歪みを加えた後
1100〜1300℃に加熱し、熱間圧延前のスラブ表
層部の結晶粒径を5mm以下とすることを特徴とするフェ
ライト系ステンレス熱間圧延鋼帯の表面疵防止方法。フ
ェライト系ステンレス鋼のスラブを加熱する際に生成す
るスラブ表層部の結晶粒径を5mm以下に抑制するための
制御は、あらかじめ連続鋳造装置下部の300〜900
℃の温度域で2.5〜15%の圧下を加えるか、300
℃以上に保熱後あるいは常温まで冷却後昇温し300〜
900℃の温度域に加熱して2.5〜15%の加工歪を
付与した熱間圧延用スラブを製造し、更に、スラブ加熱
温度を1100〜1300℃に制御することによって、
効果的に実現できる。
Means for Solving the Problems The outline of the present invention is that, when a slab of ferritic stainless steel is heated to a predetermined temperature and then hot-rolled, the grain size of a slab surface layer portion produced during the heating of the slab. Is controlled to 5 mm or less. The summary is as follows. (1) 300 to 9 slabs of ferritic stainless steel
Ferrite characterized by applying a working strain of 2.5 to 15% in a temperature range of 00 ° C. and then heating to 1100 to 1300 ° C. to make the crystal grain size of the slab surface layer portion before hot rolling 5 mm or less. Method for Preventing Surface Defects of Hot Rolled Stainless Steel Series. The control for suppressing the crystal grain size of the slab surface layer portion, which is generated when the slab of ferritic stainless steel is heated, to 5 mm or less is carried out in advance at 300 to 900 at the lower part of the continuous casting device.
Add a pressure reduction of 2.5 to 15% in the temperature range of ℃ or 300
After keeping the temperature above ℃ or cooling to room temperature, raise the temperature to 300-
By manufacturing a slab for hot rolling to which a processing strain of 2.5 to 15% is applied by heating to a temperature range of 900 ° C, and further, controlling the slab heating temperature to 1100 to 1300 ° C,
It can be realized effectively.

【0008】(2) フェライト系ステンレス鋼のスラブ
を、1100〜1300℃かつ下記(1)式を満足する
温度範囲に加熱し、熱間圧延前のスラブ表層部の結晶粒
径を5mm以下とすることを特徴とするフェライト系ステ
ンレス熱間圧延鋼帯の表面疵防止方法。 T(℃)≦(1150+1.67γp )(℃) ‥‥(1) 但し、γp = 240C+ 470N+23Ni+ 9Cu+ 7Mn
−11.5Cr−11.5Si−12Mo−23V−47Nb−49Ti
−52Al+ 189 ここで、γp および各成分の単位は%、T(℃)はスラ
ブ加熱温度。
(2) A slab of ferritic stainless steel is heated to a temperature range of 1100 to 1300 ° C. and satisfying the following formula (1), and the grain size of the surface layer of the slab before hot rolling is set to 5 mm or less. A method for preventing surface flaws in a ferritic stainless hot-rolled steel strip, comprising: T (° C) ≤ (1150 + 1.67γ p ) (° C) (1) where γ p = 240C + 470N + 23Ni + 9Cu + 7Mn
-11.5Cr-11.5Si-12Mo-23V-47Nb-49Ti
-52Al + 189 Here, the unit of γ p and each component is%, and T (° C) is the slab heating temperature.

【0009】(3) フェライト系ステンレス鋼のスラブ
を、1100〜1300℃かつ下記(2)式を満足する
温度範囲に加熱し、熱間圧延前のスラブ表層部の結晶粒
径を5mm以下とすることを特徴とするフェライト系ステ
ンレス熱間圧延鋼帯の表面疵防止方法。 T(℃)≦(550+7.5Ci(%))(℃) ‥‥(2) 但し、Ciは鋳造スラブのチル晶と柱状晶からなる表面
組織に占めるチル晶占有率(%)。
(3) A slab of ferritic stainless steel is heated to a temperature range of 1100 to 1300 ° C. and satisfying the following expression (2), and the grain size of the surface layer of the slab before hot rolling is set to 5 mm or less. A method for preventing surface flaws in a ferritic stainless hot-rolled steel strip, comprising: T (° C.) ≦ (550 + 7.5 Ci (%)) (° C.) (2) where Ci is the occupancy rate (%) of the chill crystal in the surface structure of the chill crystal and the columnar crystal of the cast slab.

【0010】特に、スラブ加熱直後、すなわち熱間圧延
前の表層粒径が5mmを超えて大きな結晶粒が密集して存
在する場合には、これらの結晶粒毎の結晶方位の違いか
ら、熱延時の加工による結晶粒毎の塑性加工変化量が異
なるため、特に自由表面に接する結晶粒が大きい場合に
は、大きな凹凸として現れ熱間圧延後大きな皺状凹み疵
を生じる。この結晶粒の粒径を細粒化させることにより
熱延途中の結晶方位の異方性差による表面凹凸の形成を
防止することで、熱延後の熱延鋼帯にスケールを含有し
た皺状凹み疵を生じさせないようにすることができる。
In particular, immediately after the heating of the slab, that is, before the hot rolling, when the surface layer grain size exceeds 5 mm and large crystal grains are densely present, the difference in the crystal orientation of each crystal grain causes the hot rolling. Since the amount of change in plastic working for each crystal grain due to the processing is different, when the crystal grain in contact with the free surface is large, it appears as a large unevenness and causes a large wrinkle-like dent defect after hot rolling. By reducing the grain size of this crystal grain to prevent the formation of surface irregularities due to the difference in crystal orientation anisotropy during hot rolling, the wrinkled dents containing scale in the hot rolled steel strip after hot rolling It is possible to prevent defects.

【0011】[0011]

【作用】以下本発明について説明する。熱延鋼板で見ら
れる皺状凹み疵の発生原因を明確にするため熱延工程途
中で圧延を中断し、疵の変化の追跡調査を行った。調査
対象スラブとしては疵発生の著しい16.2%Crのγ
p 15〜25%のSUS430を選び板厚250mm、板
幅1000mm、長さ6000mmの数本の12ton スラブ
を準備した。このスラブを用いて熱延するために125
0℃に2時間加熱した加熱直後の250mm厚スラブ、粗
圧延後の240mm厚、180mm厚、125mm厚、80mm
厚、50mm厚、30mm厚、20mm厚のサンプルと、仕上
げ圧延後の熱延鋼帯として3mm厚のサンプルを採取し、
調査を行った。
The present invention will be described below. In order to clarify the cause of wrinkle-shaped defects found in hot-rolled steel sheets, the rolling was interrupted during the hot-rolling process, and the changes in defects were traced. As a slab to be surveyed, γ of 16.2% Cr with remarkable defects
SUS430 having a p of 15 to 25% was selected, and several 12 ton slabs having a plate thickness of 250 mm, a plate width of 1000 mm and a length of 6000 mm were prepared. 125 for hot rolling with this slab
250mm thick slab immediately after heating at 0 ° C for 2 hours, 240mm thick after rough rolling, 180mm thick, 125mm thick, 80mm
Samples with thickness of 50 mm, 30 mm, 20 mm and 3 mm of hot rolled steel strip after finish rolling were taken,
A survey was conducted.

【0012】スケールが付着したままの3mm厚の熱延鋼
帯では皺状凹み疵の有無は判別できないが、砂鉄を含ん
だ高水圧で鋼帯表面をメカニカルデスケーリングした後
に300g/リットルのH2 SO4 、90℃で60sec
の硫酸酸洗で10〜15μm酸洗溶削後、はじめてスケ
ールを含有した皺状の凹み疵として出現する。しかもコ
イルエッジ近傍の40〜70mmの位置に現れ、それ以内
の幅中央部には出現しない特徴がある。
It is not possible to determine the presence or absence of wrinkle-shaped depressions in a 3 mm-thick hot-rolled steel strip with the scale still attached, but after mechanically descaling the steel strip surface with high water pressure containing sand iron, 300 g / liter H 2 SO 4 , 60 seconds at 90 ° C
After being subjected to 10 to 15 μm pickling and shaving by sulfuric acid pickling, it appears for the first time as wrinkle-like pits containing scale. Moreover, there is a feature that it appears at a position of 40 to 70 mm near the coil edge and does not appear in the width center portion within that.

【0013】熱延鋼帯を800〜1000℃の高温短時
間焼鈍した場合には、メカニカルデスケーリング後同様
に酸洗した後の皺状の凹み疵はかなり軽度になる傾向が
ある。さらに、粗圧延途中で熱延鋼帯の幅を一定化する
ための幅圧下を縦圧延ロールを使用して熱延途中で2〜
4回に分けて、トータル幅圧下量40〜90mm加えた場
合、その幅減少量に対応して、皺状の凹み疵の程度がよ
り一層助長されることが明らかとなった。
When the hot-rolled steel strip is annealed at a high temperature of 800 to 1000 ° C. for a short time, the wrinkle-like dents after pickling similarly after mechanical descaling tend to be considerably mild. Further, the width reduction for making the width of the hot rolled steel strip constant during the rough rolling is performed by using the longitudinal rolling rolls during the hot rolling to
It was clarified that when the total width reduction amount of 40 to 90 mm was added in four times, the degree of the wrinkle-like dent defects was further promoted corresponding to the reduction amount of the width.

【0014】次に、熱延途中の疵発生部位を板厚の変化
に対応させて比較してみると、スケール付着のままの状
態で疵の存在が明らかになる板厚が存在する。すなわ
ち、250〜240mm厚までは疵は明らかではないが、
180〜80mm厚の板厚で明確になり、更に圧延が進ん
で50〜20mm厚では見え難くなる。この180〜80
mm厚の熱延途中のスケール付きの材料を砂鉄を含んだ高
水圧でメカニカルデスケーリングした後に、300g/
リットルのH2 SO4 、90℃で60sec 酸洗したとこ
ろ、疵と対応して大きな結晶粒が存在することが判明し
た。また、その疵部の断面を切断研磨しミクロ調査した
結果、粗粒に対応して凹凸が生成し、いずれの疵部でも
割れが発生していないことが判明した。
Next, when comparing the defect-occurring portions during hot rolling with the change in the plate thickness, there is a plate thickness in which the existence of the defect becomes clear when the scale remains adhered. That is, although the defects are not clear up to the thickness of 250 to 240 mm,
It becomes clear at a plate thickness of 180 to 80 mm, and further rolling makes it difficult to see at a thickness of 50 to 20 mm. This 180-80
After mechanical descaling of a mm-thick hot rolled material with scale under high water pressure containing sand iron, 300 g /
After pickling for 60 seconds at 90 ° C. in 1 liter of H 2 SO 4 , it was found that large crystal grains were present corresponding to the flaws. Further, as a result of cutting and polishing the cross section of the flaw portion and performing a microinvestigation, it was found that unevenness was generated corresponding to the coarse grains and no crack was generated in any of the flaw portions.

【0015】このような割れ発生を伴わない疵は、従来
の熱間加工性悪化材に生じる割れ疵とは原因を異にして
いる疵である。この疵が発生している場所と同じ位置を
240mm厚の材料および250mm厚のスラブ加熱直後に
ついて調べると、10〜40mmの幅を有する深さ4〜7
mm程度の粗粒がエッジ部の表層に特に頻発しており、こ
の粗粒が熱延鋼帯の皺状の凹み疵の原因であることが明
らかになった。また、幅中央には2〜4mm程度の幅を有
する細粒のみが観察され、スラブ加熱直後の幅中央とエ
ッジ部の表層組織は著しく異なっていることが判明し
た。
Such a flaw that does not cause cracking is a flaw whose cause is different from the cracking flaw that occurs in a conventional material having poor hot workability. When the same position where the flaw is generated is examined immediately after heating the 240 mm thick material and the 250 mm thick slab, a depth of 4 to 7 having a width of 10 to 40 mm is obtained.
It was clarified that coarse particles of about mm especially occurred frequently on the surface layer of the edge part, and that these coarse particles were the cause of the wrinkle-shaped dents on the hot-rolled steel strip. Further, only fine grains having a width of about 2 to 4 mm were observed in the center of the width, and it was found that the surface layer structure of the center of the width immediately after heating the slab and the surface layer structure were significantly different.

【0016】次に、加熱エッジ表層部に存在する粗粒の
大きさが皺状の凹み疵の発生状況にどのように関与する
かを調べた。皺状の凹み疵を調査したのと同じ板厚25
0mm、板幅1000mm、長さ6000mmのスラブを用
い、加熱温度を1100〜1350℃まで変化させ加熱
時間を30分から3時間で行い、加熱直後のスラブ表層
部に種々の粒径を持つ鋼片とし(この加熱直後の粒径
は、加熱圧延スラブと同一なスラブを加熱後すぐに冷却
したスラブより断面を研磨エッチングすることで測定し
た。)、粗圧延開始温度を1070℃に一定にして同一
条件で熱延し、4.5mm厚の熱間圧延鋼帯を製造した。
Next, it was investigated how the size of the coarse particles existing in the surface layer of the heating edge contributes to the occurrence of wrinkle-shaped dent defects. The same plate thickness 25 used to investigate wrinkle-shaped dents
Using a slab of 0 mm, a plate width of 1000 mm, and a length of 6000 mm, the heating temperature is changed from 1100 to 1350 ° C. and the heating time is from 30 minutes to 3 hours. (The grain size immediately after the heating was measured by polishing and etching the cross section of the slab that was the same as the heat-rolled slab and immediately cooled after heating.), And the rough rolling start temperature was kept constant at 1070 ° C. under the same conditions. Hot-rolled steel strip having a thickness of 4.5 mm was manufactured.

【0017】この熱間圧延鋼帯を焼鈍することなく鋼板
表面を砂鉄を含んだ高圧水でメカニカルデスケーリング
した後に、300g/リットルのH2 SO4 、90℃で
60sec 酸洗し11〜14μmの酸洗溶削後、スケール
を含有した皺状の凹み疵の数を、熱延鋼帯100mm長さ
当たりの表裏面に発生した皺状の凹み疵の個数を縦軸と
し、加熱直後の粒径分布の最大粒径を横軸とし、両者の
関係をプロットしたものが図1である。
After mechanically descaling the surface of the steel sheet with high-pressure water containing iron sand without annealing this hot-rolled steel strip, it was pickled with H 2 SO 4 at 300 g / liter for 60 seconds at 90 ° C. After pickling and shaving, the number of wrinkle-shaped recesses containing scale is the vertical axis, and the number of wrinkled recesses on the front and back surfaces per 100 mm length of hot-rolled steel strip is the vertical axis, and the particle size immediately after heating The maximum particle size of the distribution is plotted on the horizontal axis, and the relationship between the two is plotted in FIG.

【0018】加熱スラブ表層粒の粒径分布の最大粒径が
小さくなるにつれ皺状の凹み疵の個数は減少し、5mm以
下の粒径では皺状の凹み疵は全く発生しなかった。この
ような結果が得られた理由としては、結晶方位を異にす
る近接した結晶が熱延のように長さ方向に大きな塑性加
工を受けた場合には、結晶方位により大きな変形を示す
粒と変形を示さない粒が存在し、大きな粒で構成される
場合にはその差が大きな凹凸になる。すなわち結晶粒の
異方性に起因した凹凸が発生し、さらに粒径が大きくな
り、その数も多いほど凹凸が発生しやすくなるものと推
定される。
As the maximum grain size of the grain size distribution of the surface grain of the heated slab became smaller, the number of wrinkle-shaped pits decreased, and when the grain size was 5 mm or less, no wrinkled pits occurred. The reason why such results were obtained is that when adjacent crystals with different crystal orientations undergo large plastic working in the lengthwise direction such as hot rolling, grains that show large deformation due to the crystal orientation. If there are grains that do not show deformation, and if they are composed of large grains, the difference between them becomes large unevenness. That is, it is presumed that irregularities due to the anisotropy of crystal grains are generated, the grain size is further increased, and the greater the number, the more likely irregularities are generated.

【0019】次に、先に述べたスラブ幅方向の加熱後表
層組織の違いの原因を明確にするため、CC鋳片のコー
ナーから40〜70mmの場所で柱状晶の組織が多い部分
と、幅中央で柱状晶の組織が多い部分を切り出し組織観
察を行った後、1200〜1230℃で2時間無酸化雰
囲気で加熱後水焼き入れし、再び最初の観察部位の近く
を組織観察して、加熱前後の組織変化を調査した。その
結果、エッジ部の柱状晶の組織は全く変化が生じなかっ
たが、幅中央部から切り出したサンプルには表層部に1
〜2mmの粒径の再結晶粒が生じていた。
Next, in order to clarify the cause of the difference in the surface layer structure after heating in the width direction of the slab described above, a portion having a large amount of columnar crystal structure at a position 40 to 70 mm from the corner of the CC slab and the width After observing the structure by cutting out a portion having a large number of columnar crystal structures at the center, the structure was heated at 1200 to 1230 ° C. for 2 hours in a non-oxidizing atmosphere and then water-quenched. The change in organization before and after was investigated. As a result, the structure of the columnar crystals at the edge portion did not change at all, but in the sample cut out from the width center portion, 1
Recrystallized grains having a grain size of ˜2 mm were produced.

【0020】更に、スラブのマクロ的形状についてエッ
ジ部と幅中央部の違いを調べると、疵の生じるコーナー
から40〜70mmの位置には連続鋳造鋳込み時に生じる
オシレーションマークが残存しており、大きな窪みにな
っているが、それより中央部はオシレーションマークが
潰れ、圧延されたような形態になっていることが判っ
た。このようなCC鋳片表層の変形はオーステナイト系
ステンレス鋼では見られずフェライト系ステンレス鋼特
有な現象であり、700℃以上の高温でのフェライト系
ステンレス鋼の材料強度がオーステナイト系ステンレス
鋼の1/3〜1/4程度であることから生じたものであ
る。すなわちCC鋳片の幅中央のバルジング部に歪が蓄
積され、この歪を駆動力として、続く加熱中に粒径の小
さい再結晶粒が生じたものと推定される。
Further, when the difference between the edge portion and the width center portion of the macro shape of the slab is examined, the oscillation mark generated during continuous casting is left at a position 40 to 70 mm from the corner where the flaw is generated, which is large. Although it is a dent, it was found that the oscillation mark was crushed in the central part and it was in the form of being rolled. Such a deformation of the surface of the CC slab is a phenomenon peculiar to ferritic stainless steels not seen in austenitic stainless steels, and the material strength of ferritic stainless steels at a high temperature of 700 ° C. or higher is 1/100 of that of austenitic stainless steels. It is caused by the fact that it is about 3-1 / 4. That is, it is presumed that strain was accumulated in the bulging portion at the center of the width of the CC slab, and this strain was used as a driving force to generate recrystallized grains having a small grain size during the subsequent heating.

【0021】このような歪の効果を明確にするため、皺
状の凹み疵を調査したのと同じ板厚250mm、板幅10
00mm、長さ6000mmの完全な矩形スラブをオシレー
ションマークを押し潰さないように鋳造し、更にスラブ
の一部を事前に加熱して表層に再結晶が生じないことを
確認したスラブを用いて実験を行った。
In order to clarify the effect of such distortion, the same plate thickness 250 mm and plate width 10 as those used to investigate the wrinkle-like dents and flaws were investigated.
Experiment with a slab of 100 mm in length and 6000 mm in length that was cast without crushing the oscillation marks, and that part of the slab was preheated to confirm that recrystallization did not occur in the surface layer. I went.

【0022】熱間圧延する前の予備処理として、300
〜900℃に1時間加熱した後に、CC鋳片へ圧延する
ことにより歪を1〜20%付与した。このスラブを熱間
圧延するために加熱し、加熱温度を1100〜1350
℃まで変化し、加熱時間を30分から3時間行い(この
加熱直後の粒径は加熱圧延スラブと同一なスラブを熱延
スラブと同様に加熱し、加熱後すぐに冷却し断面を研磨
エッチングして加熱直後のスラブ表層粒径分布の最大粒
径を求めた。)、熱間圧延し、4.5mm厚の熱間圧延鋼
帯を製造した。
As a pretreatment before hot rolling, 300
After heating at ˜900 ° C. for 1 hour, it was rolled into a CC slab to give a strain of 1 to 20%. This slab is heated for hot rolling and the heating temperature is 1100 to 1350.
The heating time is 30 minutes to 3 hours (the particle size immediately after heating is the same as the hot rolling slab, the same slab as the hot rolled slab is heated, and immediately after heating, the slab is cooled and the cross section is polished and etched. The maximum grain size of the slab surface grain size distribution immediately after heating was determined.), And hot rolling was performed to manufacture a hot rolled steel strip having a thickness of 4.5 mm.

【0023】この熱間圧延鋼帯を焼鈍することなく、鋼
板表面を砂鉄を含んだ高圧水でメカニカルデスケーリン
グした後に、300g/リットルのH2 SO4 、90℃
で60sec 酸洗し11〜14μmの酸洗溶削後、スケー
ルを含有した皺状の凹み疵の有無について、CC鋳片へ
の歪付与率と加熱温度の関係を整理した結果が図2であ
る。図2から明らかなように、加熱スラブ表層粒の粒径
分布の最大粒径が5mmより大きくなったものはいずれも
皺状の凹み疵が発生するが、粒径分布の最大粒径が5mm
以下の場合には皺状の凹み疵は発生しない。
Without hot-annealing the hot-rolled steel strip, the surface of the steel sheet was mechanically descaled with high-pressure water containing iron sand, and then 300 g / liter of H 2 SO 4 at 90 ° C.
Fig. 2 shows the result of arranging the relationship between the strain application rate to the CC slab and the heating temperature for the presence or absence of scale-containing wrinkle-like dents after 60 seconds of pickling and 11-14 µm pickling and lapping. . As is clear from FIG. 2, wrinkle-shaped dents are generated in all of the particles having a maximum particle size distribution of the heating slab surface layer particles larger than 5 mm, but the maximum particle size distribution is 5 mm.
In the following cases, no wrinkle-shaped dent defect occurs.

【0024】この実験にはγp が18%のスラブを用い
たが、歪を付与しない場合には1180℃以上の高温加
熱で粒径分布の最大粒径が5mmを超えた粒径に成長して
しまう。これに加工歪を付与すると2.5%未満の加工
歪では変化が見られないが、2.5%以上の加工歪を付
与すると、1300℃以下の加熱温度との組合わせで加
工歪を駆動力とした5mm以下の粒径の再結晶が生じる。
1300℃を超えると5mmを超えた再結晶粒径になり、
熱間圧延後に皺状の凹み疵を生じる。また1180℃未
満の温度では加工歪なしでも粒径分布の最大粒径は5mm
以下であり、CC鋳片への歪付与は不要ではあるが、圧
下量の増大に伴って著しい細粒が得られる領域(118
0℃≧T(℃)≧1190−4×R(℃))があること
が判明した。図1中の*印は連続鋳造装置下部の300
〜900℃の間に歪を付与したデータであり、300〜
900℃への加熱圧延と同様の効果を示す。
In this experiment, a slab having a γ p of 18% was used. When no strain was applied, heating at a high temperature of 1180 ° C. or higher caused the maximum grain size of the grain size distribution to grow to a grain size exceeding 5 mm. Will end up. When a processing strain is applied to this, no change is seen at a processing strain of less than 2.5%, but when a processing strain of 2.5% or more is applied, the processing strain is driven in combination with a heating temperature of 1300 ° C or less. Recrystallization with a grain size of 5 mm or less as a force occurs.
When the temperature exceeds 1300 ° C, the recrystallized grain size exceeds 5 mm,
After hot rolling, wrinkle-shaped dent defects occur. Also, at a temperature below 1180 ° C, the maximum grain size of the grain size distribution is 5 mm even without processing strain.
It is not necessary to apply strain to the CC cast, but it is a region (118) where remarkable fine grains are obtained as the amount of reduction is increased.
It was found that 0 ° C. ≧ T (° C.) ≧ 1190-4 × R (° C.)). The mark * in Fig. 1 is 300 at the bottom of the continuous casting machine.
It is the data that the strain is applied between 900 ° C and 300 ° C.
It shows the same effect as hot rolling to 900 ° C.

【0025】またこのような加工歪の効果は、通常エッ
ジ近傍40〜70mmの皺状の凹み疵が発生する部位にの
み加工歪を付与できる装置を用いることによっても、熱
間圧延のために加熱した後に粒径分布の最大粒径は5mm
以下にコントロールすることができる。またスラブ短辺
側に作用させることにより加熱後粒径を5mm以下とする
ことで、熱延板エッジ15〜20mmに発生するエッジシ
ーム疵も3mm以下に低減できた。加熱による結晶粒の成
長や再結晶の変化は短時間で進み、30分で各条件に応
じた組織に変化した後には変化しなくなる。実操業では
昇温に1〜2時間を要し、しかも均熱のための加熱時間
は1〜3時間程度であるため、組織は30分〜3時間で
判定した。
In addition, the effect of such working strain can be obtained by applying an apparatus capable of imparting working strain only to a portion where a wrinkle-shaped dent defect in the vicinity of the edge is usually produced by heating for hot rolling. After that, the maximum particle size of the particle size distribution is 5 mm
You can control the following: Further, by making the grain size after heating 5 mm or less by acting on the short side of the slab, the edge seam flaws generated in the edges of the hot-rolled sheet of 15 to 20 mm could be reduced to 3 mm or less. The growth of crystal grains and the change of recrystallization due to heating proceed in a short time and stop changing after the structure changes to a structure according to each condition in 30 minutes. In actual operation, it takes 1 to 2 hours to raise the temperature, and the heating time for soaking is about 1 to 3 hours. Therefore, the structure was judged in 30 minutes to 3 hours.

【0026】次に、本発明における限定理由について述
べる。CC鋳片に付与する加工歪の程度については、有
効に作用する下限があり、また上限は連続鋳造装置直下
の圧下装置に大きな能力が必要となり、また過大な歪を
付与すると鋳片自体に割れが生じるため、2.5〜15
%の範囲に限定した。CC鋳片に歪を付与する場合の温
度については、300℃未満では柱状晶の粒界から割れ
が生じ易くなるため、下限を300℃以上とした。歪を
有効に作用させるにはより低温が望ましいが、900℃
を超えると効果が小さくなるので、300〜900℃の
範囲に限定した。また、加熱前の温度については鋳片の
脆化温度によって異なり、常温搬送で割れが生じてしま
う材料は300℃以上の保熱処理が必要であり、割れが
生じない材料では常温に冷却する。
Next, the reasons for limitation in the present invention will be described. Regarding the degree of processing strain imparted to CC slab, there is a lower limit that works effectively, and the upper limit requires a large capacity in the rolling reduction device directly under the continuous casting device, and if excessive strain is applied, the slab itself will crack. Occurs, 2.5 to 15
%. Regarding the temperature at which strain is applied to the CC slab, if the temperature is less than 300 ° C, cracks easily occur from the grain boundaries of the columnar crystals, so the lower limit was made 300 ° C or higher. Lower temperature is desirable for effective strain, but 900 ℃
If it exceeds, the effect becomes small, so the range is limited to 300 to 900 ° C. The temperature before heating depends on the embrittlement temperature of the slab, and a material that is cracked at room temperature requires heat treatment at 300 ° C. or higher, and a material that does not crack is cooled to room temperature.

【0027】熱間圧延前の加熱温度Tについては、11
00℃未満では熱間圧延時の変形抵抗が増大し、熱延機
の圧延負荷が過大となって圧延が困難になるので、11
00℃以上とするのが好ましい。また、1300℃を超
えるとスラブが加熱時に変形して熱延できない形状にな
り、また加工歪を付与しても加熱後粒径5mm以下に制御
できないので、1300℃以下とした。
The heating temperature T before hot rolling is 11
If it is less than 00 ° C., the deformation resistance during hot rolling increases, and the rolling load of the hot rolling machine becomes excessive, which makes rolling difficult.
The temperature is preferably 00 ° C. or higher. Further, when the temperature exceeds 1300 ° C, the slab is deformed during heating to a shape that cannot be hot-rolled, and the grain size after heating cannot be controlled to 5 mm or less even if processing strain is applied, so the temperature was set to 1300 ° C or less.

【0028】次に、加熱スラブの表層粒径を変化させる
要因について検討した。スラブ加熱温度と加熱時間を変
化させた場合の加熱スラブ表層粒の粒径分布の最大粒径
が変化する様子を整理すると、図3に示すように、加熱
初期の30分未満では粒成長の変化が著しいが、30分
以上では粒成長はほとんど無くなる。また、加熱温度に
より粒径分布の最大粒径は大きく異なり、高温加熱ほど
粗粒が多く発生する。実操業では昇温に1〜2時間を要
し、均熱のための加熱は1〜3時間程度であることか
ら、粒径を制御するためには加熱温度の制御が重要であ
る。
Next, factors for changing the surface grain size of the heating slab were examined. When the state in which the maximum particle size of the particle size distribution of the heating slab surface particles is changed when the slab heating temperature and the heating time are changed is shown in FIG. 3, as shown in FIG. Is remarkable, but grain growth almost disappears after 30 minutes. Further, the maximum particle size of the particle size distribution varies greatly depending on the heating temperature, and the higher the temperature is, the more coarse particles are generated. In actual operation, it takes 1 to 2 hours to raise the temperature, and heating for soaking takes about 1 to 3 hours. Therefore, it is important to control the heating temperature in order to control the particle size.

【0029】さらに操業データを解析することにより、
成分によって変化するγ層を表すγp と加熱温度(30
分〜3時間加熱)が皺状の凹み疵発生に及ぼす関係を整
理した結果を図4に示す。図4から明らかなように、加
熱スラブ表層粒の粒径分布の最大粒径が5mmより大きく
なったものはいずれも皺状の凹み疵が発生するが、粒径
分布の最大粒径が5mm以下のものの場合には皺状の凹み
疵は発生しない。そしてこのように皺状の凹み疵の発生
しないスラブ製造条件が存在することが分かる。
By further analyzing the operation data,
Γ p , which represents the γ layer that changes depending on the composition, and the heating temperature (30
FIG. 4 shows the result of arranging the relationship between (minutes to 3 hours heating) and the occurrence of wrinkle-shaped dent defects. As is clear from FIG. 4, when the maximum particle size distribution of the heating slab surface particle size is larger than 5 mm, wrinkle-shaped dents and scratches are generated, but the maximum particle size distribution particle size is 5 mm or less. In the case of the above, no wrinkle-shaped dent defect occurs. It can be seen that there exists a slab manufacturing condition in which wrinkle-shaped dents and defects do not occur.

【0030】この製造条件は図4に示すとおり、スラブ
の加熱温度をT(℃)、スラブの成分より算出されるγ
p (%)とすると、 T(℃)≦1150+1.67γp (%) となる条件である。この条件で加熱後粒径を5mm以下と
することで、熱延板エッジ15〜20mmに発生するエッ
ジシーム疵も3mm以下に低減できた。このように、γp
を増加させると加熱スラブ表層の粒成長が加熱温度の上
昇にもかかわらず抑制できる機構については、スラブの
加熱時においてスラブ表層部のγ層がより多く存在し、
フェライト粒の粒成長を抑制するものと考えられる。
The manufacturing conditions are, as shown in FIG. 4, the heating temperature of the slab is T (° C.), and γ is calculated from the components of the slab.
If p (%), then T (° C.) ≦ 1150 + 1.67γ p (%). By setting the particle size after heating to 5 mm or less under these conditions, the edge seam flaws generated in the edges of the hot-rolled sheet of 15 to 20 mm could be reduced to 3 mm or less. Thus, γ p
For the mechanism that the grain growth of the heating slab surface layer can be suppressed by increasing the heating temperature even if the heating temperature rises, there are more γ layers in the slab surface layer during heating of the slab,
It is considered to suppress the grain growth of ferrite grains.

【0031】加熱温度Tの限定については、1100℃
未満では熱間圧延時の変形抵抗が増大し、熱延機の圧延
負荷が過大となって圧延が困難になるので、1100℃
以上とするのが好ましい。また、1300℃を超えると
スラブが加熱時に変形して熱延できない形状になるの
で、1300℃以下とした。
The heating temperature T is limited to 1100 ° C.
If it is less than 1, the deformation resistance during hot rolling increases, and the rolling load of the hot rolling machine becomes excessive, making rolling difficult.
It is preferable to make the above. Further, when the temperature exceeds 1300 ° C, the slab is deformed during heating and cannot be hot-rolled.

【0032】更に、先に述べたスラブ幅方向の加熱後表
層組織の相違の原因を明確にするため、CC鋳片の幅中
央部とスラブコーナー部から40〜70mmの位置の表層
組織の違いについて、別のスラブを用い比較検討を行っ
た。その結果、CC鋳片の幅中央にはチル晶が多く柱状
晶が少なく、幅エッジ40〜70mmの位置には反対にチ
ル晶が少なく柱状晶が多い傾向があることが分かった。
特に幅エッジ部についてはCC鋳片毎の相違が激しく、
チル晶と柱状晶の割合が大きく変化していた。
Further, in order to clarify the cause of the difference in the surface layer structure after heating in the slab width direction described above, the difference in the surface layer structure at the position of 40 to 70 mm from the width center part of the CC slab and the slab corner part is described. , Another slab was used for comparison. As a result, it was found that the CC slab had a large amount of chill crystals and a small amount of columnar crystals in the center of the width, and the width edges of 40 to 70 mm tended to have a small amount of chill crystals and a large amount of columnar crystals.
Especially for the width edge part, the difference between CC casts is severe,
The proportion of chill crystals and columnar crystals changed significantly.

【0033】このようにチル晶と柱状晶の異なるCC鋳
片について、CC鋳片表層のC断面120mm当たりに占
めるチル晶と柱状晶の占有率を求め、この内のチル晶の
占有率と加熱温度が加熱後の粗粒化および皺状の凹み疵
発生に及ぼす関係を整理した結果を図5に示す。ここ
で、柱状晶とはC断面を観察した時にスラブ表層に0.
3〜2mmの幅があり、定義は表面から深さ方向に7mm以
上成長した粒とした。この柱状晶の表面に占める長さの
合計を120mmから差し引くと、チル晶の占める長さが
計算でき、これを120mmで割ったものがチル晶率であ
る。
Thus, regarding CC casts having different chill crystals and columnar crystals, the occupancy ratio of chill crystals and columnar crystals per 120 mm of the C cross section of the CC slab was determined, and the occupancy ratio of chill crystals and the heating ratio were calculated. FIG. 5 shows the results in which the relationship between the temperature and the coarsening after heating and the occurrence of wrinkle-shaped dents is arranged. Here, the columnar crystal means that the surface of the slab has a grain size of 0.
It has a width of 3 to 2 mm, and the definition is a grain grown from the surface in the depth direction by 7 mm or more. By subtracting the total length occupied by the surface of the columnar crystal from 120 mm, the length occupied by the chill crystal can be calculated, and the value obtained by dividing this by 120 mm is the chill crystal ratio.

【0034】図5から明らかなように、加熱スラブ表層
粒の粒径分布の最大粒径が5mmより大きくなったものは
いずれも皺状の凹み疵が発生するが、粒径分布の最大粒
径が5mm以下のものの場合には皺状の凹み疵は発生しな
い。そして、高温加熱化で粗粒が多く発生し、皺状の凹
み疵が生じていることが分かる。
As is apparent from FIG. 5, wrinkle-shaped dents and defects are generated in any of the heating slabs having a maximum particle size distribution of the surface layer particles larger than 5 mm. If the thickness is 5 mm or less, no wrinkle-shaped dent defect is generated. Further, it can be seen that a large number of coarse particles are generated by heating at a high temperature, and wrinkle-shaped concave flaws are generated.

【0035】チル晶率が高くなるにつれ粗粒化の限界加
熱温度は上昇し、100%のチル晶では1300℃に加
熱しても粒径分布の最大粒径は5mm以下となり、皺状の
凹み疵は発生しない。そして、このように凹み疵の発生
しないスラブ製造条件が存在することが分かる。この製
造条件は図5に示す通り、スラブ加熱温度をT(℃)、
スラブ表層エッジ120mm当たりのチル晶率Ci(%)
とすると、 T(℃)≦550+7.5×Ci(%) となる条件である。この条件は粗圧延途中で熱延鋼帯の
幅を一定化するための幅圧下を行っても有効である。
As the chill crystal ratio increases, the critical heating temperature for coarsening increases, and with 100% chill crystals, the maximum particle size distribution becomes 5 mm or less even when heated to 1300 ° C., resulting in wrinkle-like depressions. No flaws occur. Then, it can be seen that there exists a slab manufacturing condition in which such a dent defect does not occur. As shown in FIG. 5, the manufacturing condition is that the slab heating temperature is T (° C.),
Chill crystal ratio Ci (%) per 120 mm of slab surface edge
Then, the condition is T (° C.) ≦ 550 + 7.5 × Ci (%). This condition is effective even if width reduction is performed to make the width of the hot-rolled steel strip constant during rough rolling.

【0036】このようにチル晶率と加熱温度を規定し加
熱後粒径を5mm以下とすることで、熱延板エッジ15〜
20mmに発生するエッジシーム疵も3mm以下に低減でき
た。このようにチル晶が多くなり、加熱スラブ表層の粒
成長が加熱温度の上昇にもかかわらず抑制できる明確な
機構については不明であるが、スラブの加熱時に粒成長
を生じ難くさせる粒界偏析元素がより急冷凝固になるチ
ル晶粒界部に多く存在するために、スラブ加熱時にチル
晶の方が柱状晶より粒成長を生じ難いものと考えてい
る。
As described above, the chill crystal ratio and the heating temperature are regulated, and the particle size after heating is set to 5 mm or less, whereby the hot rolled sheet edge 15 to
Edge seam flaws that occur on 20 mm can also be reduced to 3 mm or less. In this way, the chill crystals increase, and the clear mechanism by which the grain growth of the heating slab surface layer can be suppressed despite the increase of the heating temperature is unknown, but the grain boundary segregation element that makes grain growth difficult to occur during heating of the slab. It is considered that the chill crystals are less likely to cause grain growth than the columnar crystals when the slab is heated because there are more chill crystals at the grain boundary portions where they are rapidly solidified.

【0037】この鋳造組織から加熱による結晶粒の成長
は比較的短時間で進み、30分で各条件に応じた組織に
変化した後には、変化しなくなる。実操業では昇温に1
〜2時間を要し、しかも均熱のための加熱時間は1〜3
時間程度であるため、組織は30分〜3時間で判定し
た。チル晶率の制御方法については、CC鋳片の鋳込み
時のCCモールド内での溶鋼温度と凝固液層線の差から
求めたΔTを20〜40deg Cの間でコントロールする
ことによって得ることができ、ΔTとCC鋳片表層のチ
ル晶率の関係を図6に示す。
From this cast structure, the growth of crystal grains by heating proceeds in a relatively short time, and after changing to a structure according to each condition in 30 minutes, it does not change. 1 in heating in actual operation
~ 2 hours are required, and the heating time for soaking is 1 to 3
Since it is about time, the tissue was judged in 30 minutes to 3 hours. The chill crystallinity can be controlled by controlling the ΔT obtained from the difference between the molten steel temperature and the solidification liquid layer line in the CC mold during casting of the CC slab within a range of 20 to 40 deg C. , ΔT and the chill crystal ratio of the surface layer of the CC slab are shown in FIG.

【0038】加熱温度Tの限定については、1100℃
未満では熱間圧延時の変形抵抗が増大し、熱延機の圧延
負荷が過大となって圧延が困難になるので、1100℃
以上とするのが好ましい。また、1300℃を超えると
スラブが加熱時に変形して熱延できない形状になるの
で、1300℃以下とした。
The heating temperature T is limited to 1100 ° C.
If it is less than 1, the deformation resistance during hot rolling increases, and the rolling load of the hot rolling machine becomes excessive, making rolling difficult.
It is preferable to make the above. Further, when the temperature exceeds 1300 ° C, the slab is deformed during heating and cannot be hot-rolled.

【0039】熱間圧延前の加熱時間については、特にス
ラブ加熱炉均熱帯に滞留(通過)する時間がポイントで
あるが、実操業上最低30分は必要であり、3時間を超
える長時間加熱ではスラブ加熱時に変形してしまうこと
が懸念されるため、3時間以内が望ましい。
Regarding the heating time before hot rolling, the point is the time of staying (passing) in the soaking zone of the slab heating furnace, but a minimum of 30 minutes is necessary in actual operation, and heating for a long time exceeding 3 hours is required. Then, there is a concern that the slab may be deformed during heating.

【0040】スラブ加熱直後のスラブ表層部の結晶粒径
に着目した点については、皺状の凹み疵との対応が明確
なためと、スラブ加熱後の組織が安定であり組織変化し
難いためである。すなわち、一般に加熱直後の組織を観
察する場合には加熱直後に水冷を行い急冷処理が必要で
あるが、12ton 規模のスラブでは水冷することは容易
ではない。小サンプルで12ton 規模のスラブをシミュ
レートし、徐冷させたサンプルと水冷したサンプルで加
熱後の組織を粒径分布の最大粒径について調べると、冷
却条件は影響が少ないことが判明している。
Focusing on the crystal grain size of the surface layer portion of the slab immediately after heating the slab, it is clear that the correspondence with the wrinkle-shaped concave flaws is stable and that the structure after heating the slab is stable and is unlikely to change in structure. is there. That is, in general, when observing the structure immediately after heating, it is necessary to perform water cooling immediately after heating to perform rapid cooling treatment, but it is not easy to perform water cooling with a 12 ton scale slab. Simulating a 12 ton scale slab with a small sample and examining the maximum grain size of the grain size distribution of the heated structure in the slowly cooled sample and the water cooled sample, it was found that the cooling conditions had little effect. .

【0041】本発明の対象とするフェライト系ステンレ
ス鋼については、次の成分範囲から選択したものである
ことが望ましい。以下その構成要件の根拠について述べ
る。Cは、耐食性に大きく影響する元素であり、Cが多
いとCr炭化物を形成し粒界腐食を引き起こし易いた
め、0.1%以下にする。Siは、製鋼時の脱酸剤が残
存して含有する元素であるが、多量に含有すると加工性
を害するため、上限を1.0%とした。Mnは、製鋼時
に脱酸及び脱硫剤が残存して含有するが、多量に含有す
ると耐食性を害するため、上限を1.0%とする。
The ferritic stainless steel which is the subject of the present invention is preferably selected from the following composition ranges. The basis of the constituent requirements will be described below. C is an element that greatly affects the corrosion resistance. If C is large, Cr carbides are easily formed and intergranular corrosion is easily caused, so C is made 0.1% or less. Si is an element contained in the deoxidizing agent remaining during steel making, but if contained in a large amount, it impairs workability, so the upper limit was made 1.0%. Mn contains deoxidizing and desulfurizing agents remaining during steel making, but if contained in a large amount, it impairs corrosion resistance, so the upper limit is made 1.0%.

【0042】Pは、あえて添加する元素ではなく、熱間
加工性の点から少ない方が望ましく、0.04%以下に
する。Sもあえて添加する元素ではなく、熱間加工性及
び耐食性の点から少ない方が望ましく、0.02%以下
にする。Niは、靭性を向上させる場合以外は本来必要
のない元素であるが、製造工程上不可避的に入ってくる
ため、その許容限度を0.3%とした。
From the viewpoint of hot workability, it is desirable that P is not an element to be added, and it is preferably 0.04% or less. S is also not an element to be added intentionally, and it is desirable that it is small in terms of hot workability and corrosion resistance, and is made 0.02% or less. Ni is an element that is essentially unnecessary except when improving the toughness, but Ni is inevitable in the manufacturing process, so its allowable limit was set to 0.3%.

【0043】Crは、11%未満ではステンレス鋼とし
ての耐食性を維持することができず、また23%を超え
ると熱間加工性が劣化するため、11〜23%の範囲と
する。Tiは、深絞り性、耐食性を向上させる元素であ
るが、多量の添加は製造性を悪化させるため、上限を
0.6%とする。Alは、製鋼時の強力な脱酸剤として
必要であり、また熱間圧延鋼帯を高温短時間焼鈍あるい
は焼鈍を省略するために必要であるが、多量に含有する
と介在物が多くなるため、上限を0.2%とした。
If the Cr content is less than 11%, the corrosion resistance as stainless steel cannot be maintained, and if it exceeds 23%, the hot workability deteriorates, so the Cr content is made 11 to 23%. Ti is an element that improves deep drawability and corrosion resistance, but addition of a large amount deteriorates manufacturability, so the upper limit is made 0.6%. Al is necessary as a strong deoxidizing agent during steel making, and is necessary for omitting high-temperature short-time annealing or annealing of the hot-rolled steel strip, but inclusion of a large amount increases inclusions, The upper limit was 0.2%.

【0044】Nは、Cと同様にCr窒化物を形成して耐
食性を害し、また成形性を劣化させる。従って、0.0
5%以下にする。Cuは、耐食性向上の作用があるが、
多量添加は熱間加工性を劣化させるので、0.1%以下
にする。Nbは、深絞り性を向上させる元素であるが、
多量の添加は熱間加工性を悪化させるため、上限を0.
1%とする。
Like N, N forms Cr nitrides, impairs corrosion resistance, and deteriorates formability. Therefore, 0.0
Reduce to 5% or less. Cu has the effect of improving corrosion resistance,
Addition of a large amount deteriorates hot workability, so the content is made 0.1% or less. Nb is an element that improves deep drawability,
Since addition of a large amount deteriorates hot workability, the upper limit is set to 0.
1%.

【0045】Moは、耐食性を著しく向上させる元素で
あるが、高価な元素であり、0.05%以下とした。V
は、耐食性を著しく向上させるが、熱間加工性を低下さ
せるため、0.1%以下とした。Oは、耐食性、成形性
の面から好ましくなく、0.01%以下が望ましい。
Mo is an element that significantly improves the corrosion resistance, but it is an expensive element, and its content is set to 0.05% or less. V
Has significantly improved the corrosion resistance, but deteriorates the hot workability, so it was made 0.1% or less. O is not preferable in terms of corrosion resistance and moldability, and 0.01% or less is desirable.

【0046】以上の成分は、γp =240C+470N
+23Ni+9Cu+7Mn−11.5Cr−11.5
Si−12Mo−23V−47Nb−49Ti−52A
l+189(%)で示されるγp の計算値5〜60%の
フェライト系ステンレス鋼を対象とする。γp について
は、熱間圧延鋼帯を高温短時間焼鈍あるいは焼鈍を省略
するために最低限必要であり、また、60%を超えると
熱間加工性が劣化するためである。次に本発明の実施例
について説明する。
The above components are γ p = 240C + 470N
+ 23Ni + 9Cu + 7Mn-11.5Cr-11.5
Si-12Mo-23V-47Nb-49Ti-52A
The target is ferritic stainless steel having a calculated γ p value of 1 + 189 (%) of 5 to 60%. This is because γ p is the minimum necessary for omitting high temperature short time annealing or annealing of the hot rolled steel strip, and when it exceeds 60%, hot workability deteriorates. Next, examples of the present invention will be described.

【0047】[0047]

【実施例】【Example】

[実施例1]表1にその化学成分を示すA,Bの2種類
のγp 5%と29%のフェライト系ステンレス鋼につい
て、各々連続鋳造によって連鋳スラブとし、垂直型CC
連続鋳造装置下部に設置してあるピンチローラーを使用
して、圧延歪を300〜900℃の温度範囲で付与し
た。このスラブを熱間圧延するため加熱炉で1100〜
1300℃に加熱した後、ホットストリップミルで熱間
圧延した。
[Example 1] Two types of γ p 5% and 29% ferritic stainless steels of A and B whose chemical components are shown in Table 1 were continuously cast into continuous cast slabs, and vertical type CCs were used.
Rolling strain was applied in a temperature range of 300 to 900 ° C. by using a pinch roller installed below the continuous casting device. In order to hot roll this slab, 1100 ~
After heating to 1300 ° C., hot rolling was performed with a hot strip mill.

【0048】スラブの寸法は厚さ250mm、幅1030
mmで単重は10〜12ton である。熱間圧延は厚さ23
mmまで圧延した後、仕上げ圧延して厚さ4.0mmのホッ
トコイルに仕上げた。その時の粗圧延のパススケジュー
ルを表2に、また仕上げ圧延のパススケジュールを表3
に示した。粗圧延については、幅圧下をしないパススケ
ジュールAと幅圧下をするパススケジュールBで圧延し
た。
The dimensions of the slab are 250 mm in thickness and 1030 in width.
The unit weight in mm is 10 to 12 tons. Hot rolling is 23
After rolling to mm, finish rolling was performed to obtain a hot coil having a thickness of 4.0 mm. Table 2 shows the rough rolling pass schedule and Table 3 shows the finishing rolling pass schedule.
It was shown to. Regarding rough rolling, rolling was performed according to pass schedule A in which width reduction was not performed and pass schedule B in which width reduction was performed.

【0049】[0049]

【表1】 [Table 1]

【0050】[0050]

【表2】 [Table 2]

【0051】[0051]

【表3】 [Table 3]

【0052】その後焼鈍することなく砂鉄を含んだ高圧
水で鋼板表面をメカニカルデスケーリングした後に、3
00g/リットルのH2 SO4 、90℃、60sec で硫
酸酸洗し、10〜15μm酸洗溶削後にサンプルの表面
を検査して、皺状の凹み疵の発生状況を調べた。
After the mechanical descaling of the steel sheet surface with high-pressure water containing iron sand without annealing, 3
The surface of the sample was inspected for wrinkle-shaped pits and scratches by inspecting the surface of the sample after sulfuric acid pickling with H 2 SO 4 of 00 g / liter at 90 ° C. for 60 seconds and pickling with 10-15 μm pickling.

【0053】また、各々のスラブの加熱時においてスラ
ブの一部をサンプルとして同時に加熱炉に装入し、熱延
実験に供したのと同じ条件のもとで加熱した後、このサ
ンプルは熱間圧延することなく冷却し、その表層部に生
じたフェライト粒の粒径分布の最大粒径をC断面につい
て測定した。これらの結果を一括して表4に示した。表
4に記した加熱温度は、スラブ表面が抽出温度にほぼ達
した状態で加熱炉内に保持された時間であり、いわゆる
均熱時間に相当する。
When heating each slab, a part of the slab was simultaneously charged as a sample into a heating furnace and heated under the same conditions as those used in the hot rolling experiment. It was cooled without rolling, and the maximum grain size of the grain size distribution of ferrite grains generated in the surface layer portion was measured for the C cross section. The results are collectively shown in Table 4. The heating temperature shown in Table 4 is the time during which the slab surface was held in the heating furnace in a state where the slab surface almost reached the extraction temperature, and corresponds to the so-called soaking time.

【0054】[0054]

【表4】 [Table 4]

【0055】表4の結果に示されるように、スラブ加熱
直後の表層粒径分布の最大粒径を5mm以下に制御したも
のは、皺状の凹み疵の発生がない。そして、歪を2.5
〜15%付与し、熱間圧延の加熱温度として1300℃
以下に加熱した場合には、スラブ加熱直後の表層粒径分
布の最大粒径が5mm以下となり、皺状の凹み疵の発生が
生じないのに対し、歪が2.5%未満で1180℃以上
の場合、歪を付与しても1300℃を超えた場合には、
スラブ加熱直後の表層粒径分布の最大粒径が5mmを超え
て大きくなり、皺状の凹み疵が発生した。以上の結果か
ら、フェライト系ステンレス鋼の熱延鋼帯の表面に現れ
る皺状の凹み疵の発生は、スラブ加熱終了直後の表層粒
径分布の最大粒径を5mm以下に制御することによって防
止できることが明らかである。
As shown in the results of Table 4, those in which the maximum grain size of the grain size distribution of the surface layer immediately after heating the slab was controlled to 5 mm or less did not cause wrinkle-like dent defects. And the distortion is 2.5
~ 15%, and the heating temperature for hot rolling is 1300 ° C.
When heated below, the maximum particle size in the surface particle size distribution immediately after heating the slab becomes 5 mm or less, and wrinkle-shaped dents and scratches do not occur, but the strain is less than 2.5% and 1180 ° C or more. In the case of, when strain exceeds 1300 ° C even if strain is applied,
The maximum grain size in the grain size distribution of the surface layer immediately after heating the slab exceeded 5 mm and became large, and wrinkle-shaped dents and flaws occurred. From the above results, it is possible to prevent the occurrence of wrinkle-shaped depressions appearing on the surface of the hot rolled steel strip of ferritic stainless steel by controlling the maximum grain size of the surface grain size distribution immediately after the slab heating to 5 mm or less. Is clear.

【0056】[実施例2]表1にその化学成分を示すA
〜Eの5種類のγp 5〜60%のフェライト系ステンレ
ス鋼について、各々連続鋳造によって連鋳スラブとし、
これを加熱炉で1100〜1300℃に加熱した後、ホ
ットストリップミルで熱間圧延した。スラブの寸法は厚
さ250mm、幅1030mmで単重は10〜12ton であ
る。熱間圧延は厚さ23mmまで圧延した後、仕上げ圧延
して厚さ4.0mmのホットコイルに仕上げた。その時の
粗圧延のパススケジュールを表2に、また仕上げ圧延の
パススケジュールを表3に示した。粗圧延については、
幅圧下をしないパススケジュールAと幅圧下をするパス
スケジュールBで圧延した。
[Example 2] A showing the chemical components in Table 1
~ E of five types of γ p 5 to 60% ferritic stainless steel, each of which is continuously cast into a continuous cast slab,
This was heated to 1100 to 1300 ° C. in a heating furnace and then hot-rolled by a hot strip mill. The slab has a thickness of 250 mm, a width of 1030 mm and a unit weight of 10 to 12 tons. In hot rolling, after rolling to a thickness of 23 mm, finish rolling was performed to finish a hot coil having a thickness of 4.0 mm. The rough rolling pass schedule is shown in Table 2 and the finish rolling pass schedule is shown in Table 3. For rough rolling,
Rolling was carried out with a pass schedule A without width reduction and a pass schedule B with width reduction.

【0057】その後焼鈍することなく砂鉄を含んだ高圧
水で鋼板表面をメカニカルデスケーリングした後に、3
00g/リットルのH2 SO4 、90℃、60sec で硫
酸酸洗し、10〜15μm酸洗溶削後にサンプルの表面
を検査して、皺状の凹み疵の発生状況を調べた。
After mechanical descaling of the steel sheet surface with high-pressure water containing iron sand without annealing, 3
The surface of the sample was inspected for wrinkle-shaped pits and scratches by inspecting the surface of the sample after sulfuric acid pickling with H 2 SO 4 of 00 g / liter at 90 ° C. for 60 seconds and pickling with 10-15 μm pickling.

【0058】また、各々のスラブの加熱時においてスラ
ブの一部をサンプルとして同時に加熱炉に装入し、熱延
実験に供したのと同じ条件のもとで加熱した後、このサ
ンプルは熱間圧延することなく冷却し、その表層部に生
じたフェライト粒の粒径分布の最大粒径をC断面につい
て測定した。これらの結果を一括して表5に示した。表
5に記した加熱温度は、スラブ表面が抽出温度にほぼ達
した状態で加熱炉内に保持された時間であり、いわゆる
均熱時間に相当する。
When heating each slab, a part of the slab was simultaneously charged as a sample into a heating furnace and heated under the same conditions as those used in the hot rolling experiment. It was cooled without rolling, and the maximum grain size of the grain size distribution of ferrite grains generated in the surface layer portion was measured for the C cross section. The results are collectively shown in Table 5. The heating temperature shown in Table 5 is the time during which the slab surface was kept in the heating furnace in a state where the slab surface almost reached the extraction temperature, and corresponds to the so-called soaking time.

【0059】[0059]

【表5】 [Table 5]

【0060】表5の結果に示されるように、スラブ加熱
直後の表層粒径分布の最大粒径を5mm以下に制御したも
のは、皺状の凹み疵の発生がない。そして、加熱条件を
スラブ加熱温度(℃)≦1150+1.67γp (%)
とした場合には、スラブ加熱直後の表層粒径分布の最大
粒径が5mm以下となり、皺状の凹み疵の発生がないのに
対し、スラブ加熱温度が1150+1.67γp (%)
の値を超えたものは、スラブ加熱直後の表層粒径分布の
最大粒径が5mmを超えて大きくなり、皺状の凹み疵が発
生した。以上の結果から、フェライト系ステンレス鋼の
熱延鋼帯の表面に現れる皺状の凹み疵の発生は、スラブ
加熱終了直後の表層粒径分布の最大粒径を5mm以下に制
御することによって防止できることが明らかである。
As shown in the results of Table 5, those in which the maximum grain size in the grain size distribution of the surface layer immediately after heating the slab was controlled to 5 mm or less did not cause wrinkle-like dent defects. Then, the heating conditions are slab heating temperature (° C) ≤ 1150 + 1.67γ p (%)
In the case of, the maximum grain size in the surface layer grain size distribution immediately after heating the slab is 5 mm or less, and wrinkle-shaped dents and flaws do not occur, whereas the slab heating temperature is 1150 + 1.67γ p (%)
If the value exceeds the value of, the maximum particle size of the surface layer particle size distribution immediately after heating the slab exceeds 5 mm and becomes large, and wrinkle-shaped dents and defects are generated. From the above results, it is possible to prevent the occurrence of wrinkle-shaped depressions appearing on the surface of the hot rolled steel strip of ferritic stainless steel by controlling the maximum grain size of the surface grain size distribution immediately after the slab heating to 5 mm or less. Is clear.

【0061】[実施例3]表1にその化学成分を示す
A,Bの2種類のγp 5%と29%のフェライト系ステ
ンレス鋼について、各々連続鋳造によって連鋳スラブと
し、連続鋳造時に鋳造条件を変化させ、ΔTを15〜4
5deg CとしCC鋳片の表層組織のチル晶率を変化させ
た。これを加熱炉で1100〜1300℃に加熱した
後、ホットストリップミルで熱間圧延した。スラブの寸
法は厚さ250mm、幅1030mmで単重は10〜12to
n である。熱間圧延は厚さ23mmまで圧延した後、仕上
げ圧延して厚さ4.0mmのホットコイルに仕上げた。そ
の時の粗圧延のパススケジュールを表2に、また仕上げ
圧延のパススケジュールを表3に示した。粗圧延につい
ては、幅圧下をしないパススケジュールAと幅圧下をす
るパススケジュールBで圧延した。
[Example 3] Two kinds of γ p 5% and 29% of ferritic stainless steels of A and B whose chemical components are shown in Table 1 are continuously cast into continuous cast slabs, which are cast during continuous casting. Change ΔT to 15 to 4 by changing the condition
The chill crystallinity of the surface layer structure of the CC cast was changed to 5 deg C. This was heated to 1100 to 1300 ° C. in a heating furnace and then hot-rolled by a hot strip mill. The slab has a thickness of 250 mm, a width of 1030 mm, and a unit weight of 10 to 12 to
n. In hot rolling, after rolling to a thickness of 23 mm, finish rolling was performed to finish a hot coil having a thickness of 4.0 mm. The rough rolling pass schedule is shown in Table 2 and the finish rolling pass schedule is shown in Table 3. Regarding rough rolling, rolling was performed according to pass schedule A in which width reduction was not performed and pass schedule B in which width reduction was performed.

【0062】その後焼鈍することなく砂鉄を含んだ高圧
水で鋼板表面をメカニカルデスケーリングした後に、3
00g/リットルのH2 SO4 、90℃、60sec で硫
酸酸洗し、11〜16μm酸洗溶削後にサンプルの表面
を検査して、皺状の凹み疵の発生状況を調べた。
After the mechanical descaling of the steel sheet surface with high-pressure water containing iron sand without annealing, 3
The surface of the sample was inspected on the surface of the sample after sulfuric acid pickling with H 2 SO 4 at 00 g / liter, 90 ° C. for 60 seconds and pickling with 11 to 16 μm to examine the occurrence of wrinkle-like pits.

【0063】また、各々のスラブの加熱時においてスラ
ブの一部をサンプルとして同時に加熱炉に装入し、熱延
実験に供したのと同じ条件のもとで加熱した後、このサ
ンプルは熱間圧延することなく冷却し、その表層部に生
じたフェライト粒の粒径分布の最大粒径をC断面につい
て測定した。これらの結果を一括して表6に示した。表
6に記した加熱温度は、スラブ表面が抽出温度にほぼ達
した状態で加熱炉内に保持された時間であり、いわゆる
均熱時間に相当する。
In addition, when heating each slab, a part of the slab was simultaneously charged as a sample into a heating furnace and heated under the same conditions as those used in the hot rolling experiment. It was cooled without rolling, and the maximum grain size of the grain size distribution of ferrite grains generated in the surface layer portion was measured for the C cross section. The results are collectively shown in Table 6. The heating temperature shown in Table 6 is the time during which the slab surface was kept in the heating furnace in a state where the slab surface almost reached the extraction temperature, and corresponds to the so-called soaking time.

【0064】[0064]

【表6】 [Table 6]

【0065】表6の結果に示されるように、スラブ加熱
直後の表層粒径分布の最大粒径を5mm以下に制御したも
のは、皺状の凹み疵の発生がない。そして、加熱条件を
スラブ加熱温度(℃)≦550+7.5×Ci(%)と
した場合には、スラブ加熱直後の表層粒径分布の最大粒
径が5mm以下となり、皺状の凹み疵の発生がないのに対
し、スラブ加熱温度が550+7.5×Ci(%)の値
を超えたものは、スラブ加熱直後の表層粒径分布の最大
粒径が5mmを超えて大きくなり、皺状の凹み疵が発生し
た。以上の結果から、フェライト系ステンレス鋼の熱延
鋼帯の表面に現れる皺状の凹み疵の発生は、スラブ加熱
終了直後の表層粒径分布の最大粒径を5mm以下に制御す
ることによって防止できることが明らかである。
As shown in the results of Table 6, those in which the maximum grain size in the grain size distribution of the surface layer immediately after heating the slab was controlled to 5 mm or less did not cause wrinkle-like dent defects. When the heating conditions are slab heating temperature (° C.) ≦ 550 + 7.5 × Ci (%), the maximum particle size of the surface layer particle size distribution immediately after slab heating is 5 mm or less, and wrinkle-shaped dent defects occur. In contrast, when the slab heating temperature exceeds the value of 550 + 7.5 x Ci (%), the maximum grain size of the surface layer grain size distribution immediately after slab heating exceeds 5 mm and becomes large, causing wrinkle-like dents. A flaw has occurred. From the above results, it is possible to prevent the occurrence of wrinkle-shaped depressions appearing on the surface of the hot rolled steel strip of ferritic stainless steel by controlling the maximum grain size of the surface grain size distribution immediately after the slab heating to 5 mm or less. Is clear.

【0066】[0066]

【発明の効果】以上述べたように、本発明によれば熱延
鋼帯にスケールを含有した皺状の凹み疵を発生せず、メ
カニカルデスケーリング後の酸洗の再酸洗率を大幅に低
減でき、また、コイルグラインダーによる鋼帯全面研削
も不要となり、歩留り向上の点からも、また生産計画の
点でも問題が解決する。更に、幅圧下圧延によってコイ
ル幅を一定に製造する圧延を行って、エッジ部の歪量を
増やしても皺状の凹み疵が発生しないことから、より高
歩留りな熱間圧延が可能となる。
As described above, according to the present invention, the wrinkle-shaped dent defect containing scale is not generated in the hot-rolled steel strip, and the re-pickling rate of the pickling after mechanical descaling is significantly increased. Moreover, it is not necessary to grind the entire surface of the steel strip by the coil grinder, and the problem can be solved from the viewpoint of improving the yield and the production planning. Further, even if the coil width is rolled to produce a constant coil width and the amount of strain at the edge portion is increased, wrinkle-shaped recessed flaws do not occur, so hot rolling with a higher yield becomes possible.

【0067】更に、従来は加熱直後の粒径を大きくしな
いとの観点から加熱上限温度が1200℃程度の比較的
低温に設定されており、このためスラブを均一加熱する
場合に長時間を要していたが、本発明により歪を付与す
ることで、1300℃まで加熱しても粗粒化させずに操
業できるため、高温短時間加熱が可能になる。このよう
に生産性を著しく上昇させることができるので、その工
業的効果は大きい。
Further, conventionally, from the viewpoint of not increasing the particle size immediately after heating, the upper heating temperature is set to a relatively low temperature of about 1200 ° C. Therefore, it takes a long time to uniformly heat the slab. However, by applying the strain according to the present invention, the operation can be performed without coarsening even when heated up to 1300 ° C., so that high temperature short time heating becomes possible. Since the productivity can be remarkably increased in this way, its industrial effect is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】スラブ板厚250mm、板幅1000mm、長さ6
000mmのスラブを4.5mm厚まで熱延し、メカニカル
デスケーリング後硫酸酸洗し、熱延鋼帯表裏面の長さ1
00mm当たりに発生した皺状の凹み疵の数と、各々のス
ラブの加熱時においてスラブの一部をサンプルとして同
時に加熱炉に装入し、熱延実験に供したのと同じ条件の
もとで加熱した後、熱間圧延することなく冷却し、その
表層部に生じたフェライト粒径の粒径分布の最大粒径と
の関係図である。
[Fig.1] Slab thickness 250 mm, width 1000 mm, length 6
A 000 mm slab is hot rolled to a thickness of 4.5 mm, mechanically descaled and then pickled with sulfuric acid, and the length of the hot rolled steel strip front and back is 1
Under the same conditions as the number of wrinkle-shaped dents generated per 00 mm and a part of the slab at the time of heating of each slab were simultaneously put into the heating furnace as a sample and subjected to the hot rolling experiment. FIG. 4 is a diagram showing the relationship between the maximum grain size of the grain size distribution of the ferrite grain size generated in the surface layer portion after heating and cooling without hot rolling.

【図2】スラブ加熱温度とCC鋳片への歪付与率が加熱
後の粒径および皺状の凹み疵発生に及ぼす関係を示す図
である。
FIG. 2 is a diagram showing a relationship between a slab heating temperature and a strain application rate to a CC slab, on a grain size after heating and wrinkle-shaped dent defects.

【図3】スラブ加熱温度と加熱時間によるスラブ加熱終
了直後の表層粒径分布の最大粒径との関係を示す図であ
る。
FIG. 3 is a diagram showing a relationship between a slab heating temperature and a maximum grain size of a surface layer grain size distribution immediately after the slab heating is finished depending on a heating time.

【図4】スラブ加熱温度とγp が加熱後の組織粒径およ
び皺状の凹み疵発生に及ぼす関係を示す図である。
FIG. 4 is a diagram showing a relationship between a slab heating temperature and γ p on a tissue grain size after heating and generation of wrinkle-like pits.

【図5】スラブ加熱温度とCC鋳片表層のチル晶率が加
熱後の組織粒径および皺状の凹み疵発生に及ぼす関係を
示す図である。
FIG. 5 is a diagram showing the relationship between the slab heating temperature and the chill crystal ratio of the surface layer of the CC slab on the grain size of the structure after heating and the occurrence of wrinkle-shaped dent defects.

【図6】CC鋳片表層のチル晶率とCCモールド内での
溶鋼温度と凝固液層線との差から求めた温度差との関係
を示す図である。
FIG. 6 is a diagram showing the relationship between the chill crystallinity of the surface layer of CC slab, the temperature difference obtained from the difference between the molten steel temperature in the CC mold and the solidification liquid layer line.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年12月27日[Submission date] December 27, 1995

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0024[Name of item to be corrected] 0024

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0024】この実験にはγp が18%のスラブを用い
たが、歪を付与しない場合には1180℃以上の高温加
熱で粒径分布の最大粒径が5mmを超えた粒径に成長して
しまう。これに加工歪を付与すると2.5%未満の加工
歪では変化が見られないが、2.5%以上の加工歪を付
与すると、1300℃以下の加熱温度との組合わせで加
工歪を駆動力とした5mm以下の粒径の再結晶が生じる。
1300℃を超えると5mmを超えた再結晶粒径になり、
熱間圧延後に皺状の凹み疵を生じる。また1180℃未
満の温度では加工歪なしでも粒径分布の最大粒径は5mm
以下であり、CC鋳片への歪付与は不要ではあるが、圧
下量の増大に伴って著しい細粒が得られる領域(118
0℃≧T(℃)≧1190−4×R(℃))があること
が判明した。図2中の*印は連続鋳造装置下部の300
〜900℃の間に歪を付与したデータであり、300〜
900℃への加熱圧延と同様の効果を示す。
In this experiment, a slab having a γ p of 18% was used. When no strain was applied, heating at a high temperature of 1180 ° C. or higher caused the maximum grain size of the grain size distribution to grow to a grain size exceeding 5 mm. Will end up. When a processing strain is applied to this, no change is seen at a processing strain of less than 2.5%, but when a processing strain of 2.5% or more is applied, the processing strain is driven in combination with a heating temperature of 1300 ° C or less. Recrystallization with a grain size of 5 mm or less as a force occurs.
When the temperature exceeds 1300 ° C, the recrystallized grain size exceeds 5 mm,
After hot rolling, wrinkle-shaped dent defects occur. Also, at a temperature below 1180 ° C, the maximum grain size of the grain size distribution is 5 mm even without processing strain.
It is not necessary to apply strain to the CC cast, but it is a region (118) where remarkable fine grains are obtained as the amount of reduction is increased.
It was found that 0 ° C. ≧ T (° C.) ≧ 1190-4 × R (° C.)). The * mark in Fig. 2 indicates 300 at the bottom of the continuous casting machine.
It is the data that the strain is applied between 900 ° C and 300 ° C.
It shows the same effect as hot rolling to 900 ° C.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0053[Correction item name] 0053

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0053】また、各々のスラブの加熱時においてスラ
ブの一部をサンプルとして同時に加熱炉に装入し、熱延
実験に供したのと同じ条件のもとで加熱した後、このサ
ンプルは熱間圧延することなく冷却し、その表層部に生
じたフェライト粒の粒径分布の最大粒径をC断面につい
て測定した。これらの結果を一括して表4に示した。表
4に記した加熱時間は、スラブ表面が抽出温度にほぼ達
した状態で加熱炉内に保持された時間であり、いわゆる
均熱時間に相当する。
When heating each slab, a part of the slab was simultaneously charged as a sample into a heating furnace and heated under the same conditions as those used in the hot rolling experiment. It was cooled without rolling, and the maximum grain size of the grain size distribution of ferrite grains generated in the surface layer portion was measured for the C cross section. The results are collectively shown in Table 4. The heating time shown in Table 4 is the time in which the slab surface was kept in the heating furnace in a state where the slab surface almost reached the extraction temperature, and corresponds to the so-called soaking time.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0058[Correction target item name] 0058

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0058】また、各々のスラブの加熱時においてスラ
ブの一部をサンプルとして同時に加熱炉に装入し、熱延
実験に供したのと同じ条件のもとで加熱した後、このサ
ンプルは熱間圧延することなく冷却し、その表層部に生
じたフェライト粒の粒径分布の最大粒径をC断面につい
て測定した。これらの結果を一括して表5に示した。表
5に記した加熱時間は、スラブ表面が抽出温度にほぼ達
した状態で加熱炉内に保持された時間であり、いわゆる
均熱時間に相当する。
When heating each slab, a part of the slab was simultaneously charged as a sample into a heating furnace and heated under the same conditions as those used in the hot rolling experiment. It was cooled without rolling, and the maximum grain size of the grain size distribution of ferrite grains generated in the surface layer portion was measured for the C cross section. The results are collectively shown in Table 5. The heating time shown in Table 5 is the time for which the slab surface was kept in the heating furnace in a state where the slab surface almost reached the extraction temperature, and corresponds to the so-called soaking time.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0063[Correction target item name] 0063

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0063】また、各々のスラブの加熱時においてスラ
ブの一部をサンプルとして同時に加熱炉に装入し、熱延
実験に供したのと同じ条件のもとで加熱した後、このサ
ンプルは熱間圧延することなく冷却し、その表層部に生
じたフェライト粒の粒径分布の最大粒径をC断面につい
て測定した。これらの結果を一括して表6に示した。表
6に記した加熱時間は、スラブ表面が抽出温度にほぼ達
した状態で加熱炉内に保持された時間であり、いわゆる
均熱時間に相当する。
In addition, when heating each slab, a part of the slab was simultaneously charged as a sample into a heating furnace and heated under the same conditions as those used in the hot rolling experiment. It was cooled without rolling, and the maximum grain size of the grain size distribution of ferrite grains generated in the surface layer portion was measured for the C cross section. The results are collectively shown in Table 6. The heating time shown in Table 6 is the time for which the slab surface was held in the heating furnace in a state where the slab surface almost reached the extraction temperature, and corresponds to the so-called soaking time.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 久禮 幸弘 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内 (72)発明者 山地 清 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yukihiro Kure No. 1-1 Tobata-cho, Tobata-ku, Kitakyushu, Fukuoka Prefecture (72) Inside the Yawata Works, Nippon Steel Co., Ltd. (72) Kiyoshi Yamaji Tobata-ku, Kitakyushu, Fukuoka Prefecture No. 1 Tobitacho New Steel Works Yawata Works

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 フェライト系ステンレス鋼のスラブを、
300〜900℃の温度域で2.5〜15%の加工歪み
を加えた後1100〜1300℃に加熱し、熱間圧延前
のスラブ表層部の結晶粒径を5mm以下とすることを特徴
とするフェライト系ステンレス熱間圧延鋼帯の表面疵防
止方法。
1. A slab of ferritic stainless steel,
It is characterized in that after processing strain of 2.5 to 15% is applied in the temperature range of 300 to 900 ° C., it is heated to 1100 to 1300 ° C. and the crystal grain size of the slab surface layer portion before hot rolling is 5 mm or less. Method for preventing surface flaws of ferritic stainless hot rolled steel strip.
【請求項2】 フェライト系ステンレス鋼のスラブを、
1100〜1300℃かつ下記(1)式を満足する温度
範囲に加熱し、熱間圧延前のスラブ表層部の結晶粒径を
5mm以下とすることを特徴とするフェライト系ステンレ
ス熱間圧延鋼帯の表面疵防止方法。 T(℃)≦(1150+1.67γp )(℃) ‥‥(1) 但し、γp = 240C+ 470N+23Ni+ 9Cu+ 7Mn
−11.5Cr−11.5Si−12Mo−23V−47Nb−49Ti
−52Al+ 189 ここで、γp および各成分の単位は%、T(℃)はスラ
ブ加熱温度。
2. A slab of ferritic stainless steel,
A ferritic stainless hot-rolled steel strip, characterized in that it is heated to a temperature range of 1100 to 1300 ° C. and satisfies the following formula (1), and the grain size of the slab surface layer portion before hot rolling is set to 5 mm or less. Surface flaw prevention method. T (° C) ≤ (1150 + 1.67γ p ) (° C) (1) where γ p = 240C + 470N + 23Ni + 9Cu + 7Mn
-11.5Cr-11.5Si-12Mo-23V-47Nb-49Ti
-52Al + 189 Here, the unit of γ p and each component is%, and T (° C) is the slab heating temperature.
【請求項3】 フェライト系ステンレス鋼のスラブを、
1100〜1300℃かつ下記(2)式を満足する温度
範囲に加熱し、熱間圧延前のスラブ表層部の結晶粒径を
5mm以下とすることを特徴とするフェライト系ステンレ
ス熱間圧延鋼帯の表面疵防止方法。 T(℃)≦(550+7.5Ci(%))(℃) ‥‥(2) 但し、Ciは鋳造スラブのチル晶と柱状晶からなる表面
組織に占めるチル晶占有率(%)。
3. A slab of ferritic stainless steel,
A ferritic stainless hot-rolled steel strip, characterized in that it is heated to a temperature range of 1100 to 1300 ° C. and satisfies the following formula (2), and the grain size of the slab surface layer portion before hot rolling is set to 5 mm or less. Surface flaw prevention method. T (° C.) ≦ (550 + 7.5 Ci (%)) (° C.) (2) where Ci is the occupancy rate (%) of the chill crystal in the surface structure of the chill crystal and the columnar crystal of the cast slab.
JP17257895A 1995-07-07 1995-07-07 Method for preventing surface flaws on hot-rolled ferritic stainless steel strip Expired - Fee Related JP3593182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17257895A JP3593182B2 (en) 1995-07-07 1995-07-07 Method for preventing surface flaws on hot-rolled ferritic stainless steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17257895A JP3593182B2 (en) 1995-07-07 1995-07-07 Method for preventing surface flaws on hot-rolled ferritic stainless steel strip

Publications (2)

Publication Number Publication Date
JPH0925516A true JPH0925516A (en) 1997-01-28
JP3593182B2 JP3593182B2 (en) 2004-11-24

Family

ID=15944442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17257895A Expired - Fee Related JP3593182B2 (en) 1995-07-07 1995-07-07 Method for preventing surface flaws on hot-rolled ferritic stainless steel strip

Country Status (1)

Country Link
JP (1) JP3593182B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001003143A (en) * 1999-06-22 2001-01-09 Nippon Steel Corp Ferritic stainless steel sheet excellent in workability and surface characteristics, and its manufacture
KR20030048810A (en) * 2001-12-13 2003-06-25 주식회사 포스코 Method for Manufacturing Hot-Rolled Ferrite Stainless Steel Sheet
JP2020537714A (en) * 2017-10-18 2020-12-24 ポスコPosco High-temperature high-manganese steel with excellent surface quality and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001003143A (en) * 1999-06-22 2001-01-09 Nippon Steel Corp Ferritic stainless steel sheet excellent in workability and surface characteristics, and its manufacture
KR20030048810A (en) * 2001-12-13 2003-06-25 주식회사 포스코 Method for Manufacturing Hot-Rolled Ferrite Stainless Steel Sheet
JP2020537714A (en) * 2017-10-18 2020-12-24 ポスコPosco High-temperature high-manganese steel with excellent surface quality and its manufacturing method

Also Published As

Publication number Publication date
JP3593182B2 (en) 2004-11-24

Similar Documents

Publication Publication Date Title
EP2224028B1 (en) Steel plate for line pipes and steel pipes
CN109642286B (en) Ferritic stainless steel hot-rolled annealed steel sheet and method for producing same
EP1006203B1 (en) Can steel strip and method of producing can steel strip
US10633730B2 (en) Material for cold-rolled stainless steel sheet
KR20190107077A (en) Grater
CN110546294B (en) Ferritic stainless steel hot-rolled annealed steel sheet and method for producing same
US5181970A (en) Process for production of stainless steel thin strip and sheet having superior surface gloss and high rusting resistance
JP7111246B2 (en) hot rolled steel
JP7256383B2 (en) Method for manufacturing hot-rolled steel sheet
JPH1046243A (en) Manufacture of steel sheet for can
KR20180074095A (en) Thin and weather-resistable hot-rolled steel sheet having low deviation of mechanical property and excellent bendability, and method for manufacturing the same
JP7317100B2 (en) hot rolled steel
JP7332859B2 (en) Slab manufacturing method
JP4840270B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JP3241114B2 (en) Method for producing ferritic stainless steel sheet excellent in ridging property and workability
JPH0925516A (en) Method for preventing surface flaw of hot rolled ferritic stainless steel strip
JP3941363B2 (en) Ferritic stainless cold-rolled steel sheet excellent in ductility, workability and ridging resistance, and method for producing the same
JP3384890B2 (en) Method for producing austenitic stainless steel with excellent surface properties
JP7226564B2 (en) Stainless steel plate and its manufacturing method, cutlery, and cutlery
US11819909B2 (en) Method for manufacturing high-manganese steel cast slab and method for manufacturing high-manganese steel slab or steel sheet
JP5000467B2 (en) Steel plate for 3-piece can with high strength and excellent expandability and manufacturing method
JP2971292B2 (en) Manufacturing method of austenitic stainless steel with few surface defects
CA1256353A (en) Method of continuous casting slabs to produce good surface quality hot-rolled band
JP7396512B2 (en) Thick steel plate and method for manufacturing thick steel plate
KR102587650B1 (en) Steel sheet for cans and method of producing same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Effective date: 20040707

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040824

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040827

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20070903

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080903

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090903

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100903

LAPS Cancellation because of no payment of annual fees