JPH0925354A - Bundle of extrusion-foamed polypropylene resin strings and its production - Google Patents

Bundle of extrusion-foamed polypropylene resin strings and its production

Info

Publication number
JPH0925354A
JPH0925354A JP7194097A JP19409795A JPH0925354A JP H0925354 A JPH0925354 A JP H0925354A JP 7194097 A JP7194097 A JP 7194097A JP 19409795 A JP19409795 A JP 19409795A JP H0925354 A JPH0925354 A JP H0925354A
Authority
JP
Japan
Prior art keywords
resin
extruded foamed
biaxial
bundle
extruded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7194097A
Other languages
Japanese (ja)
Inventor
Yoshito Fukazawa
義人 深沢
Tomoshi Hashimoto
智志 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP7194097A priority Critical patent/JPH0925354A/en
Publication of JPH0925354A publication Critical patent/JPH0925354A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a bundle of extrusion-foamed polypropylene resin strings which is excellent in cushioning properties, hardly undergoes the degradation in cushioning properties even after a repeated falling down test, and does not allow the separation of strings by using a foamable compsn. contg. a PP resin having special viscoelastic characteristics. SOLUTION: This bundle of extrusion-foamed strings is produced by kneading a foamable compsn. comprising a PP resin and a volatile blowing agent contained therein at a high temp. and pressure, extruding the compsn. through a multiperforated die into a low-temp. low-pressure zone to form the compsn. into foamed strings, and introducing the strings into a forming apparatus to fuse them to each other to integrally bundle them, subject to the condition that the PP resin exhibits a biaxial-elongation viscosity of 4.5×10<6> P at a biaxial- elongation strain of 0.2 and a biaxial strain hardening ratio of 0.30 or higher. Thus obtd. bundle has a density of 0.005-0.04g/cm<3> , a wall thickness of 20mm or higher, an average closed cell size of 0.4-2.0mm, and a closed cell content of 80% or higher.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はポリプロピレン系樹脂押
出発泡細条集束体及びその製造方法に関し、この押出発
泡細条集束体は各種形状に切断加工して緩衝包装材や浮
材さらには断熱材等の分野に利用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polypropylene resin extruded foamed strip bundle and a method for producing the same. The extruded foamed strip bundle is cut into various shapes to form a cushioning packaging material, a floating material, and a heat insulating material. Used in fields such as.

【0002】[0002]

【従来の技術】ポリプロピレン系樹脂に揮発性発泡剤を
含んでなる発泡性組成物を高温高圧下で混練後調温し複
数個の押出孔を有する押出用ダイから細条を低温低圧下
の領域に押出し発泡させ、その発泡細条を成形装置内に
導入収束し複数の発泡細条の相互が融着し一体化された
ポリプロピレン系樹脂押出発泡細条集束体を製造する方
法は公知である(例えば、特開昭53−1262号公
報参照)。同公報では樹脂進入側に突出部を持つ口金の
細狭押出孔を用いることにより発泡温度付近の温度での
結晶性熱可塑性樹脂の滞留を防止し結晶固化した樹脂の
流出物による発泡性阻害を防止する方法を提案してい
る。同公報では実施例にポリプロピレン系樹脂として三
菱油化(株)製MH−8を使用し、厚さ14mm、幅1
50mmで密度0.15g/cm3 のポリプロピレン系
樹脂押出発泡細条集束体が得られている。
2. Description of the Related Art A foaming composition containing a polypropylene resin and a volatile foaming agent is kneaded at high temperature and high pressure, and then adjusted in temperature to form a strip from an extrusion die having a plurality of extrusion holes under low temperature and low pressure. A method for producing a polypropylene-based resin extruded foamed strip bundle in which a plurality of foamed strips are fused and integrated by introducing and converging the foamed strips into a molding device is known ( See, for example, JP-A-53-1262). In this publication, by using a narrow extrusion hole of a die having a protrusion on the resin entrance side, the retention of the crystalline thermoplastic resin at a temperature near the foaming temperature is prevented, and the foamability is hindered by the outflow of the crystallized resin. Suggests ways to prevent it. In the publication, MH-8 manufactured by Mitsubishi Petrochemical Co., Ltd. is used as a polypropylene resin in the examples, and the thickness is 14 mm and the width is 1 mm.
A polypropylene resin extruded foamed strip bundle having a density of 0.15 g / cm 3 at 50 mm is obtained.

【0003】また、押出発泡用樹脂としては、特開平
4−363227号公報に230℃におけるメルトテン
ションが7gf以上のプロピレン系樹脂を用いることが
提案されている。一方、本発明のポリプロピレン系樹脂
押出発泡細条集束体は主に5〜50kg程度の重量のオ
ーディオ等の家電製品やパーソナルコンピューター等の
OA機器、更には、同程度の重量の精密機器等の緩衝包
装材として使用され、以下に示す特性が要求される。
As an extrusion foaming resin, it is proposed in JP-A-4-363227 to use a propylene resin having a melt tension of 7 gf or more at 230 ° C. On the other hand, the polypropylene-based resin extruded foam fine strip bundle of the present invention is mainly used for home appliances such as audio having a weight of about 5 to 50 kg, OA equipment such as personal computers, and also for cushioning precision equipment having a similar weight. It is used as a packaging material and requires the following characteristics.

【0004】即ち、図3はJIS Z0235「包装用
緩衝材料の動的圧縮試験方法」に準じて、ポリエチレン
樹脂押出発泡体(密度が0.025g/cm3、肉厚が
各20,30,40mm)について求めた発泡体の肉厚
と該発泡体の1回落下時の最大加速度との関係を示す動
的衝撃特性曲線のグラフである。この図3は本発明で言
う押出細条発泡体の「緩衝性能」の意味と、この「緩衝
性能」を有効に発現させるには、肉厚が20mm以上の
押出発泡細条集束体が必要であることを示すものであ
る。
That is, FIG. 3 shows a polyethylene resin extruded foam (having a density of 0.025 g / cm 3 and a wall thickness of 20, 30, 40 mm, respectively, according to JIS Z0235 “Dynamic compression test method for cushioning material for packaging”). 3] is a graph of a dynamic impact characteristic curve showing the relationship between the thickness of the foam and the maximum acceleration when the foam is dropped once. FIG. 3 shows the meaning of the “buffering performance” of the extruded strip-shaped foam according to the present invention, and an extruded foamed strip bundle having a wall thickness of 20 mm or more is required to effectively develop this “buffering performance”. It indicates that there is.

【0005】図3の動的衝撃特性曲線を示すグラフにお
いて、縦軸は最大加速度J(0〜100G)を示し、横
軸は対数目盛りで示した静的応力I(0.02kgf/
cm2〜0.4kgf/cm2)を表す。このグラフは6
0cmの高さから加速度計を内臓した重りを落下させ、
落下時にその加速度計で測定される最大の加速度を最大
加速度とし、その重りを発泡体上に静置した時に発泡体
に発生する応力を静的応力として、両者の関係をプロッ
トしたものである。なお、この場合の静的応力は5〜5
0kg程度の重量のオーディオ等の家電製品やパーソナ
ルコンピューター等のOA機器、更には、同程度の重量
の精密機器等を発泡体上に静置した時に生じる0.02
kgf/cm2以上0.4kgf/cm2以下の範囲とし
た。
In the graph showing the dynamic impact characteristic curve of FIG. 3, the vertical axis represents the maximum acceleration J (0 to 100 G) and the horizontal axis represents the static stress I (0.02 kgf / log scale).
cm 2 to 0.4 kgf / cm 2 ). This graph is 6
Drop the weight with built-in accelerometer from the height of 0 cm,
The maximum acceleration measured by the accelerometer when dropped is the maximum acceleration, and the stress generated in the foam when the weight is left stationary on the foam is the static stress, and the relationship between the two is plotted. The static stress in this case is 5 to 5
0.02 kg when about 0 kg of home electric appliances such as audio equipment, OA equipment such as personal computers, and precision equipment of the same weight are left standing on the foam.
was kgf / cm 2 or more 0.4kgf / cm 2 or less.

【0006】また、図3でt20、t30、t40の記
号は各々発泡体の肉厚(mm)のものを示す。上記静的
応力の範囲での最も低い最大加速度は(以下「最大加速
度の最小値」と称す)は、発泡体を家電製品等の緩衝包
装材として使用した場合、上記家電製品等に掛かる最も
小さい最大加速度(負荷)、つまり、その発泡体の最高
の「緩衝性能」の値を示すものである。
The symbols t20, t30, and t40 in FIG. 3 indicate the thickness of the foam body (mm). The lowest maximum acceleration in the above static stress range (hereinafter referred to as the "minimum value of maximum acceleration") is the smallest when the foam is used as a cushioning packaging material for home appliances, etc. It indicates the maximum acceleration (load), that is, the highest "buffer performance" value of the foam.

【0007】一般に、上記家電製品等に故障や破損が発
生しない最大加速度は80G以下であると言われてい
る。従って、前記静的応力範囲において肉厚が20mm
未満の発泡体では包装体落下時に被包装体である上記家
電製品等の商品に掛かる最大加速度が許容値である80
Gを超えてしまう為、商品が故障或いは破損する可能性
が高く、肉厚が20mm未満の発泡体は上記家電製品等
の緩衝包装材としての使用が難しいことを意味してい
る。
Generally, it is said that the maximum acceleration at which the above-mentioned home electric appliances or the like do not break down or be damaged is 80 G or less. Therefore, the wall thickness is 20 mm in the static stress range.
For foams of less than 80%, the maximum acceleration applied to products such as the above-mentioned home electric appliances which are the objects to be packaged when the package falls down is 80.
Since it exceeds G, there is a high possibility that the product will break down or be damaged, and it means that a foam having a wall thickness of less than 20 mm is difficult to use as a cushioning packaging material for the above home electric appliances and the like.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記
、の公報で使用されている樹脂を用いて密度が0.
04g/cm3 、肉厚が20mmのポリプロピレン系樹
脂押出発泡細条集束体の製造を試みたが、得られた押出
発泡細条集束体は独立気泡率が30%未満となり、繰返
し落下時の緩衝性能の低下が非常に大きいものになる等
の問題が発生し、また、独立気泡率を高めようとする対
策を施しても、十分に独立気泡率が高まらないばかり
か、気泡径が0.4mm未満に微小化し、集束体の圧縮
応力に大きな異方性が生じたり、更に、発泡細条の表面
に鱗状の凹凸が生じ表面外観が悪くなることに加え、発
泡細条間の融着力が大幅に低下してしまう等の問題を生
じてしまう。
However, when the resin used in the above-mentioned publication is used, the density of the resin is 0.
An attempt was made to produce a polypropylene resin extruded foamed strip bundle of 04 g / cm 3 and a wall thickness of 20 mm, but the obtained extruded foamed strip bundle had a closed cell ratio of less than 30% and a buffer against repeated drops. There is a problem such as a significant decrease in performance, and even if measures are taken to increase the closed cell rate, the closed cell rate does not rise sufficiently and the bubble diameter is 0.4 mm. In addition to the fact that the compression stress of the bundle is greatly anisotropy, and the surface appearance of the foamed strips has scale-like irregularities and the surface appearance is poor, the fusion force between the foamed strips is significantly reduced. It causes a problem such as a decrease in

【0009】つまり、上記、の公報で使用されてい
る樹脂では、密度が0.04g/cm3以下で肉厚が2
0mm以上のポリプロピレン系樹脂押出発泡細条集束体
は得られない。本発明の目的は、密度が0.005g/
cm3以上0.04g/cm3以下で肉厚が20mm以上
のポリプロピレン系樹脂押出発泡細条集束体であって、
平均気泡径が0.4mm以上2.0mm以下、独立気泡
率が80%以上で、圧縮応力の異方性が小さく、集束体
表面に凹凸がなく、押出発泡細条間の融着性に優れ、従
って良好な緩衝性能を持続し、且つ、緩衝性能の異方性
が小さく緩衝設計が容易なポリプロピレン系樹脂押出発
泡細条集束体及びその製造方法を提供することである。
That is, in the resin used in the above publication, the density is 0.04 g / cm 3 or less and the wall thickness is 2
A polypropylene-based resin extruded foam fine strip bundle having a size of 0 mm or more cannot be obtained. The object of the present invention is to have a density of 0.005 g /
A polypropylene-based resin extruded foamed fine strip bundle having a thickness of 20 mm or more and a cm 3 or more and 0.04 g / cm 3 or less,
The average cell diameter is 0.4 mm or more and 2.0 mm or less, the closed cell rate is 80% or more, the anisotropy of the compression stress is small, the surface of the bundle has no irregularities, and the extruded foamed strips have excellent fusion bonding properties. Therefore, it is an object of the present invention to provide a polypropylene-based resin extruded foamed fine fiber bundle which maintains good cushioning performance, has small anisotropy in cushioning performance, and is easy to design, and a method for producing the same.

【0010】[0010]

【課題を解決するための手段】本発明の押出発泡細条集
束体の構成は、ポリプロピレン系樹脂の2軸伸長歪0.
2に於ける2軸伸長粘度が3×106 poise以上、
2軸歪硬化率αが0.25以上[但し、2軸歪硬化率
は、次式: α=0.77×(logη2−logη1) (式中、η1は2軸伸長歪0.01の時の2軸伸長粘度
を示し、η2は2軸伸長歪0.2の時の2軸伸長粘度を
示す)で定義される]であり、上記押出発泡細条集束体
の密度が0.005g/cm3以上0.04g/cm3
下、平均気泡径が0.4mm以上2.0mm以下、独立
気泡率が80%以上、肉厚が20mm以上であることを
特徴とするポリプロピレン系樹脂押出発泡細条集束体で
ある。
Means for Solving the Problems The composition of the extruded foamed strip bundle of the present invention has a biaxial elongation strain of polypropylene resin of 0.
The biaxial extensional viscosity in 2 is 3 × 10 6 poise or more,
The biaxial strain hardening rate α is 0.25 or more [however, the biaxial strain hardening rate is expressed by the following equation: α = 0.77 × (log η 2 −log η 1 ), where η 1 is the biaxial elongation strain 0. Is 0, and η 2 represents the biaxial extensional viscosity when the biaxial extensional strain is 0.2.)], And the density of the extruded foamed strip bundle is 0. .005g / cm 3 or more 0.04 g / cm 3 or less, an average cell diameter 0.4mm or 2.0mm or less, closed cell ratio of 80% or more, polypropylene resin thickness is equal to or is 20mm or more It is an extruded foam strip bundle.

【0011】また、本発明の押出発泡細条集束体の製造
方法の構成は、ポリプロピレン系樹脂に揮発性発泡剤を
含んでなる発泡性組成物を高温高圧下で混練後調温し複
数個の押出孔を有する押出用ダイから細条を低温低圧下
の領域に押出し発泡させ、その発泡細条を成形装置内に
導入集束し複数の発泡細条の相互が融着し一体化された
上記押出発泡細条集束体を製造する方法に於いて、上記
ポリプロピレン系樹脂の2軸伸長歪0.2に於ける2軸
伸長粘度が4.5×106 poise以上、2軸歪硬化
率αが0.30以上[但し、2軸歪硬化率は、次式: α=0.77×(logη2−logη1) (式中、η1は2軸伸長歪0.01の時の2軸伸長粘度
を示し、η2は2軸伸長歪0.2の時の2軸伸長粘度を
示す)で定義される]であるポリプロピレン系樹脂を用
いることを特徴とするポリプロピレン系樹脂押出発泡細
条集束体の製造方法である。
Further, the construction of the method for producing an extruded foamed fine fiber bundle of the present invention is such that a foamable composition comprising a polypropylene resin and a volatile foaming agent is kneaded under high temperature and high pressure and then adjusted in temperature to obtain a plurality of components. The above-mentioned extrusion in which a strip is extruded from a die for extrusion having an extrusion hole to a region under low temperature and low pressure to foam, and the strip is introduced and focused into a molding apparatus and a plurality of strips are fused and integrated with each other. In the method for producing a foamed thin fiber bundle, the biaxial elongation viscosity at a biaxial elongation strain of 0.2 of the polypropylene resin is 4.5 × 10 6 poise or more, and the biaxial strain hardening rate α is 0. .30 or more [however, the biaxial strain hardening rate is expressed by the following equation: α = 0.77 × (log η 2 −log η 1 ), where η 1 is the biaxial extensional viscosity when the biaxial extensional strain is 0.01. , And η 2 is defined as the biaxial extensional viscosity when the biaxial extensional strain is 0.2). A method for producing a polypropylene-based resin extruded foamed strip bundle, which comprises using a pyrene-based resin.

【0012】以下本発明の内容を更に詳細に説明する
が、説明の都合上製造方法から詳述する。本発明の製造
方法で従来技術と相違するところは、ポリプロピレン系
樹脂として特殊な粘弾性特性(「2軸伸長粘度」「2軸
歪硬化率α」)のものを用いることである。まず、押出
発泡法上から従来技術との相違を説明する。
The contents of the present invention will be described in more detail below, but the manufacturing method will be described in detail for convenience of explanation. The manufacturing method of the present invention differs from the prior art in that a polypropylene resin having special viscoelastic properties (“biaxial elongational viscosity” and “biaxial strain hardening rate α”) is used. First, the difference from the prior art in terms of the extrusion foaming method will be described.

【0013】押出発泡法の原点は「押出ダイ内発泡」を
抑制することにある。図1は、押出機の押出用ダイ近傍
における押出発泡細条集束体の形成及び気泡の成長過程
を示す説明図であり、系内外の気泡の成長過程を概念図
で示したものである。図1において、矢印内Aは押出用
ダイのランド部領域、同Bは押出用ダイのテーパ部領
域、同Cは押出機の先端部領域を示し、これらの下方に
示す折れ線図は縦軸Pの矢印方向を流動圧力の高さと
し、0.04g/cm3 以下の高発泡体を得ることがで
きる発泡性組成物の、押出量Q1における各領域での流
動圧力実測値の高さ関係を示す図である。図1の折れ線
グラフ内を横断する線4(一点鎖線)は、用いた発泡剤
の系内温度における蒸気圧を示している。更に図1のD
は、本発明の押出発泡細条集束体発泡体の製造に使用さ
れる樹脂3を用いた発泡性組成物の場合の押出発泡細条
集束体の形成過程を示すもので、内部に描かれる丸印E
1、E2は、発泡性組成物の気泡発生とその成長過程を
示すものである。叉、上記折れ線グラフ内の折れ線1
は、本発明の押出発泡細条集束体の製造に使用される樹
脂3(MFR:1.9、2軸伸長粘度:6.7×1
6 、2軸歪硬化率α:0.48)の場合の流動圧力値
であり、折れ線2,3は比較の為に示す従来の押出発泡
細条集束体及びの公報に示されている融着面の無い単
体の押出発泡体(以下プランク発泡体)の製造に使用さ
れている樹脂(市販品)の流動圧力値である。即ち、折
れ線2は比較例の押出発泡細条集束体の製造に使用され
る樹脂12(市販樹脂;MFR:0.5、2軸伸長粘
度:4.2×106 、2軸歪硬化率α:0.22)、折
れ線3は同じく比較例の押出発泡細条集束体の製造に使
用される樹脂14(市販樹脂;MFR:3.0、2軸伸
長粘度:2.5×106 、2軸歪硬化率α:0.44)
の場合の値である。
The origin of the extrusion foaming method is to suppress "foaming in extrusion die". FIG. 1 is an explanatory view showing a process of forming an extruded foam strip bundle and a bubble growth process in the vicinity of an extrusion die of an extruder, and is a conceptual diagram showing the bubble growth process inside and outside the system. In FIG. 1, A in the arrow indicates a land area of the extrusion die, B indicates a taper area of the extrusion die, and C indicates a tip area of the extruder. The direction of the arrow indicates the height of the flow pressure, and the height relationship of the measured values of the flow pressure in each region at the extrusion rate Q1 of the foamable composition capable of obtaining a high foam of 0.04 g / cm 3 or less is shown. It is a figure. A line 4 (one-dot chain line) that traverses the line graph in FIG. 1 indicates the vapor pressure at the system temperature of the used blowing agent. Furthermore, D of FIG.
Shows a process for forming an extruded foamed strip bundle in the case of a foamable composition using the resin 3 used for producing the extruded foamed strip bundle foam of the present invention. Mark E
1 and E2 show the generation of bubbles in the foamable composition and the growth process thereof. Also, line 1 in the line graph above
Is a resin 3 (MFR: 1.9, biaxial extensional viscosity: 6.7 × 1) used in the production of the extruded foamed strip bundle of the present invention.
0 6 is the flow pressure value in the case of biaxial strain hardening rate α: 0.48), and the polygonal lines 2 and 3 are conventional extruded foamed strip bundles shown for comparison and the fusion pressure shown in the publication. It is a flow pressure value of a resin (commercially available product) used in the production of a single extruded foam having no adhered surface (hereinafter referred to as Planck foam). That is, the polygonal line 2 is the resin 12 (commercially available resin; MFR: 0.5, biaxial extensional viscosity: 4.2 × 10 6 , biaxial strain hardening rate α) used for manufacturing the extruded foamed strip bundle of the comparative example. : 0.22), and the polygonal line 3 is resin 14 (commercially available resin; MFR: 3.0, biaxial extension viscosity: 2.5 × 10 6 , 2) which is also used in the production of the extruded foamed strip bundle of the comparative example. Axial strain hardening rate α: 0.44)
Is the value for

【0014】図1に於いて、先ず本発明の押出発泡細条
集束体の製造に使用される樹脂(折れ線1)は、従来の
押出発泡細条集束体及びプランク発泡体の製造に使用さ
れている樹脂(折れ線2、3)に比べて系内圧力が全体
的に高く、又、少なくとも押出用ダイのランド部領域
(A)よりも上流の領域において蒸気圧線4を優に越え
た高い流動圧力を示すものであることがわかる。一般に
蒸気圧線4と折れ線(流動圧力値)との交点は気泡形成
の起点である。従って本発明の押出発泡細条集束体の製
造に用いられる樹脂(折れ線1)は、領域(A)の上流
側では完全に発泡が抑制され、領域(A)に於いて初め
て気泡E1が生じ、この気泡E1はダイ外に押出されな
がらゆるやかに気泡E2に大きく成長することになる。
つまり本発明の押出発泡細条集束体の製造に使用される
樹脂は「押出ダイ内発泡」を抑制するに充分な流動粘度
特性を備えた樹脂であることが分かる。
In FIG. 1, first, the resin (polygonal line 1) used in the production of the extruded foamed strip bundle of the present invention is used in the production of conventional extruded foamed strip bundles and plank foams. The pressure inside the system is generally higher than that of the existing resin (polygonal lines 2 and 3), and the high flow rate is well above the vapor pressure line 4 at least in the upstream region of the land area (A) of the extrusion die. It can be seen that this indicates pressure. Generally, the intersection of the vapor pressure line 4 and the polygonal line (flow pressure value) is the starting point of bubble formation. Therefore, in the resin (polygonal line 1) used for producing the extruded foamed strip bundle of the present invention, foaming is completely suppressed on the upstream side of the area (A), and the bubbles E1 are generated for the first time in the area (A). The bubbles E1 gradually grow into large bubbles E2 while being pushed out of the die.
In other words, it can be seen that the resin used for producing the extruded foamed strip bundle of the present invention is a resin having a flow viscosity characteristic sufficient to suppress "foaming in extrusion die".

【0015】これに対して、従来の押出発泡細条集束体
及びプランク発泡体の製造に使用されている樹脂(折れ
線2、3)は「押出ダイ内発泡」を抑制できる流動粘度
特性は備わっていないことは明らかである。従って現象
としては(気泡発生は図示されてはいないが)領域
(B)で発泡が生じ、領域(B)以降での押出方向の押
出発泡細条の線速度が早まり且つ発泡性組成物内の圧力
が急激に降下する結果、瞬時に多数の微小径気泡を発生
させ、同時にこの発泡時の発泡剤潜熱により押出発泡細
条が急冷され、系内において押出発泡細条外周表面部の
固化が進行した状態で押出される為に、押出発泡細条の
径はダイ開口部の径に近く、その押出発泡細条を集束し
てなる押出発泡細条集束体の厚みは薄肉にしかならな
い。又この際の押出では、押出用ダイのランド部での摩
擦により各押出発泡細条表面には鱗状の凹凸が発生し表
面外観が悪く、更に鱗状の凹凸の凸部でしか各押出発泡
細条同士が接触融着しないため各押出発泡細条間の融着
力は非常に低く、上記繰り返し落下後、或いは、切断加
工時等に押出発泡細条間に分離が生じ実用上大きな問題
となる。その結果従来の押出発泡細条集束体及びプラン
ク発泡体の製造に使用されている樹脂(折れ線2、3)
では、正常な押出発泡細条集束体を得ることは出来ない
のである。
On the other hand, the resins (the polygonal lines 2 and 3) used in the production of the conventional extruded foam strip bundle and plank foam have flow viscosity characteristics capable of suppressing "foaming in the extrusion die". Clearly not. Therefore, as a phenomenon (the generation of bubbles is not shown), foaming occurs in the region (B), the linear velocity of the extruded foam strip in the extrusion direction after the region (B) is increased, and As a result of a sudden drop in pressure, a large number of minute bubbles are generated instantaneously, and at the same time the extruded foam strips are rapidly cooled by the latent heat of the foaming agent during foaming, and the solidification of the extruded foam strip outer peripheral surface progresses in the system. Since the extruded foam strips are extruded in this state, the diameter of the extruded foam strips is close to the diameter of the die opening, and the thickness of the extruded foam strips formed by bundling the extruded strips can only be reduced. In the extrusion at this time, the surface appearance of each extruded foam strip is poor due to friction at the land of the extrusion die, and the surface appearance is poor. Since they do not come into contact with each other, the extruded foam strips have a very low fusion force, and the extruded foam strips are separated from each other after repeated dropping or during cutting, which poses a serious problem in practical use. As a result, the resin (polygonal lines 2 and 3) used in the production of conventional extruded foam strip bundles and plank foams
Then, a normal extruded foam strip bundle cannot be obtained.

【0016】上述した流動粘度特性の相違は、従来の例
えば単なるMFRの大小関係やメルトテンション値の大
小関係では論じられない内容のものであり、本発明者等
の研究、即ち、押出時の系内の流動圧力値の高まりは押
出用ダイのテーパ部領域Bを流動するときの樹脂の伸長
流動に支配される筈であるから伸長粘度を考慮に入れる
必要があると考えて「2軸伸長粘度」に着目した研究に
よって、ようやくこの差異が明確に究明され、そしてこ
の樹脂で構成される押出発泡細条集束体の具現に成功し
得たものである。
The above-mentioned difference in the flow viscosity characteristics is a matter which cannot be discussed in the conventional relations such as the magnitude relation of the MFR and the magnitude relation of the melt tension value, and the study by the present inventors, that is, the system at the time of extrusion. Since the increase of the flow pressure value in the inside should be governed by the extensional flow of the resin when flowing in the taper portion region B of the extrusion die, it is necessary to take the extensional viscosity into consideration. This difference was finally clarified by a study focusing on "," and the extruded foam fine-fiber bundle composed of this resin could be successfully realized.

【0017】即ち、本発明の押出発泡細条集束体の製造
に使用される樹脂における「2軸伸長歪0.2に於ける
2軸伸長粘度が4.5×106 poise以上」(押出
発泡細条集束体を構成する樹脂では「2軸伸長歪0.2
に於ける2軸伸長粘度が3×106 poise以上」)
とする要件の必要性は、先ず押出発泡法の原点である
「押出ダイ内発泡」の抑制を、樹脂の特性で容易に達成
させるためのものである。従って、本発明の押出発泡細
条集束体の製造に使用される樹脂は、従来のポリエチレ
ン系樹脂等の押出発泡装置を用いた場合でも「押出ダイ
内発泡」を抑制し、厚肉の良質な押出発泡細条集束体を
製造する基盤を容易に作り出すことが出来る。本発明者
等の実験によると、上記押出発泡細条集束体の製造に使
用される樹脂の「2軸伸長粘度」が15×106 poi
seになる樹脂の製造に成功しており、種々な性能の押
出機で、種々な形状の断面形状(押出し方向に垂直な面
の形状)を持つ断面の大きい押出発泡細条集束体を容易
に得たい観点からは、上記押出発泡細条集束体の製造に
使用される樹脂の「2軸伸長粘度」は6.0〜15.0
(×106 poise)の範囲にある樹脂を選ぶことが
望ましい。
That is, "the biaxial extensional viscosity at a biaxial extensional strain of 0.2 is not less than 4.5 × 10 6 poise" in the resin used for producing the extruded foamed strip bundle of the present invention (extrusion foaming). In the resin that makes up the strip bundle, "biaxial extension strain 0.2
Has a biaxial extensional viscosity of 3 × 10 6 poise or more. ”)
First of all, the necessity of the requirement is that the suppression of "foaming in extrusion die" which is the origin of the extrusion foaming method can be easily achieved by the characteristics of the resin. Therefore, the resin used in the production of the extruded foam fine-strip bundle of the present invention suppresses "foaming in extrusion die" even when an extrusion foaming apparatus such as a conventional polyethylene-based resin is used, and has a thick and high quality. A substrate for manufacturing extruded foam strip bundles can be easily created. According to experiments conducted by the present inventors, the "biaxial extensional viscosity" of the resin used for producing the extruded foamed thin fiber bundle is 15 × 10 6 poi.
We have succeeded in producing a resin that becomes an SE, and can easily produce extruded foam strip bundles with large cross-sections having various cross-sectional shapes (shapes of the surface perpendicular to the extrusion direction) with extruders of various performances. From the viewpoint of wanting to obtain, the "biaxial extensional viscosity" of the resin used for producing the extruded foamed strip bundle is 6.0 to 15.0.
It is desirable to select a resin in the range of (× 10 6 poise).

【0018】次に、本発明で言う特殊な粘弾性特性の押
出発泡に最も重要な「大きい径の独立気泡性に富んだ気
泡の保持性」に於ける役割について説明する。図2は説
明図で、図1の折れ線3の樹脂の流動圧力を機械的に高
めた場合の押出機の押出用ダイ近傍における押出発泡細
条集束体の形成及び気泡の成長過程を示す概念図であ
る。従って図1と相違する処は、折れ線3(従来のプラ
ンク発泡体の製造に使用されている市販樹脂)を用いた
発泡性組成物のその押出量をQ2に高めることで、セン
断速度を高めた時の流動圧力の実測値を折れ線3’
(3”)で示し、押出機の押出用ダイ近傍における押出
発泡細条集束体の形成過程を気泡の成長過程の概念図で
示している。尚3’は、図1の3と同じ組成成分の場合
のもので、系外の気泡(押出発泡細条集束体)の成長過
程は破線のF’で示し、3”は上記3’の気泡維持性の
改良する組成成分の場合のもので、系外の気泡(押出発
泡細条集束体)の成長過程は実線のF”で示してある。
Next, the role of the "retention of cells having a large diameter and having a large number of closed cells", which is the most important in the extrusion foaming having a special viscoelastic property, will be described. FIG. 2 is an explanatory diagram, and is a conceptual diagram showing the formation of extruded foamed strip bundles and the growth process of bubbles in the vicinity of the extrusion die of the extruder when the resin flow pressure of the polygonal line 3 in FIG. 1 is mechanically increased. Is. Therefore, the point different from FIG. 1 is to increase the extrusion rate to Q2 of the foamable composition using the polygonal line 3 (a commercially available resin used in the production of conventional plank foam) to increase the shear rate. The measured value of the flow pressure at
(3 ") shows a process for forming an extruded foamed strip bundle in the vicinity of an extrusion die of an extruder in a conceptual diagram of a bubble growth process. 3'is the same composition component as that of 3 in FIG. In the case of (3), the growth process of bubbles (extruded foamed strip bundles) outside the system is indicated by the broken line F ', and 3 "is the case of the above 3'composition component for improving the bubble retention. The growth process of air bubbles (extruded foam strip bundles) outside the system is indicated by a solid line F ″.

【0019】図2において、発泡性組成物の流動圧力
は、系内の発泡性組成物の相対的なセン断速度(ダイ開
口部寸法に対する押出量の関係)によって調節すること
が出来、その結果「押出ダイ内発泡」の抑制は、押出装
置の選択で可能なものであることを示している。この調
節は設備の経済性を無視すれば見掛け上は無制限であ
る。よって図2の折れ線3’、3”の場合も共に、図1
の折れ線1の場合と同様に領域(A)の上流側では完全
に発泡が抑制され、領域(A)に於いて初めて気泡G1
が生じ、この気泡G1がダイ外に押出されG2に成長す
る状態に調節されている。従って、殊に図2に示す折れ
線3’の場合は、押出後の押出発泡細条集束体の厚みの
形成過程の状態では破線のF’で示す様に、図1のDに
比べて膨張開始位置が後退して押出発泡細条集束体の厚
みは薄くなるが、その外は見掛け上では差異はない。し
かしこの場合の問題点は(図示が困難なので詳細な記載
は省略してあるが)、形成された押出発泡細条集束体が
冷却固化されて行く過程において、押出発泡細条集束体
内部に形成していた筈の気泡が著しく破泡してしまい、
独立気泡率が急激に低下することである。この破泡によ
る気泡の連通化現象は、押出発泡細条集束体の厚みを高
めようとする程に押出発泡細条集束体内部に巣の様な空
洞(以下ボイド現象と言う)を生む状態にまで進行する
傾向があるので、厚み20mm以上の押出発泡細条集束
体では、独立気泡率の高い状態のものは得られないとい
う致命的な問題点を有している。
In FIG. 2, the flow pressure of the foamable composition can be adjusted by the relative shear rate of the foamable composition in the system (relationship of extrusion rate to die opening size), and as a result It has been shown that the suppression of "foaming in the extrusion die" is possible by selecting the extrusion device. This adjustment is apparently unlimited, ignoring the economics of the equipment. Therefore, in the case of the polygonal lines 3 ′ and 3 ″ in FIG.
As in the case of the polygonal line 1, the foaming is completely suppressed on the upstream side of the area (A), and the bubbles G1 are not formed in the area (A) for the first time.
Occurs, and the bubble G1 is extruded out of the die and adjusted to grow into G2. Therefore, in particular, in the case of the polygonal line 3'shown in FIG. 2, in the state of the process of forming the thickness of the extruded foamed strip bundle after extrusion, as shown by the broken line F ', the expansion starts as compared with D in FIG. Although the position of the extruded foamed strip bundle becomes thinner as the position recedes, there is no apparent difference outside that. However, the problem in this case (the detailed description is omitted because it is difficult to illustrate) is that the formed extruded foam strip bundle is formed inside the extruded foam strip bundle during the process of cooling and solidification. The air bubbles that were supposed to have been severely broken,
That is, the closed-cell rate drops sharply. The phenomenon of bubbles communicating due to this foam breaking creates a state in which a cavity like a nest (hereinafter referred to as a void phenomenon) is created inside the extruded foamed strip bundle as the thickness of the extruded foam strip bundle is increased. However, there is a fatal problem that an extruded foamed strip bundle having a thickness of 20 mm or more cannot be obtained with a high closed cell rate.

【0020】この対策として例えば、気泡核剤量を増し
て3”の成分組成にして独立気泡率を高めようとする
と、折れ線3’の場合と同様に領域(A)に於いて初め
て気泡G1が生じ、この気泡G1はダイ外に押出されて
G2に成長しようとする。しかしこの場合の問題点は、
領域(A)にあって瞬時に微小径気泡G1が多数発生す
る。その瞬時に生じた多数の気泡の発泡時の発泡剤潜熱
による急冷で、押出発泡細条外周部が急激に固化し気泡
の成長が終了する前に外周寸法が決まってしまうので気
泡は押出方向の径が他方向に比べ大きくなる為、押出発
泡細条の断面積及びそれを集束してなる押出発泡細条集
束体の厚みも高まらず、押出方向の圧縮応力が肉厚方向
に比べ大幅に高くなり、押出発泡細条集束体の使用方向
により緩衝性能が大きく変化し緩衝設計が非常に難し
く、又、押出発泡細条外周部の急激な固化により各押出
発泡細条表面の融着性が乏しく、且つ、押出発泡細条の
径が小さくなり、発泡直後に隣合う押出発泡細条同士の
接触圧力が生じないか或いは著しく低下し、結果各押出
発泡細条間の融着力が極端に低下する。この様な押出発
泡細条集束体は、上述した繰り返し落下時或いは切断加
工時等に押出発泡細条間に分離が生じ実用上大きな問題
となる。
As a measure against this, for example, if an attempt is made to increase the closed cell ratio by increasing the amount of the bubble nucleating agent to make the composition of the component 3 ", the bubble G1 is first formed in the region (A) as in the case of the polygonal line 3 '. This bubble G1 is pushed out of the die and tries to grow into G2, but the problem in this case is that
In the area (A), a large number of minute bubbles G1 are instantly generated. Due to the rapid cooling of the foaming agent latent heat during the foaming of a large number of bubbles generated at that instant, the outer peripheral dimension of the extruded foamed strip is rapidly solidified and the outer peripheral dimension is determined before the growth of the bubbles is completed. Since the diameter is larger than in other directions, the cross-sectional area of the extruded foam strips and the thickness of the extruded foam strip bundles that condense them do not increase, and the compressive stress in the extrusion direction is significantly higher than in the thickness direction. Therefore, the cushioning performance changes greatly depending on the direction of use of the extruded foam strips, and the cushioning design is very difficult.Furthermore, due to the rapid solidification of the extruded foam strips, the fusion of the extruded foam strip surfaces is poor. In addition, the diameter of the extruded foam strip becomes small, and the contact pressure between the adjacent extruded foam strips does not occur or decreases remarkably immediately after foaming, resulting in a drastic decrease in the fusion force between the extruded foam strips. . In such an extruded foam strip bundle, separation occurs between the extruded foam strips during the above-mentioned repeated dropping or cutting, which poses a serious problem in practical use.

【0021】つまり、高発泡体にする場合、従来の押出
発泡細条集束体及びプランク発泡体に使用されている樹
脂(市販品)では「破泡による気泡の連通化現象」と
「小径気泡になって発泡体の厚みが高まらずに圧縮応力
の異方性が強くなり、更に、押出発泡細条間の融着力が
低下する現象」との両方の不良現象を回避する条件的な
改良の余地がなく、結局、図1(本発明の押出発泡細条
集束体の製造に使用される樹脂)で示す様な押出発泡細
条集束体の形成過程、即ち領域Aで発生した適当な数の
微小気泡E1が系外に緩やかに押出され、大径気泡E2
に成長して膨張軌跡Dを描き、独立気泡性に富んだほぼ
球状の気泡として冷却固定されて良質の厚肉押出発泡細
条集束体になる発泡過程を形成させることが出来ないの
である。
In other words, when a high foam is used, the resin (commercially available product) used for the conventional extruded foam strip bundle and plank foam is "a bubble communication phenomenon due to bubble breakage" and "a small diameter bubble". There is room for conditional improvement to avoid both defective phenomena such as the phenomenon that the anisotropy of compressive stress becomes strong without increasing the thickness of the foam and the fusion force between the extruded foam strips decreases. In the end, the process of forming the extruded foamed strip bundle as shown in FIG. 1 (resin used in the production of the extruded foamed strip bundle of the present invention), that is, an appropriate number of minute particles generated in the region A The bubbles E1 are gently extruded out of the system, and large bubbles E2
It is impossible to form a foaming process that grows to form an expansion locus D and is cooled and fixed as substantially spherical bubbles rich in closed cells to form a high-quality thick extruded foam strip bundle.

【0022】この処の本発明の押出発泡細条集束体の製
造に使用される樹脂と従来の押出発泡細条集束体及びプ
ランク発泡体の製造に使用されている樹脂(市販品)と
の相違は、樹脂の持つ本質的な性質、つまり「大きい径
の独立気泡性に富み、気泡の保持性」を持つ本発明の押
出発泡細条集束体に使用される樹脂と、この性質を持た
ない従来の押出発泡細条集束体及びプランク発泡体の製
造に使用されている樹脂(市販品)との相違点である。
即ち、本発明の押出発泡細条集束体の製造に使用される
樹脂は、上述した「2軸伸長歪0.2に於ける2軸伸長
粘度が4.5×106 poise以上」(押出発泡細条
集束体を構成する樹脂では「2軸伸長歪0.2に於ける
2軸伸長粘度が3×106 poise以上」)である要
件に加えて「2軸歪硬化率αが0.30以上」(押出発
泡細条集束体を構成する樹脂では「2軸歪硬化率αが
0.25以上」)である要件を満たしていることの相違
である。
The difference between the resin used in the production of the extruded foamed strip bundle of the present invention and the resin (commercially available product) used in the conventional production of the extruded foamed strip bundle and the plank foam. Is an essential property of a resin, that is, a resin used in the extruded foamed thin fiber bundle of the present invention that has “rich large closed cell properties and cell retention”, and a conventional resin that does not have this property. This is a difference from the resin (commercially available product) used in the production of the extruded foam strip bundle and the plank foam.
That is, the resin used in the production of the extruded foam strip bundle of the present invention has the above-mentioned "biaxial extensional viscosity at a biaxial extensional strain of 0.2 or more of 4.5 × 10 6 poise" (extrusion foaming). In addition to the requirement that "the biaxial extensional viscosity at a biaxial extensional strain of 0.2 is 3 × 10 6 poise or more at a biaxial extensional strain of 0.2 or more"), the resin constituting the strip bundle has a "biaxial strain hardening rate α of 0.30. Or more "(" biaxial strain hardening rate α is 0.25 or more "in the resin forming the extruded foamed strip bundle) is the difference.

【0023】本発明者等は、押出発泡細条集束体の冷却
固化過程における上記破泡と気泡の連通化現象とについ
て研究した結果、この現象は気泡膜を形成する樹脂自体
の「気泡膜冷却固化過程での気泡膜の破れ易さ」と「気
泡の成長過程での均一な厚みの気泡膜の形成し難さ」と
の二つの欠点に基づくものと推論した。更に、気泡膜は
面を形成するものであるから少なくとも2軸方向の特性
を考慮すべきであるとする仮説の下に「2軸伸長粘度」
と「2軸歪硬化率α」に着目し、ようやくに本発明の押
出発泡細条集束体に使用される樹脂の完成に至り、その
結果、本発明が対象とする押出発泡細条集束体を完成す
ることに成功したものである。又、当然のことながら、
押出発泡細条集束体を構成する樹脂として注記している
特性は、押出発泡細条集束体の製造に使用した樹脂の特
性から生じた結果の特性を示すものである。
The inventors of the present invention have studied the phenomenon of the above-mentioned bubble breakage and the communication of bubbles in the cooling and solidification process of the extruded foamed thin fiber bundle, and as a result, this phenomenon is caused by the "bubble film cooling of the resin itself forming the bubble film. It was inferred that it was based on two drawbacks: "easiness of tearing of bubble film during solidification process" and "difficulty of forming bubble film of uniform thickness during bubble growth process". Furthermore, the "biaxial extensional viscosity" is based on the hypothesis that the characteristics of at least the biaxial direction should be considered because the bubble film forms the surface.
Finally, by paying attention to “biaxial strain hardening rate α”, the resin used in the extruded foamed strip bundle of the present invention was finally completed, and as a result, the extruded foamed strip bundle targeted by the present invention was obtained. It was successful in being completed. Also, of course,
The properties noted for the resin that make up the extruded foam strip bundle are those resulting from the properties of the resin used to make the extruded foam strip bundle.

【0024】即ち、押出発泡細条集束体の製造に使用さ
れる樹脂の「2軸伸長歪0.2に於ける2軸伸長粘度が
4.5×106 poise以上」(押出発泡細条集束体
を構成する樹脂では「2軸伸長歪0.2に於ける2軸伸
長粘度が3.0×106 poise以上」)である要件
の役割は、未だ流動可能な状態にある気泡膜樹脂の流動
性を抑制することで気泡膜を強靱にし、形成されている
気泡膜が冷却固化する迄の過程での表面張力に抗して膜
破断しない状態にすることにある。又一方、押出発泡細
条集束体の製造に使用される樹脂の「2軸歪硬化率αが
0.30以上」(押出発泡細条集束体を構成する樹脂で
は「2軸歪硬化率αが0.25以上」)である要件の役
割は、未だ流動可能な状態にある気泡膜樹脂を均一に流
動させることで均一な厚みの気泡膜を形成し、更に伸長
時に気泡膜に厚薄が生じた際も、厚い部分の伸長を優先
的に進行させて全体としての膜の厚薄化形成を抑制し、
気泡の冷却固化が完了するまでの過程の薄い膜部分から
の気泡膜の破断を防止することにある。従って、上記の
観点から独立気泡率が一段と高い良質な押出発泡細条集
束体を得たい場合は、押出発泡細条集束体の製造に使用
される樹脂の「2軸伸長粘度」が5.0×106 poi
se以上(押出発泡細条集束体を構成する樹脂では3.
3×106 poise以上)、「2軸歪硬化率α」が
0.35以上(押出発泡細条集束体を構成する樹脂では
0.30以上)である樹脂の採用が望ましく、更に押出
発泡細条集束体の製造に使用される樹脂の「2軸伸長粘
度」が6.0×106 poise以上(押出発泡細条集
束体を構成する樹脂では4.0×106 poise以
上)で、「2軸歪硬化率α」が0.40〜0.60(押
出発泡細条集束体を構成する樹脂では0.35〜0.5
5)の範囲にある樹脂を採用することが最も望ましい。
本発明者等によると押出発泡細条集束体の製造に使用さ
れる樹脂の「2軸歪硬化率α」の値は0.70(押出発
泡細条集束体を構成する樹脂では0.6)もある樹脂が
得られる可能性を確認している。
That is, "the biaxial extensional viscosity at a biaxial extensional strain of 0.2 is not less than 4.5 × 10 6 poise at the biaxial extensional strain of the resin used for producing the extruded foamed article bundle (extruded foamed article bundle). For the resin that constitutes the body, the role of the requirement that "the biaxial extensional viscosity at a biaxial extensional strain of 0.2 is 3.0 x 10 6 poise or more") is that of the cell membrane resin that is still in a fluid state. It is to suppress the fluidity to make the bubble film tough, and to prevent the formed bubble film from rupturing against the surface tension during the process of cooling and solidification. On the other hand, "the biaxial strain hardening rate α is 0.30 or more" of the resin used for manufacturing the extruded foamed strip bundle (for the resin constituting the extruded foamed strip bundle, the "biaxial strain hardening rate α is The role of the requirement of "0.25 or more") is to form a bubble film having a uniform thickness by uniformly flowing the bubble film resin that is still in a flowable state, and the bubble film becomes thin and thin during extension. Also in this case, the extension of the thick portion is preferentially promoted to suppress the formation of the thinned film as a whole,
The purpose is to prevent breakage of the bubble film from the thin film portion in the process until the cooling and solidification of the bubble is completed. Therefore, from the above viewpoint, when it is desired to obtain a high-quality extruded foam strip bundle having a higher closed cell rate, the "biaxial extensional viscosity" of the resin used for producing the extruded foam strip bundle is 5.0. × 10 6 poi
se or more (for the resin forming the extruded foamed strip bundle, 3.
3 × 10 6 poise or more), and the “biaxial strain hardening rate α” is 0.35 or more (0.30 or more in the resin constituting the extruded foamed thin fiber bundle). The “biaxial extensional viscosity” of the resin used for producing the filament bundle is 6.0 × 10 6 poise or more (4.0 × 10 6 poise or more for the resin forming the extruded foam fine filament bundle), Biaxial strain hardening rate α "is 0.40 to 0.60 (0.35 to 0.5 in the case of the resin forming the extruded foamed strip bundle).
It is most desirable to use a resin within the range of 5).
According to the present inventors, the value of the “biaxial strain hardening rate α” of the resin used for producing the extruded foamed strip bundle is 0.70 (0.6 for the resin constituting the extruded foamed strip bundle). We have confirmed the possibility of obtaining certain resins.

【0025】又、本発明の押出発泡細条集束体を得るた
めの製造装置や製造条件上で留意すべき点は、「発泡性
組成物の流動圧力」を高め「押出ダイ内発泡」を抑制す
る為の工夫である。まずは本発明の発泡体を構成する樹
脂の最も大きな特長である後述する「超高分子量成分」
の押出機内での分子鎖切断による低分子量化を抑制する
為に樹脂に添加されている熱安定剤を一般の基準量より
10%程度増量しておくこと、押出機内の樹脂温度が1
95℃を超えない状態に押出機の温調に努めること、使
用する押出機の押出用スクリューは樹脂の分子鎖に掛か
る応力の小さいものを選ぶことを推奨する。更に、押出
機先端に取付られる押出用ダイのテーパの角度(θ)
を、40゜〜60゜程度に調整することが好ましく、こ
れは「発泡性組成物の流動圧力」を高め「押出ダイ内発
泡」を抑制する効果に加え、押出発泡細条のスウェルを
高め押出方向の気泡径を出来るだけ小さくすることによ
り、押出発泡細条集束体の押出方向の圧縮応力を下げて
圧縮応力の異方性を弱め、更に、大きなスウェルによる
押出発泡細条の大径化により隣合う押出発泡細条同士の
接触圧力が高まり各押出発泡細条間の融着力が高まる効
果を有している。又、押出用ダイのテーパの角度(θ)
が60゜を超えると発泡時に押出発泡細条に屈曲変形が
生じ、各押出発泡細条同士が点状でしか接触融着しない
ため各押出発泡細条間の融着力は非常に低く、上記繰り
返し落下後、或いは、切断加工時等に各押出発泡細条が
分離し実用上大きな問題となる。
In addition, a point to be noted in the production apparatus and production conditions for obtaining the extruded foamed strip bundle of the present invention is to increase the "flowing pressure of the foamable composition" and suppress the "foaming in the extrusion die". It is a device for doing. First, the "ultra high molecular weight component" described below, which is the greatest feature of the resin that constitutes the foam of the present invention
The heat stabilizer added to the resin in order to suppress lowering of the molecular weight due to molecular chain scission in the extruder is increased by about 10% from the general standard amount, and the resin temperature in the extruder is 1
It is recommended to try to control the temperature of the extruder so that it does not exceed 95 ° C., and to select an extruder screw having a small stress on the resin molecular chain. Furthermore, the taper angle (θ) of the extrusion die attached to the tip of the extruder
Is preferably adjusted to about 40 ° to 60 °, which has the effect of increasing the “flow pressure of the foamable composition” and suppressing the “foaming in the extrusion die”, and also increasing the swell of the extruded foam strip to extrude. By reducing the bubble diameter in the direction as much as possible, the compressive stress in the extrusion direction of the extruded foam strips is reduced to weaken the anisotropy of the compression stress, and the large swell makes the extruded foam strips larger in diameter. This has the effect of increasing the contact pressure between adjacent extruded foam strips and increasing the fusion force between the extruded foam strips. Also, the taper angle (θ) of the extrusion die
When the value exceeds 60 °, the extruded foam strips are bent and deformed at the time of foaming, and the extruded foam strips are contact-fused only in point form. Therefore, the fusion force between the extruded foam strips is very low. After being dropped, or during cutting, etc., each extruded foamed strip is separated, which poses a serious problem in practical use.

【0026】又、上記押出発泡細条のスウェルを更に高
めての圧縮応力の異方性を一段と低減し、且つ、押出発
泡細条間の融着力を一段と高めたい場合は、押出発泡細
条集束体を構成する樹脂ではスウェル値Sが2.0以上
(押出発泡細条集束体の製造に使用される樹脂のスウェ
ル値Sが2.5以上)の高い値を示す樹脂を用いること
が望ましい。特に押出発泡細条集束体の密度が0.02
0g/cm3程度で、肉厚が30mm以上の圧縮応力の
異方性が更に弱く、押出発泡細条間の融着力が一段と高
い押出発泡細条集束体を得たい場合は、押出発泡細条集
束体を構成する樹脂のスウェル値Sが2.6〜3.5
(押出発泡細条集束体の製造に使用される樹脂のスウェ
ル値Sが3.2〜5.0)である樹脂を採用することが
最も望ましい。
When it is desired to further increase the swell of the extruded foamed strips to further reduce the anisotropy of the compressive stress and further enhance the fusion force between the extruded foamed strips, the extruded foamed strips are bundled. It is desirable to use a resin having a high swell value S of 2.0 or more (the swell value S of the resin used to manufacture the extruded foamed strip bundle is 2.5 or more) as the resin forming the body. In particular, the density of the extruded foam strips is 0.02.
In the case of obtaining an extruded foam strip bundle having a compression stress anisotropy of about 0 g / cm 3 and a wall thickness of 30 mm or more, which has a much higher fusion force between the extruded foam strips, the extruded foam strips can be obtained. The swell value S of the resin forming the focusing body is 2.6 to 3.5.
It is most desirable to adopt a resin having a swell value S of 3.2 to 5.0 for the resin used to manufacture the extruded foamed strip bundle.

【0027】上述のようにして得られる本発明の厚肉の
押出発泡細条集束体は、肉厚が20mm以上を有した状
態にあって、密度が0.005g/cm3以上0.04
g/cm3以下、平均気泡径が0.4mm以上2.0m
m以下、独立気泡率が80%以上という条件を兼備した
ものである。
The thick extruded foamed strip bundle of the present invention obtained as described above has a thickness of 20 mm or more and a density of 0.005 g / cm 3 or more and 0.04 or more.
g / cm 3 or less, average bubble diameter 0.4 mm or more and 2.0 m
It also satisfies the conditions of m or less and the closed cell rate of 80% or more.

【0028】この押出発泡細条集束体は、前記JIS
Z0235に準じ測定した「1回落下時の最大加速度の
最小値J1」が80G以下の値を示し、前記家電製品等
の緩衝包装材としての有用性を有したものである。又、
本発明者等の実験によると次のことが確認されている。
即ち、肉厚が20mm以上の条件を満たしたものでも、
密度が0.005g/cm3未満、或いは、0.04g
/cm3を超えるものでは、繰り返し落下評価で示され
る「緩衝性能低下度K」が1.5の値を超えて大きくな
り緩衝包装材料としての信頼性が悪化するし、同様に独
立気泡率が80%未満のものでも、上記「緩衝性能低下
度K」が1.5を超え緩衝包装材料として価値のないも
のになる。又、平均気泡径が0.4mm未満のもので
は、押出発泡細条集束体製造時の押出方向と肉厚方向の
圧縮応力の比である「圧縮応力異方度Z」が1.8を超
える為、押出発泡細条集束体の使用方向により緩衝性能
が大きく変化し使用方向に十分注意する必要があり、更
に、各押出発泡細条同士の融着力が非常に低くなってし
まい、上記繰り返し落下評価後のサンプルの外観観察か
ら各発泡細条の分離が発生することが明らかであり、更
に切断加工時等にも同様の分離が発生する場合があり、
この様な分離が発生する押出発泡細条集束体は緩衝包装
材として使用出来ない。逆に平均気泡径が2.0mmを
超える大きな平均気泡径の押出発泡細条集束体は表面外
観が悪く更に気泡膜が厚いため手触りも悪く緩衝包装材
としての商品価値が低くなる。
This extruded foamed strip bundle has the above-mentioned JIS
The “minimum value J 1 of the maximum acceleration at the time of a single drop” measured according to Z0235 shows a value of 80 G or less, and has utility as a cushioning packaging material for the above home electric appliances and the like. or,
According to experiments by the present inventors, the following has been confirmed.
That is, even if the wall thickness satisfies the condition of 20 mm or more,
Density is less than 0.005g / cm 3 , or 0.04g
If it exceeds / cm 3 , the “deterioration degree of cushioning performance K” indicated by the repeated drop evaluation becomes larger than a value of 1.5 and the reliability as a cushioning packaging material is deteriorated, and similarly the closed cell ratio is Even if it is less than 80%, the above-mentioned "buffering performance reduction degree K" exceeds 1.5, and it becomes of no value as a buffer packaging material. If the average cell diameter is less than 0.4 mm, the "compressive stress anisotropy Z", which is the ratio of the compressive stress in the extrusion direction and the thickness direction in the production of the extruded foamed thin fiber bundle, exceeds 1.8. Therefore, it is necessary to pay close attention to the direction of use because the cushioning performance will change significantly depending on the direction of use of the extruded foam strips, and the fusion force between the extruded foam strips will be extremely low, resulting in repeated drop as described above. From the appearance observation of the sample after the evaluation, it is clear that separation of each foamed strip occurs, and similar separation may occur during cutting processing, etc.
The extruded foam strip bundle, which causes such separation, cannot be used as a cushioning packaging material. On the contrary, the extruded foamed strip bundle having a large average cell diameter of more than 2.0 mm has a poor surface appearance and a thick cell film, which makes it uncomfortable to touch and has a low commercial value as a buffer packaging material.

【0029】叉、前記「1回落下時の最大加速度の最小
値J1」の許容値が65G以下と言う非常に壊れ易い製
品の緩衝包装材には、上記構成要件に加え肉厚30mm
以上の押出発泡細条集束体の使用が望ましい。更に、上
述した「1回落下時の最大加速度の最小値J1」や「緩
衝性能低下度K」等で代表される押出発泡細条集束体の
緩衝特性をより高度に保持させる観点からは、押出発泡
細条集束体の密度が0.015g/cm3以上0.03
0g/cm3以下、独立気泡率が90%以上の押出発泡
細条集束体を選ぶことが望ましい。更に、図4は、本発
明の押出発泡細条集束体を構成する樹脂のエチレン含有
量と押出発泡細条集束体が示す「緩衝性能低下度K」及
び「圧縮後厚み回復率R」の関係を示す図である。
In addition, in addition to the above requirements, the thickness of 30 mm is added to the buffer packaging material for a very fragile product in which the allowable value of "the minimum value J 1 of the maximum acceleration at the time of one drop" is 65 G or less.
It is desirable to use the above extruded foamed strip bundle. Further, from the viewpoint of more highly retaining the cushioning characteristics of the extruded foamed thin fiber bundle, which is represented by the above-mentioned "minimum value J 1 of the maximum acceleration at the time of one drop" and "the cushioning performance deterioration degree K", Density of extruded foam strips is 0.015g / cm 3 or more 0.03
It is desirable to select an extruded foam strip bundle having a closed cell rate of 0 g / cm 3 or less and a closed cell rate of 90% or more. Further, FIG. 4 shows the relationship between the ethylene content of the resin constituting the extruded foamed strip bundle of the present invention and the "deterioration degree K of buffer performance" and "thickness recovery rate after compression R" of the extruded foamed strip bundle. FIG.

【0030】左側の縦軸は「緩衝性能低下度K」を0.
1間隔で1.0から目盛り、右側の縦軸は「圧縮後厚み
回復率R」を1%間隔で90〜100迄目盛り、横軸は
エチレン含有量Etを対数目盛りで0.01〜10%迄
目盛り、図4で白丸は「緩衝性能低下度K」の値、黒丸
は「圧縮後厚み回復率R」の値を示す。同図で線5(一
点鎖線)は、特に厳しい緩衝性能の維持性の基準となる
「緩衝性能低下度K」1.3のレベルを示している。
「圧縮後厚み回復率R」は、肉厚の方向に厚みの90%
量を圧縮し解放した後の24時間後の厚みの回復率で、
この値が95%未満では、押出発泡細条集束体の加工法
の一つである抜き刃を用いる圧縮加工を行った後の押出
発泡細条集束体の寸法回復が十分でない為、同加工を行
うことが出来ない。図4で線6(破線)は「圧縮後厚み
回復率R」の必要最低値である95%を示している。
The vertical axis on the left side represents the "buffering performance deterioration degree K" as 0.
The scale is from 1.0 at 1 interval, the vertical axis on the right side is “the thickness recovery rate after compression R” from 90 to 100 at 1% intervals, and the horizontal axis is the ethylene content Et is from 0.01 to 10% on a logarithmic scale. Up to the scale, the white circles in FIG. 4 indicate the “buffering performance reduction degree K” and the black circles indicate the “thickness recovery rate after compression R”. In the same figure, the line 5 (dashed-dotted line) indicates the level of 1.3 of the "damping performance reduction degree K" which is the standard of the maintainability of particularly severe buffering performance.
"Thickness recovery rate after compression R" is 90% of the thickness in the direction of the wall thickness.
The recovery rate of thickness after 24 hours after compressing and releasing the amount,
If this value is less than 95%, the dimensional recovery of the extruded foam fine-strip bundle is not sufficient after the compression process using a punching blade, which is one of the processing methods of the extruded foam fine-strip bundle, is not sufficient. I can't do it. In FIG. 4, the line 6 (broken line) shows 95% which is the minimum required value of the “thickness recovery rate after compression R”.

【0031】従って、図4で明らかな様に、本発明の押
出発泡細条集束体に「緩衝性能低下度K」が1.3以下
の非常に優れた緩衝性能の維持性や、ある特定な圧縮切
断加工を行った後の寸法回復性を付与させたい場合は、
押出発泡細条集束体を構成する樹脂にエチレン成分を含
有させることが極めて有効である。その効果の傾向はエ
チレン含有量が0.01%で効果が生じ始め、0.05
%〜4%の範囲で顕著な効果の高まりを示し、8%程度
でその効果の高まりは緩やかとなる。この事実はエチレ
ン成分を含有させることが、より高い繰り返しの緩衝性
能の維持性が要求される緩衝包装分野、及び、抜き刃を
用いる圧縮加工の様な特別な加工を必要とする緩衝包装
材加工分野に有用なものであることを示している。
Therefore, as is apparent from FIG. 4, the extruded foamed strip bundle of the present invention has a very excellent buffering performance maintainability with a "buffering performance reduction degree K" of 1.3 or less, or a certain specific value. If you want to add dimensional recovery after compression cutting,
It is extremely effective to incorporate the ethylene component into the resin forming the extruded foamed strip bundle. The effect tends to occur when the ethylene content is 0.01%,
% To 4%, the effect is significantly increased, and about 8%, the effect is moderately increased. This fact indicates that the inclusion of an ethylene component requires the buffer packaging field to maintain a high level of repeated buffering performance, and the buffer packaging material processing that requires special processing such as compression processing using a punching blade. It is shown to be useful in the field.

【0032】本発明の、押出細条集束体を構成する樹脂
としては、GPC法により測定されるMZ が2×106
以上、特に2〜20(×106 )、且つ、MZ /MW
5以上、特に5〜25(押出細条集束体の製造に使用さ
れる樹脂はZ平均分子量MZが8×106 以上、特に8
〜40(×106 )、且つ、Z平均分子量MZ と重量平
均分子量MW の比であるMZ /MW が10以上、特に1
0〜50)であるプロピレン系樹脂である場合が望まし
い。この場合のZ平均分子量MZ は、樹脂の高分子量成
分の平均分子量への寄与を重視したものであり、重量平
均分子量MW は、Z平均分子量MZ に比べ低分子量成分
の平均分子量への寄与を重視したものである。つまり従
来の押出細条集束体及びプランク発泡体の製造に使用さ
れている樹脂である高粘度ポリプロピレン系樹脂等で
は、分子量1.0×107 以上の超高分子量成分を多く
含むことはないので、Z平均分子量MZ が8×106
上であるものは存在しない筈である。この超高分子量成
分の存在は、従来の押出細条集束体及びプランク発泡体
の製造に使用される樹脂にない幾つかの利点を有してい
る。まず第1に超高分子量成分同士の絡み合い易さによ
る高い「2軸歪硬化率α」の発現であり、第2に高い
「2軸伸長粘度」であり、第3に大きなスウェルの発現
である。
The resin constituting the extruded strip bundle of the present invention has an M Z of 2 × 10 6 as measured by the GPC method.
Above, especially 2 to 20 (× 10 6 ), and M Z / M W is 5 or more, especially 5 to 25 (the resin used for the production of the extruded strip bundle has a Z average molecular weight M Z of 8 × 10 6. 6 or more, especially 8
˜40 (× 10 6 ), and M Z / M W, which is the ratio of the Z average molecular weight M Z and the weight average molecular weight M W , is 10 or more, particularly 1
It is desirable that the propylene resin is 0 to 50). The Z-average molecular weight M Z in this case emphasizes the contribution of the high-molecular weight component of the resin to the average molecular weight, and the weight-average molecular weight M W is higher than the Z-average molecular weight M Z to the average molecular weight of the low-molecular-weight component. It emphasizes contribution. That is, since a high-viscosity polypropylene resin, which is a resin used in the production of conventional extruded strip bundles and plank foams, does not contain a large amount of ultra-high molecular weight components having a molecular weight of 1.0 × 10 7 or more. , Z average molecular weight M Z should be 8 × 10 6 or more. The presence of this ultra-high molecular weight component has several advantages over the resins used to make conventional extruded strip bundles and plank foams. Firstly, the expression of high "biaxial strain hardening rate α" due to the ease of entanglement of ultra-high molecular weight components, the second is high "biaxial elongational viscosity", and the third is the development of large swell. .

【0033】又、Z平均分子量MZ と重量平均分子量M
W の比であるMZ /MW は、分子量分布の広さを示す
が、従来の押出発泡細条集束体及びプランク発泡体の製
造に使用されている樹脂ではMZ /MW が10以上のも
のの存在は知られていない。このMZ /MW の値が高い
と言うことは、前記超高分子量成分の存在に加えて低分
子量成分も多く含むことを示しており、この低分子量成
分の存在によって高分子量成分が多い割にはセン断粘度
が高まらないので、押出発泡に使用する押出機のスクリ
ュー負荷を低く抑えることができ、更に、大きなスウェ
ルを発現させる利点を有している。
Further, Z average molecular weight M Z and weight average molecular weight M
The ratio of W , M Z / M W , indicates a wide molecular weight distribution, but M Z / M W is 10 or more in the resins used in the production of conventional extruded foam strip bundles and plank foams. The existence of things is unknown. The fact that the value of M Z / M W is high indicates that in addition to the presence of the ultra high molecular weight component, a large amount of a low molecular weight component is also contained. Since the shear viscosity does not increase, the screw load of the extruder used for extrusion foaming can be kept low, and further, there is an advantage that a large swell is exhibited.

【0034】しかしながら、現状の解析技術では、樹脂
の中の超高分子量成分の存在を正確に定量表現すること
は難しく、むしろ樹脂の持つ粘弾性の特性値で表現する
ことの方が正確であると言われている。本発明の押出発
泡細条集束体を構成する樹脂を、先ずはその粘弾性の特
性値で表現してあるのは上述した技術背景が存在する理
由による。
However, with the current analysis technique, it is difficult to accurately and quantitatively express the presence of the ultrahigh molecular weight component in the resin. Rather, it is more accurate to express the viscoelastic property value of the resin. Is said. The reason why the resin constituting the extruded foamed strip bundle of the present invention is first expressed by the characteristic value of its viscoelasticity is because of the above-mentioned technical background.

【0035】本発明の押出発泡細条集束体を構成する樹
脂は、その骨格が線状ポリプロピレン系樹脂であること
が望ましく、その理由は、まずの公報に示されている
従来の[線状プロピレン系樹脂の主として端部に長鎖分
岐を有する枝分かれ構造を有するポリプロピレン系樹
脂]に比べ、押出機で溶融混練された後の樹脂の「2軸
伸長粘度」及び「2軸歪硬化率α」の低下が少ないの
で、一旦溶融混練された後の樹脂の特性が重要になる押
出発泡細条集束体の製造に使用される樹脂としては、設
定出来る樹脂の限界的な特性をほとんど損なうことなく
押出発泡細条集束体形成に利用できる理想的な樹脂とな
るからである。又、上記[線状プロピレン系樹脂の主と
して端部に長鎖分岐を有する枝分かれ構造を有するポリ
プロピレン系樹脂]は開示されている製法から推定する
と、電子線や放射線等で行われる主鎖への側鎖(枝分か
れ)の結合過程において、同時に主鎖の切断が生じてし
まう為、樹脂全体としての粘度を高めることが出来ず、
本発明の押出発泡細条集束体の製造に使用される樹脂の
様な超高分子量成分を含むことによる高い2軸伸長粘度
の発現が不可能と予想される。樹脂骨格の線状と枝分か
れの判別は、一般的に特開平6−192460号公報に
開示される様に、GPC法により測定されるデータを基
に作成される分子量分布カーブを用いて行われ、同カー
ブの高分子領域にキャメル状のカーブの張り出しのある
ものは枝分かれ、張り出しのないものは線状の樹脂であ
ると言うことが出来る。
The resin constituting the extruded foamed thin fiber bundle of the present invention preferably has a skeleton of a linear polypropylene resin, because the conventional [linear propylene is disclosed in the first publication. Of the biaxial elongation viscosity and the biaxial strain hardening rate α of the resin after being melt-kneaded by an extruder, Since the decrease is small, the properties of the resin once it has been melt-kneaded become important.For the resin used for the production of extruded foam strip bundles, extruded foam can be set without impairing the marginal properties of the resin that can be set. This is because it becomes an ideal resin that can be used for forming a narrow bundle. Also, the above [polypropylene resin having a branched structure having long chain branches mainly at the ends of the linear propylene resin] is estimated from the disclosed production method, and the side to the main chain that is performed by electron beam, radiation, etc. During the chain (branching) bonding process, the main chain is broken at the same time, so the viscosity of the resin as a whole cannot be increased,
It is expected that high biaxial extensional viscosity cannot be achieved by containing an ultrahigh molecular weight component such as a resin used for producing the extruded foamed strip bundle of the present invention. The determination of linearity and branching of the resin skeleton is generally performed using a molecular weight distribution curve created based on data measured by the GPC method, as disclosed in JP-A-6-192460. It can be said that a polymer having a camel-shaped curve in the polymer region of the same curve is branched, and a polymer having no curve is a linear resin.

【0036】本発明の押出発泡細条集束体を構成するポ
リプロピレン系樹脂の製造は、例えば、移動固定床を有
する重合槽を用いたチーグラー・ナッタ触媒による2段
階重合法により行われる。その際の製造条件として重要
なことは、触媒として下記の式(1)で表されるチタン
含有化合物と下記の式(2)で表されるエステルを振動
ボールミル中で磨砕加速度45〜55m・secー2で混
合磨砕されることにより得られるチタン含有固体構成分
と、アルミニウム構成分を含有するチーグラー・ナッタ
触媒を用いること、又、分子量制御剤として水素を使用
すること、次に重合条件として、先ず第1重合段階で重
合圧力を30〜40kg/cm2 、重合温度を100〜
120℃、反応混合物平均滞留時間を1〜3時間とし粘
度(MFR1 )が1〜14g/10分のポリプロピレン
系樹脂を重合し、続いて、第2重合段階では、分子量制
御剤である水素を除去、具体的には水素を0.005モ
ル%以下にした状態で、重合圧力10〜20kgf/c
2 、重合温度40〜50℃、反応混合物平均滞留時間
3〜5時間の条件下で全重合量に対する第2重合段階の
重合量を10〜20wt%とし第1重合段階での粘度
(MFR1)に対し1/4〜1/6値の最終粘度(MF
2 )のポリプロピレン系樹脂にすることである。
The polypropylene resin constituting the extruded foamed strip bundle of the present invention is produced, for example, by a two-stage polymerization method using a Ziegler-Natta catalyst using a polymerization tank having a moving fixed bed. What is important as the production conditions at that time is that the titanium-containing compound represented by the following formula (1) and the ester represented by the following formula (2) as a catalyst are ground in a vibrating ball mill at an acceleration of 45 to 55 m. Using a titanium-containing solid component obtained by mixing and grinding at sec -2 and a Ziegler-Natta catalyst containing an aluminum component, using hydrogen as a molecular weight control agent, and then using polymerization conditions. First, in the first polymerization step, the polymerization pressure is 30 to 40 kg / cm 2 , and the polymerization temperature is 100 to
Polymerization of polypropylene resin having a viscosity (MFR 1 ) of 1 to 14 g / 10 minutes at 120 ° C. with an average residence time of the reaction mixture of 1 to 3 hours, and subsequently, in the second polymerization stage, hydrogen as a molecular weight control agent was added. Removal, specifically, with hydrogen at 0.005 mol% or less, polymerization pressure 10 to 20 kgf / c
m 2 , polymerization temperature of 40 to 50 ° C., and reaction mixture average residence time of 3 to 5 hours, the polymerization amount in the second polymerization step is 10 to 20 wt% with respect to the total polymerization amount, and the viscosity in the first polymerization step (MFR 1 ) To a final viscosity (MF of 1/4 to 1/6)
R 2 ) polypropylene resin.

【0037】特に、第2重合段階での重合量を10〜2
0wt%の範囲とすることは、この製法では上記分子
量、分子量分布、及び、それに伴う粘弾性特性の発現に
は重要である。ポリプロピレン系樹脂にエチレン等のプ
ロピレン以外のオレフィン系樹脂を含有させる場合に
は、第2重合段階で上記オレフィン系ガスを添加し重合
を行う方法を用いることが出来る。この場合、分子量制
御剤である水素濃度を0.005モル%以下と非常に低
い濃度に下げる為、例えばエチレンガスを多量に添加す
ると重合される樹脂の分子量が過度に高まりゲル成分が
多量に生成し連続した重合を行うことが出来なくなるこ
とを確認している。従って、この様な樹脂の製造方法で
は実際にエチレン含有量が8%以下のものしか製造出来
ていない。
In particular, the polymerization amount in the second polymerization stage is 10 to 2
The range of 0 wt% is important for the production of the above-mentioned molecular weight, molecular weight distribution, and the associated viscoelastic properties in this production method. When the polypropylene-based resin contains an olefin-based resin other than propylene such as ethylene, a method of adding the above-mentioned olefin-based gas in the second polymerization step and performing polymerization can be used. In this case, since the hydrogen concentration, which is the molecular weight control agent, is lowered to a very low concentration of 0.005 mol% or less, for example, when a large amount of ethylene gas is added, the molecular weight of the resin to be polymerized excessively increases and a large amount of gel component is produced. However, it has been confirmed that continuous polymerization cannot be performed. Therefore, with such a method for producing a resin, only an ethylene content of 8% or less can be actually produced.

【0038】 TiCl3 ・nAlCl3 ・・・(1) (式中nは、0.1〜0.4の範囲とする。) R1 −O−CO−R2 ・・・(2) (式中R1 は炭素原子数1〜8のアルキル基、R2 は炭
素原子数7〜14のフェニルアルキル基またはフェニル
基であり、全体の炭素原子数は18以下の化合物であ
り、具体的には、例えば、n−吉草酸エチルエステル、
フェニル酪酸エチルエステルである。)ただし、上述し
た重合条件は採用する重合装置、即ち例えば重合槽の形
状構造やその大きさ及び撹拌翼の形状等で幾分変わるこ
とが考えられるので、使用する重合装置において上記の
開示条件を参考に若干の予備実験を行うことを推奨す
る。この場合の管理指標は、各重合段階での粘度であ
る。
TiCl 3 · nAlCl 3 (1) (where n is in the range of 0.1 to 0.4) R 1 —O—CO—R 2 (2) (Formula) Wherein R 1 is an alkyl group having 1 to 8 carbon atoms, R 2 is a phenylalkyl group or a phenyl group having 7 to 14 carbon atoms, and the total number of carbon atoms is a compound having 18 or less. , For example, n-valeric acid ethyl ester,
Phenylbutyric acid ethyl ester. However, the above-mentioned polymerization conditions may vary somewhat depending on the polymerization apparatus used, that is, for example, the shape and structure of the polymerization tank, the size thereof, the shape of the stirring blades, etc. It is recommended to perform some preliminary experiments for reference. The control index in this case is the viscosity at each polymerization stage.

【0039】本発明の押出発泡細条集束体を構成するポ
リプロピレン系樹脂は、プロピレンホモポリマー、ある
いは、プロピレンと他のオレフィン系樹脂との共重合体
等である。前記、オレフィン系樹脂としては特にエチレ
ンが好ましく使用される。本発明の押出発泡細条集束体
を構成するポリプロピレン系樹脂には、気泡膜固化過程
において樹脂を速やかに固化させる目的で、公知のポリ
プロピレン系樹脂用結晶増核剤、例えば、芳香族カルボ
ン酸のアルミニウム塩、ジベンジリデンソルビトール、
置換ジベンジリデンソルビトール、メチレンビス(2.
4.−ジ−t−ブチルフェノール)アシッドホスフェー
トナトリウム塩等を、及び/又は、気泡の発生状態を調
節する目的で、例えば、タルク、酸化珪素のような無機
粉末、ステアリン酸亜鉛、ステアリン酸カルシウムのよ
うな有機質微粉末、更にクエン酸、炭酸水素ナトリウム
のような加熱により分解しガスを発生する微粉末など気
泡核剤を、必要に応じて添加してもよい。その他、例え
ば、紫外線吸収剤、酸化防止剤、帯電防止剤、着色剤等
の公知の添加剤の必要量を添加してもよく、このことは
従来の押出発泡細条集束体及びプランク発泡体を構成す
る樹脂と変わらない。
The polypropylene resin constituting the extruded foamed fine fiber bundle of the present invention is a propylene homopolymer or a copolymer of propylene and another olefin resin. Especially, ethylene is preferably used as the olefin resin. The polypropylene-based resin forming the extruded foamed strip bundle of the present invention includes a known crystal nucleating agent for polypropylene-based resin, for example, an aromatic carboxylic acid, for the purpose of rapidly solidifying the resin in the process of solidifying a bubble film. Aluminum salt, dibenzylidene sorbitol,
Substituted dibenzylidene sorbitol, methylene bis (2.
4. -Di-t-butylphenol) acid phosphate sodium salt and / or for the purpose of controlling the generation state of bubbles, for example, inorganic powder such as talc and silicon oxide, organic substances such as zinc stearate and calcium stearate. If necessary, a fine-particle powder, or a cell nucleating agent such as fine powder that decomposes by heating to generate gas, such as citric acid or sodium hydrogen carbonate, may be added. In addition, for example, a necessary amount of a known additive such as an ultraviolet absorber, an antioxidant, an antistatic agent, a colorant, etc. may be added, which means that a conventional extruded foam strip bundle and plank foam can be added. It is the same as the constituent resin.

【0040】本発明で言う「2軸伸長粘度」及び「2軸
歪硬化率α」は、潤滑スクイーズ法2軸伸長粘度測定装
置、具体的には例えば、岩本製作所製の液体2軸伸張測
定装置BE−100型を用いて測定される。基本的な測
定条件は、使用するサンプルには、押出発泡細条集束体
の製造に使用される樹脂、叉は、押出発泡細条集束体を
用い予め直径16±1mm、厚さ6.5±0.5mmの
円柱状に脱泡成形した状態にして用いること、サンプル
及び測定用プレート間に介在させる潤滑剤にはシリコン
オイル〔信越化学工業(株)、KF968−100C
S〕を用い、測定は昇温させたプレート温度が200±
1℃に安定した後、2軸伸長歪速度0.01sec-1
条件下で行なうことである。 そして得られた測定値の
内の2軸伸長歪み0.2の時の2軸伸長粘度η2 を、本
発明で言う「2軸伸長粘度」とする。一方「2軸歪硬化
率α」は、上記の2軸伸長歪が0.01の時の2軸伸長
粘度η1 と、2軸伸長歪が0.2の時の2軸伸長粘度η
2 との、2点間の2軸伸長歪に対する2軸伸長粘度の変
化率αであり、下記の(3)式で計算する。 α=0.77×log(η2 −η1 ) ・・・(3)
The "biaxial extensional viscosity" and "biaxial strain hardening rate α" referred to in the present invention are the biaxial extensional viscosity measuring apparatus for lubricating squeeze method, specifically, for example, the liquid biaxial extensional measuring apparatus manufactured by Iwamoto Seisakusho. It is measured using a BE-100 model. The basic measurement conditions are as follows: the sample used is the resin used to manufacture the extruded foamed strip bundles, or the extruded foamed strip bundles have a diameter of 16 ± 1 mm and a thickness of 6.5 ±. Silicone oil [KF968-100C, Shin-Etsu Chemical Co., Ltd.] should be used after being defoamed into a cylindrical shape of 0.5 mm and used as a lubricant interposed between the sample and the measurement plate.
S] was used, and the plate temperature was raised to 200 ±
After stabilizing at 1 ° C., it is carried out under the condition of biaxial elongation strain rate of 0.01 sec −1 . The biaxial extensional viscosity η 2 at a biaxial extensional strain of 0.2 out of the obtained measured values is referred to as “biaxial extensional viscosity” in the present invention. On the other hand, the “biaxial strain hardening rate α” is the biaxial extensional viscosity η 1 when the biaxial extensional strain is 0.01 and the biaxial extensional viscosity η when the biaxial extensional strain is 0.2.
2 is the rate of change α of biaxial extensional viscosity with respect to biaxial extensional strain between two points and is calculated by the following equation (3). α = 0.77 × log (η 2 −η 1 ) (3)

【0041】本発明で言う「スウェル値S」は、東洋精
機製のキャピログラフ1Cを用い測定される。測定の基
本条件としては、直径2.095mm,長さ8.0mm
のキャピラリーを用い、まず180℃に温度調整された
バレルに押出発泡細条集束体の製造に使用される樹脂、
叉は、予め押出発泡細条集束体を脱泡成形した状態の樹
脂を投入し、その樹脂が十分に溶融している事を確認し
た後、一定のセン断速度(650sec-1)下で上記樹
脂をキャピラリー(直径2.095mm,長さ8.0m
m)より押し出し、キャピラリー下面より10mm下の
位置における紐状で回復膨張状態の上記樹脂直径Wを測
定し以下に示す式(4)で計算する。 S=W/2.095 ・・・(4) なお、「2軸伸長粘度」、「2軸歪硬化率α」及び「ス
ウェル値S」の測定は樹脂投入開始後、30分以内に行
った。
The "swell value S" referred to in the present invention is measured by using Capillograph 1C manufactured by Toyo Seiki. The basic conditions for measurement are a diameter of 2.095 mm and a length of 8.0 mm.
First, the resin used for producing the extruded foamed strip bundle is placed in a barrel whose temperature is adjusted to 180 ° C. using a capillary of
Alternatively, after the resin in a state where the extruded foamed strip bundle is defoamed and molded is put in advance and it is confirmed that the resin is sufficiently melted, the above is performed under a constant shear rate (650 sec -1 ). Capillary resin (diameter 2.095mm, length 8.0m
m) is extruded, and the above-mentioned resin diameter W in a string-like recovery and expanded state at a position 10 mm below the lower surface of the capillary is measured and calculated by the following equation (4). S = W / 2.095 (4) The "biaxial elongational viscosity", the "biaxial strain hardening rate α" and the "swell value S" were measured within 30 minutes after starting the resin injection. .

【0042】本発明で言うMZ 及びMZ /MW は、高温
ゲル浸透クロマトグラフィ(GPC)により測定し、測
定には、WATERS製150C GPCクロマトグラ
フィを用い、担体溶媒として1.2.4−トリクロロベ
ンゼン、カラムとして昭和電工(株)製shodexA
T−80M/Sを使用する。測定は、溶液温度140
℃、溶液濃度0.2%(w/v)、溶媒流速1ml/分
の条件下で行なう。本願の明細書で用いた「MFR」
は、JIS K7210に準じ試験温度230℃、試験
荷重2.16kgfで測定されるメルトフローレイトの
値である。
M Z and M Z / M W in the present invention are measured by high temperature gel permeation chromatography (GPC), using 150C GPC chromatography manufactured by WATERS, and 1.2.4-tris as a carrier solvent. Chlorobenzene, shodexA manufactured by Showa Denko KK as a column
Use T-80M / S. The solution temperature is 140
C., solution concentration 0.2% (w / v), solvent flow rate 1 ml / min. "MFR" used in the specification of the present application
Is a melt flow rate value measured at a test temperature of 230 ° C. and a test load of 2.16 kgf according to JIS K7210.

【0043】本発明で言うメルトテンションは、の公
報に示されている方法に準じ東洋精機製のキャピログラ
フ1Cを用い測定される。測定の基本条件としては、直
径2.095mm,長さ8.0mmのキャピラリーを用
い、先ず230℃に温度調整されたバレルにパウダー、
叉は、ペレット状の樹脂をスウェル値Sの測定時と同じ
方法でバレルに詰め、その後ピストンに荷重をかけピス
トンを10mm/分の一定速度で下降させ、押出された
紐状樹脂を張力検出プーリーを通過させて送りロールに
巻き取る。この巻き取り速度を上げながら紐状樹脂の張
力を測定し巻き取り速度78.5m/分以下で紐状樹脂
が破断しない場合は、同速度78.5m/分での張力を
メルトテンションとした。又、同速度78.5m/分未
満で紐状樹脂が破断した場合は、破断直前の張力をメル
トテンションとした。又、この測定は樹脂投入開始後、
30分以内に行った。
The melt tension referred to in the present invention is measured according to the method described in the publication, using Capirograph 1C manufactured by Toyo Seiki. As a basic condition of the measurement, a capillary having a diameter of 2.095 mm and a length of 8.0 mm was used, and powder was first put in a barrel whose temperature was adjusted to 230 ° C.
Alternatively, pelletized resin is packed in the barrel in the same manner as when measuring the swell value S, then the load is applied to the piston and the piston is lowered at a constant speed of 10 mm / min. And pass it over to the feed roll. The tension of the string-shaped resin was measured while increasing the winding speed, and when the string-shaped resin did not break at the winding speed of 78.5 m / min or less, the tension at the same speed of 78.5 m / min was taken as the melt tension. When the string-shaped resin broke at the same speed of less than 78.5 m / min, the tension immediately before the rupture was defined as the melt tension. Also, this measurement is
It was done within 30 minutes.

【0044】[0044]

【実施例】次に実施例を用いて本発明をさらに詳しく説
明する。まず、実施例・比較例に用いる押出発泡細条集
束体の特性値の測定方法を下記に示す。なお、評価に供
する押出発泡細条集束体は、押出発泡細条集束体製造後
40℃に於いてエージングを行い、30日経時の押出発
泡細条集束体の体積変化率が1%以下になった状態のも
のを用いた。 (1)押出発泡細条集束体肉厚 [測定方法]発泡体の押出方向に沿った平行な相対する
2つの面間の距離をノギスを用い測定した。
EXAMPLES Next, the present invention will be described in more detail by way of examples. First, the method for measuring the characteristic values of the extruded foamed strip bundles used in Examples and Comparative Examples is shown below. The extruded foamed strip bundles used for evaluation were aged at 40 ° C. after the production of the extruded foamed strip bundles, and the volume change rate of the extruded foam strips after 30 days became 1% or less. The one in the state of being used was used. (1) Thickness of Extruded Foamed Strip Concentrated Body [Measurement Method] The distance between two parallel opposing surfaces along the extrusion direction of the foamed body was measured using a caliper.

【0045】(2)独立気泡率 [測定用サンプル作製]押出発泡細条集束体断面中央部
より一辺の長さが20mmの立方体のサンプルを切り出
し測定用サンプルとした。ただし、押出発泡細条集束体
の肉厚が20mm未満の場合はその押出発泡細条集束体
の肉厚を一辺の長さとする立方体を切り出し測定用サン
プルとした。更に、押出発泡細条集束体断面に直径3m
m以上の球が入る穴が空いているものは「ボイド現象有
り」とし、独立気泡率の測定は行わず緩衝包装用押出発
泡細条集束体としての商品価値なし×とした。
(2) Closed cell ratio [Preparation of sample for measurement] A cubic sample having a side length of 20 mm from the center of the cross section of the extruded foamed thin fiber bundle was cut out and used as a measurement sample. However, when the thickness of the extruded foamed strip bundle was less than 20 mm, a cube having the thickness of the extruded foamed strip bundle as one side was cut out and used as a measurement sample. Furthermore, the diameter of the cross section of the extruded foam strip is 3 m.
Those with holes with m or more spheres were marked as "with void phenomenon", the closed cell ratio was not measured, and there was no commercial value as an extruded foamed strip bundle for buffer packaging.

【0046】[測定方法]ASTM−D2856に記載
されている方法に準じ東芝・BECKMAN株式会社製
空気比較式比重計930により測定される発泡体の真の
体積の値Vxを用い次式により独立気泡率を計算し、N
=5の平均値で求めた。 S=(Vx−W/ρ)×100/(Va−W/ρ) (%) Vx:上記方法で測定される押出発泡細条集束体の真の
体積=押出発泡細条集束体を構成する樹脂の容積と、押
出発泡細条集束体内の独立気泡部分の気泡全容積との和
(cm3) Va:押出発泡細条集束体の外寸より計算される、見か
け上の押出発泡細条集束体の体積(cm3) W :押出発泡細条集束体の重量(g) ρ :押出発泡細条集束体を構成する樹脂の密度(g/
cm3
[Measurement Method] In accordance with the method described in ASTM-D2856, the true volume value Vx of the foam measured by an air-comparison hydrometer 930 manufactured by Toshiba BECKMAN Co., Ltd. Calculate the rate, N
The average value of 5 was calculated. S = (Vx-W / [rho]) * 100 / (Va-W / [rho]) (%) Vx: true volume of extruded foamed strip bundle measured by the above method = constituting extruded foamed strip bundle. Sum of the volume of resin and the total volume of cells in the closed-cell portion in the extruded foamed strip bundle (cm 3 ) Va: Apparent extruded foamed strip bundle calculated from the outer dimensions of the extruded foamed strip bundle Body volume (cm 3 ) W: Weight of extruded foamed strip bundle (g) ρ: Density of resin constituting extruded foamed strip bundle (g /
cm 3 )

【0047】(3)平均気泡径 [測定用サンプル作製]押出発泡細条集束体の押出し方
向に垂直な断面を5mm厚に切り出す。 [平均気泡径測定方法]グリッドライン法 切断面を拡大投影して気泡写真を作製し、この写真上で
押出発泡細条集束体断面の肉厚t(mm)方向に沿って
直線を引き、この直線に接触している気泡の数Lを数え
次式により平均気泡径を計算する。 平均気泡径(mm)=1.626×(t/L)
(3) Average Cell Diameter [Preparation of Measurement Sample] A cross section of the extruded foamed strip bundle, which is perpendicular to the extrusion direction, is cut into a thickness of 5 mm. [Measurement method of average cell diameter] Grid line method A cut surface is enlarged and projected to produce a cell photograph, and a straight line is drawn on the photograph along the direction of the wall thickness t (mm) of the cross section of the extruded foamed strip bundle. The number L of bubbles contacting the straight line is counted, and the average bubble diameter is calculated by the following formula. Average bubble diameter (mm) = 1.626 x (t / L)

【0048】(4)一回落下時の最大加速度の最小値J
1 [測定用サンプル作製]発泡体の押出方向に沿った平行
な相対する2つの面間の距離で規定される肉厚を有する
押出発泡細条集束体を、上記肉厚方向に切断し、上記の
対向する2つの面が、その一つの面に或るおもりを落下
させた時に、押出発泡細条集束体に後記する各静的応力
が発生する様な面積を持つようにする。
(4) The minimum value J of the maximum acceleration in one drop
1 [Sample preparation for measurement] An extruded foamed strip bundle having a wall thickness defined by the distance between two parallel facing surfaces along the extrusion direction of the foam was cut in the above-mentioned thickness direction, and The two surfaces facing each other have an area such that each static stress, which will be described later, is generated in the extruded foamed strip bundle when a weight is dropped on the one surface.

【0049】[測定方法]JIS Z0235「包装用
緩衝材料の動的圧縮試験方法」に準じた方法で測定され
た。静的応力が0.02〜0.4kgf/cm2の範囲
で、0.02〜0.1kgf/cm2の範囲においては
0.01kgf/cm2刻みに、0.1〜0.4kgf
/cm2の範囲においては0.1kgf/cm2刻みとな
る様に、おもりが落下する押出発泡細条集束体面の面
積、或いは、おもりの重量を調整しながら加速度計を内
蔵したおもりを、自由落下高さ60cmから押出発泡細
条集束体面上に30秒間隔で計5回落下させ、落下時に
おもりに発生する最大の加速度を加速度計で測定し記録
する。測定値は、一回落下時の最大加速度、及び、2〜
5回目の落下時の最大加速度の平均値を別々に静的応力
に対し動的衝撃曲線図上にプロットし、各々点間をなだ
らかな曲線で結ぶことにより動的衝撃曲線を完成させ、
この2つの曲線より上記静的応力範囲内での最も低い最
大加速度の値を、各々「一回落下時の最大加速度の最小
値J1」,「2〜5回目の落下時の最大加速度の最小値
AV」とした。
[Measurement Method] The measurement was carried out according to JIS Z0235 “Dynamic compression test method for cushioning material for packaging”. Static stress is in the range of 0.02 to 0.4 kgf / cm 2, and in the range of 0.02 to 0.1 kgf / cm 2 , it is 0.1 to 0.4 kgf in 0.01 kgf / cm 2 increments.
/ Cm in the second range as a 0.1 kgf / cm 2 increments, the area of the extruded foam strips converging member surface which weight falls, or a weight with a built-in accelerometer while adjusting the weight of the weight, free A drop height of 60 cm is dropped onto the surface of the extruded foamed strip bundle for a total of 5 times at intervals of 30 seconds, and the maximum acceleration generated on the weight during the fall is measured by an accelerometer and recorded. The measured value is the maximum acceleration at the time of one drop and 2 to
The average value of the maximum acceleration at the time of the fifth drop is plotted separately on the dynamic shock curve diagram for static stress, and the points are connected with a smooth curve to complete the dynamic shock curve,
From these two curves, the lowest maximum acceleration value within the static stress range is calculated as “minimum value J 1 of maximum acceleration in one drop” and “minimum maximum acceleration in the second to fifth drops”, respectively. The value J AV ".

【0050】 [評価尺度] 尺度 記号 80G超 × 一般家電製品用緩衝包装材に使用出来ない 65G超80G以下 △ 一般家電製品用緩衝包装材に使用可能 65G以下 ○ 壊れ易い家電製品用緩衝包装材に使用可能[Evaluation scale] Scale symbol Over 80G × Cannot be used as cushioning packaging for general home electric appliances Over 65G 80G or less △ Can be used as cushioning packaging for general home electrical appliances 65G or less ○ For buffer packaging for fragile home appliances Available

【0051】(5)緩衝性能低下度K 「緩衝性能低下度K」は、次式で計算した。(5) Buffer performance decrease degree K "Buffer performance decrease degree K" was calculated by the following equation.

【0068】K=JAV/J1 [評価尺度] 尺度 記号 包装物が複数回の衝撃力を受ける用途への 緩衝包装材としての使用 1.5超 × 不可能 1.3超1.5以下 △ 一部可能 1.3以下 ○ 可能K = J AV / J 1 [Evaluation scale] Scale symbol Use as a cushioning packaging material for applications where the package is subjected to multiple impacts Over 1.5 × Impossible over 1.3 Over 1.5 or less △ Partially possible 1.3 or less ○ Possible

【0052】(6)押出発泡細条間の融着性 [測定方法]上記5回目の落下時の最大加速度測定終了
後、同サンプルの外観観察により行った。 [評価尺度] 尺度 記号 緩衝包装材用途への使用 押出発泡細条集束体が2つ以上に分離 × 不可能 押出発泡細条集束体が2つ以上に分離 していないが押出発泡細条間の一部に 剥離あり △ 一部可能 押出発泡細条間に剥離なし ○ 可能
(6) Fusing property between extruded foam strips [Measurement method] After the measurement of the maximum acceleration at the time of the fifth drop, the appearance of the sample was observed. [Evaluation scale] Scale symbol Use for buffer packaging materials Extruded foam strips cannot be separated into two or more × Impossible Extruded foam strips are not separated into two or more but between extruded strips Some peeling is possible △ Some is possible No peeling between extruded foam strips ○ Possible

【0053】(7)圧縮後厚み回復率R [測定用サンプル作製]独立気泡率測定用サンプルと同
じ方法で作製した。 [測定方法]先ず、測定用サンプルの厚み(T1)を測
定する。測定用サンプルを、肉厚方向に厚み(T1)の
90%量を圧縮速度500mm/minで均一に圧縮
し、その後圧力を解放し20±2℃・相対湿度65%に
調整した場所に24時間静置した後、再度厚み(T2)
を測定し、次式で圧縮後厚み回復率Rを計算し、N=3
の平均値で求めた。 R=T2/T1×100(%) [評価尺度] 尺度 記号 加工性 95%未満 △ 抜き刃を用いる圧縮加工が出来ない 95%以上 ○ 抜き刃を用いる圧縮加工が可能
(7) Thickness recovery rate after compression R [Preparation of sample for measurement] The sample was prepared in the same manner as the sample for measuring the closed cell content. [Measurement Method] First, the thickness (T1) of the measurement sample is measured. The sample for measurement was uniformly compressed in a thickness direction at 90% of the thickness (T1) at a compression speed of 500 mm / min, and then the pressure was released to 20 ± 2 ° C. and relative humidity was adjusted to 65% for 24 hours. After standing still, thickness again (T2)
Is measured, and the thickness recovery rate R after compression is calculated by the following formula, and N = 3
The average value of R = T2 / T1 × 100 (%) [Evaluation scale] Scale symbol Machinability Less than 95% △ Cannot be compressed using a punching blade 95% or more ○ Can be compressed using a punching blade

【0054】(8)圧縮応力異方度Z [測定用サンプル作製]独立気泡率測定用サンプルと同
じ方法で作製した。 [測定方法]JIS Z0234「包装用緩衝材料の静
的圧縮試験方法」に準じ測定され、測定用サンプルを荷
重速度10mm/minで元の厚みの25%量を圧縮
し、その時点で測定される荷重V(kgf)の測定値か
ら、応力Y(kgf/cm2)を次式で計算する。押出
発泡細条集束体圧縮面の面積:U(cm2) Y=V/U 上記測定時、押出方向及び肉厚方向の各方向に垂直な面
に発生する応力を、それぞれ押出方向の圧縮応力Y
E(N=5の平均値),肉厚方向の圧縮応力YT (N=
5の平均値)とし、圧縮応力異方度Zを次式で計算す
る。 Z=YE/YT
(8) Compressive stress anisotropy Z [Preparation of sample for measurement] The sample was prepared by the same method as the sample for measuring the closed cell content. [Measurement Method] Measured in accordance with JIS Z0234 “Static compression test method for cushioning material for packaging”, the measurement sample is compressed at 25% of the original thickness at a load speed of 10 mm / min, and measured at that time. The stress Y (kgf / cm 2 ) is calculated from the measured value of the load V (kgf) by the following formula. Area of compressed surface of extruded foamed thin fiber bundle: U (cm 2 ) Y = V / U In the above measurement, the stress generated on the surface perpendicular to each of the extrusion direction and the thickness direction is the compression stress in the extrusion direction. Y
E (average value of N = 5), compressive stress in the thickness direction Y T (N =
5), and the compressive stress anisotropy Z is calculated by the following equation. Z = Y E / Y T

【0055】 [評価尺度] 尺度 記号 緩衝包装材用途への使用 1.8超 × 不可能 1.5超1.8以下 △ 一部可能 1.5以下 ○ 可能[Evaluation scale] Scale symbol Use for cushioning packaging materials More than 1.8 × Not possible More than 1.5 but not more than 1.8 △ Partially possible 1.5 or less ○ Possible

【0056】(9)押出発泡細条集束体密度 [測定用サンプル作製]独立気泡率測定用サンプルと同
じ方法で作製した。 [測定方法]JIS K6767に準じ測定した。 [総合評価]上記項目の評価記号により、以下の様に評
価を行った。 尺度 記号 厚板押出発泡細条集束体用途上の 商品価値 1項目でも×のあるもの × なし ○と△であり×の項目なし △ 低い 全ての項目が○ ○ 高い
(9) Density of extruded foamed strip bundles [Preparation of sample for measurement] The sample was prepared in the same manner as the sample for measuring the closed cell content. [Measurement method] Measurement was performed according to JIS K6767. [Comprehensive Evaluation] The evaluation was performed as follows according to the evaluation symbols of the above items. Scale symbol Thick plate extruded foamed strip bundle Product value in use even with one item × No × No ○ and △ No × items △ Low All items ○ ○ High

【0057】(樹脂の製造)本文記載の2段階重合法に
より、粘度(MFR)を管理指標にして9種類のポリプ
ロピレン系樹脂を製造した。得られた樹脂は、各々樹脂
1〜9の番号を付け本文記載の測定方法で各々の特性値
を測定した。その結果を上記管理指標と共に表1に示し
た。又、これらの樹脂1〜9を用いて実施例1〜17で
得られる押出発泡細条集束体及び樹脂3〜4を用いて比
較例1〜6で得られる押出発泡細条集束体各々を構成す
る樹脂についての特性値は表2に示す。更に、本文記載
の2段階重合法によるポリプロピレン系樹脂の製造方法
において、一段目と2段目の重合条件の一部を外した条
件で重合して樹脂10、11を得た。又、市販の3種類
の樹脂12〜14を用意した。樹脂12は昭和電工
(株)製ポリプロピレン系樹脂「E1100」、樹脂1
3は昭和電工(株)製ポリプロピレン系樹脂「E310
0」、樹脂14は前記の公報の実施例に使用されてい
る米国ハイモント社製「PF−815」である。樹脂1
0〜14について、それらの特性値を測定し、管理指標
である粘度(MFR)と共に表3に示した。又、樹脂1
0〜14を用いて比較例7〜22で得られる押出発泡細
条集束体を構成する樹脂についての特性値を表4に示し
た。尚、表1、及び、表3に示されている樹脂1〜11
のMFR2は、押出機を用い重合された粉体状の樹脂に
各種添加剤を練り込み作られたペレットを使用して測定
値された値である。
(Production of Resin) Nine types of polypropylene resins were produced by the two-step polymerization method described in the text, with the viscosity (MFR) as a control index. The obtained resins were numbered as resins 1 to 9 and their characteristic values were measured by the measuring method described in the text. The results are shown in Table 1 together with the above management index. Further, the extruded foamed strip bundles obtained in Examples 1 to 17 using these resins 1 to 9 and the extruded foamed strip bundles obtained in Comparative Examples 1 to 6 using resins 3 to 4, respectively. Table 2 shows the characteristic values of the resins to be used. Further, in the method for producing a polypropylene-based resin by the two-step polymerization method described in the text, polymerization was carried out under the condition that a part of the polymerization conditions in the first step and the second step were removed to obtain resins 10 and 11. Further, three commercially available resins 12 to 14 were prepared. Resin 12 is polypropylene resin "E1100" manufactured by Showa Denko KK, resin 1
3 is polypropylene resin "E310" manufactured by Showa Denko KK
0 "and the resin 14 are" PF-815 "manufactured by Highmont Co., Ltd. used in the examples of the above publications. Resin 1
The characteristic values of 0 to 14 were measured and shown in Table 3 together with the viscosity (MFR) which is a control index. Also, resin 1
Table 4 shows the characteristic values of the resins constituting the extruded foamed strip bundles obtained in Comparative Examples 7 to 22 using 0 to 14. The resins 1 to 11 shown in Table 1 and Table 3
MFR 2 is a value measured using pellets prepared by kneading various additives into a powdery resin polymerized by using an extruder.

【0058】[0058]

【表1】 [Table 1]

【0059】[0059]

【表2】 [Table 2]

【0060】[0060]

【表3】 [Table 3]

【0061】[0061]

【表4】 [Table 4]

【0062】(実施例1)45mmのバレル内径を有す
るスクリュ−型押出機の供給域に、樹脂1を1時間当た
り50kgの速度で供給し、同時に、樹脂1の100重
量部に対し0.02重量部の割合で気泡核剤[永和化成
製セルボンSC−K]を供給した。押出機のバレル温度
を190℃に調節し、押出機の先端に設けた混合領域に
発泡剤[テトラフルオロエタン/塩化エチル=2/8モ
ル比からなる混合発泡剤]を樹脂1の100重量部に対
し20重量部の割合で注入し、樹脂1の溶融物、発泡剤
及び気泡核剤とが混合してなる発泡性組成物とした。こ
の発泡性組成物を、押出機の出口に接続した冷却装置で
最終的に155℃に均一に冷却調温した後、3.6リッ
トルの内容積を有し155℃の押出温度に調温されたア
キュムレーター内に、発泡が生じないアキュムレーター
内圧力を保ちながら、油圧シリンダーのピストンを後退
させて充填した。充填完了直後に、このアキュムレータ
ー先端部に取り付けた直径1mmの押出孔を千鳥状に配
し隣接する押出孔の中心間距離が8mmでその押出孔を
肉厚方向に5列幅方向に8列の計40個設けた押出用ダ
イの閉塞板を開き、且つ油圧シリンダーのピストンを前
進させて、押出用ダイ内の発泡性組成物が「押出ダイ内
発泡」しない最低の吐出速度で押出した。押出された押
出発泡細条集束体は、押出し直後に上下左右からロール
で挟み成形を行った。
(Example 1) Resin 1 was fed at a rate of 50 kg per hour into a feed region of a screw type extruder having a barrel inner diameter of 45 mm, and at the same time, 0.02 was added to 100 parts by weight of resin 1. The cell nucleating agent [Cerbon SC-K manufactured by Eiwa Chemical Co., Ltd.] was supplied at a ratio of parts by weight. The barrel temperature of the extruder was adjusted to 190 ° C., and 100 parts by weight of Resin 1 was added to the mixing area provided at the tip of the extruder to add a foaming agent [tetrafluoroethane / ethyl chloride = mixing foaming agent having a molar ratio of 2/8]. 20 parts by weight was injected to obtain a foamable composition in which a melt of Resin 1, a foaming agent and a cell nucleating agent were mixed. The foamable composition was finally uniformly cooled and adjusted to a temperature of 155 ° C. by a cooling device connected to the outlet of the extruder and then adjusted to an extrusion temperature of 155 ° C. having an internal volume of 3.6 liters. The piston of the hydraulic cylinder was retracted and filled in the accumulator while keeping the accumulator pressure at which foaming did not occur. Immediately after the filling is completed, the extrusion holes with a diameter of 1 mm attached to the tip of the accumulator are arranged in a staggered manner, and the distance between the centers of adjacent extrusion holes is 8 mm, and the extrusion holes are 5 rows in the thickness direction and 8 rows in the width direction. The opening plate of the extrusion die provided in 40 pieces in total was opened, and the piston of the hydraulic cylinder was advanced to extrude at a minimum discharge speed at which the foamable composition in the extrusion die did not "foam in the extrusion die". Immediately after extrusion, the extruded extruded foamed strip bundle was sandwiched between the upper, lower, left, and right sides of the roll to be molded.

【0063】得られた押出発泡細条集束体を用い、上記
記載の方法で密度、肉厚、独立気泡率、平均気泡径、1
回落下時の最大加速度の最小値J1、緩衝性能低下度
K、押出発泡細条間の融着性、圧縮後厚み回復率R、圧
縮応力異方度Zの特性値の観察・測定・計算を行い、そ
の結果を表5に示した。
Using the obtained extruded foamed strip bundle, the density, wall thickness, closed cell ratio, average cell diameter, 1
Observation / measurement / calculation of the minimum value J 1 of the maximum acceleration at the time of a single drop, the cushioning performance deterioration degree K, the fusion property between extruded foam strips, the thickness recovery rate after compression R, and the compression stress anisotropy Z Was performed and the results are shown in Table 5.

【0064】(実施例2〜17)樹脂、発泡剤注入量、
気泡核剤添加量について、表5及び6に示す様に変更し
た以外は実施例1と実質的に同じ製造方法をくりかえ
し、夫々押出発泡細条集束体を得た。又得られた押出発
泡細条集束体は、上記記載の評価方法で評価しその結果
を表5及び6に示した。但し、エチレンを含有する樹脂
5〜9(比較例で使用する樹脂11、13も同じ)を用
い押出発泡細条集束体を製造する場合のみ、樹脂の冷却
温度とアキュムレーター内の温度を155〜140℃の
範囲で、樹脂の結晶固化物がダイから出ない最低の温度
に設定した。
(Examples 2 to 17) Resin, blowing agent injection amount,
Except that the amount of the cell nucleating agent added was changed as shown in Tables 5 and 6, the substantially same production method as in Example 1 was repeated to obtain extruded foam strip bundles. The extruded foamed strip bundles thus obtained were evaluated by the above-described evaluation methods, and the results are shown in Tables 5 and 6. However, the cooling temperature of the resin and the temperature in the accumulator are set to 155 to 155 only when the extruded foamed strip bundle is manufactured by using the resins 5 to 9 containing ethylene (the same applies to the resins 11 and 13 used in Comparative Examples). In the range of 140 ° C, the temperature was set to the lowest temperature at which the resin solidified product did not come out from the die.

【0065】表5及び6から、本発明の押出発泡細条集
束体を構成する樹脂を用いた場合は、肉厚が20mm以
上で独立気泡率が十分に高く圧縮応力の異方性が弱く、
繰り返し落下等の過酷な負荷を加えても押出発泡細条間
に分離が生じずに、且つ、「1回落下時の最大加速度の
最小値J1」が80G以下の押出発泡細条集束体が得ら
れ、叉、肉厚が30mm以上では「1回落下時の最大加
速度の最小値J1」が65G以下の高い「緩衝性能」を
有する押出発泡細条集束体になることがわかる。更に、
エチレン成分を所定量含有させることにより、緩衝性能
の維持性や圧縮後の寸法回復性が付与されることがわか
る。尚、実施例16、17の押出発泡細条集束体は、実
施例3で得られた押出発泡細条集束体を表6に示した厚
みになる様に、肉厚方向に垂直な面にスライス加工して
作製した。
From Tables 5 and 6, when the resin forming the extruded foamed strip bundle of the present invention is used, the wall thickness is 20 mm or more, the closed cell ratio is sufficiently high, and the anisotropy of compressive stress is weak.
An extruded foamed strip bundle in which separation does not occur between the extruded foam strips even when subjected to a severe load such as repeated drops, and the "minimum value J 1 of the maximum acceleration in one drop" is 80 G or less is obtained. It can be seen that, when the wall thickness is 30 mm or more, the extruded foamed strip bundle has a high "cushioning performance" of "minimum value J 1 of maximum acceleration in one drop" of 65 G or less. Furthermore,
It can be seen that the inclusion of a predetermined amount of the ethylene component imparts maintainability of the buffer performance and dimensional recoverability after compression. The extruded foamed strip bundles of Examples 16 and 17 were sliced on the surface perpendicular to the thickness direction so that the extruded foamed strip bundles obtained in Example 3 had the thicknesses shown in Table 6. It processed and produced.

【0066】[0066]

【表5】 [Table 5]

【0067】[0067]

【表6】 [Table 6]

【0068】(比較例1〜6)樹脂、発泡剤注入量、気
泡核剤添加量、ダイ押出孔の直径について、表7の製造
条件項に示す内容に変更した以外は実施例1と実質的に
同じ製造方法をくりかえし、夫々押出発泡細条集束体を
得た。尚、比較例1の押出発泡細条集束体は、実施例3
で得られた押出発泡細条集束体を表7に示した厚みにな
るように、肉厚方向に垂直な面にスライス加工して作製
した。又得られた押出発泡細条集束体は、上記記載の方
法で評価しその結果を表7にまとめた。
(Comparative Examples 1 to 6) Substantially the same as Example 1 except that the resin, the amount of the blowing agent injected, the amount of the bubble nucleating agent added, and the diameter of the die extrusion hole were changed to those shown in the manufacturing condition section of Table 7. The same manufacturing method was repeated to obtain extruded foamed strip bundles. In addition, the extruded foamed strip bundle of Comparative Example 1 is the same as that of Example 3.
The extruded foamed strip bundle obtained in (3) was sliced into a surface perpendicular to the thickness direction so as to have the thickness shown in Table 7. The obtained extruded foam strip bundles were evaluated by the method described above, and the results are summarized in Table 7.

【0069】表7の結果によると、先ず、肉厚が20m
m未満の押出発泡細条集束体では家電製品等に一般的に
必要とされる80G以下の「一回落下時の最大加速度の
最小値J1」を得ることが出来ず、叉、緩衝性能の維持
性等の面から押出発泡細条集束体の密度や独立気泡率に
最適な範囲があり、更に、使用方向による圧縮応力や
「緩衝性能」の差を少なくし、且つ、繰り返し落下等の
過酷な負荷を加えても押出発泡細条間に分離を発生させ
ない為には押出発泡細条集束体の平均気泡径にも最適な
範囲があることがわかる。
According to the results of Table 7, first, the wall thickness is 20 m.
With an extruded foamed strip bundle of less than m, it is not possible to obtain the "minimum value J 1 of the maximum acceleration at the time of a single drop" that is generally required for home electric appliances, etc. From the standpoint of maintainability, there is an optimum range for the density and closed cell ratio of the extruded foamed thin fiber bundles. Furthermore, the difference in compressive stress and "buffering performance" depending on the direction of use is reduced, and repeated drops are severe. It can be seen that the average bubble diameter of the extruded foamed strip bundle also has an optimum range in order to prevent the separation between the extruded foamed strips even under various loads.

【0070】[0070]

【表7】 [Table 7]

【0071】(比較例7〜13)樹脂、発泡剤注入量に
ついて、表8の製造条件項に示す内容に変更した以外は
実施例1と実質的に同じ製造方法をくりかえし、夫々押
出発泡細条集束体を得た。又得られた押出発泡細条集束
体は、上記記載の方法で評価しその結果を表8にまとめ
た。表8の結果によると、市販の公知の樹脂等を用いた
場合は、実施例と同じ量の気泡核剤を添加量しても、ボ
イドが発生するか或いは独立気泡率が極めて低い押出発
泡細条集束体しか得られず、更に、厚みが20mm以上
の「緩衝性能」等の良好な押出発泡細条集束体を得るこ
とも非常に難しいことがわかる。
(Comparative Examples 7 to 13) Except for changing the amount of resin and blowing agent injected, the manufacturing method substantially the same as in Example 1 except that the contents shown in the manufacturing condition section of Table 8 were changed. I got a bundle. The obtained extruded foam strip bundle was evaluated by the method described above, and the results are summarized in Table 8. According to the results shown in Table 8, when a commercially available known resin or the like was used, even if the same amount of the cell nucleating agent as in the example was added, voids were generated or the extruded foamed fine particles with an extremely low closed cell ratio were obtained. It can be seen that it is very difficult to obtain only a filament bundle, and it is also very difficult to obtain a fine extruded foamed filament bundle having a thickness of 20 mm or more and having “buffering performance” and the like.

【0072】[0072]

【表8】 [Table 8]

【0073】(参考例14〜22)樹脂、発泡剤注入
量、気泡核剤添加量について、表9の製造条件項に示す
内容に変更した以外は実施例1と実質的に同じ製造方法
をくりかえし、夫々押出発泡細条集束体を得た。又得ら
れた押出発泡細条集束体は、上記記載の評価方法で評価
しその結果を表9にまとめた。表9の結果によると、市
販の公知の樹脂等を用いた場合独立気泡率を高める目的
で気泡核剤添加量を増やしても、独立気泡率を80%以
上に高めることが出来ず、又、圧縮応力や「緩衝性能」
に大きな異方性が生じ、更に、繰り返し落下等の負荷に
より押出発泡細条間に分離が生じてしまい、押出発泡細
条集束体の厚みも20mm以下になってしまうことがわ
かる。
Reference Examples 14 to 22 The same manufacturing method as in Example 1 was repeated except that the resin, the injection amount of the foaming agent, and the addition amount of the foam nucleating agent were changed to those shown in the manufacturing condition section of Table 9. , Respectively, to obtain extruded foamed strip bundles. The extruded foamed strip bundles thus obtained were evaluated by the above-described evaluation methods, and the results are summarized in Table 9. According to the results in Table 9, when using a commercially available known resin or the like, the closed cell ratio cannot be increased to 80% or more even if the amount of the cell nucleating agent added is increased for the purpose of increasing the closed cell ratio. Compressive stress and "buffer performance"
It is understood that a large anisotropy occurs in the sheet, and further, a load such as repeated dropping causes separation between the extruded foam strips, and the thickness of the extruded foam strip bundle also becomes 20 mm or less.

【0074】[0074]

【表9】 [Table 9]

【0075】[0075]

【発明の効果】本発明のポリプロピレン系樹脂押出発泡
細条集束体及びその製造方法により、肉厚が20mm以
上有した状態にあって、且つ、密度が0.005g/c
3以上0.04g/cm3以下、平均気泡径0.4mm
以上2.0mm以下、独立気泡率80%以上の条件を兼
備する、換言すれば、肉厚20mm以上を有していてJ
IS Z0235「包装用緩衝材料の動的圧縮試験方
法」に準じ、60cmの高さから重りを落下させて測定
される「一回落下時の最大加速度の最小値」が80G以
下の値を示す「緩衝性能」に優れ、繰り返し落下評価を
行っても「緩衝性能」の低下が少なく押出発泡細条間に
分離が発生せず、且つ、圧縮応力の異方性が小さい為緩
衝性能の異方性が弱く緩衝設計が容易な押出発泡細条集
束体を提供することが可能となった。
EFFECTS OF THE INVENTION The polypropylene resin extruded foam fine strip bundle of the present invention and the method for producing the same have a wall thickness of 20 mm or more and a density of 0.005 g / c.
m 3 or more and 0.04 g / cm 3 or less, average bubble diameter 0.4 mm
It has a condition of 2.0 mm or less and a closed cell rate of 80% or more. In other words, it has a wall thickness of 20 mm or more.
According to IS Z0235 “Dynamic compression test method for cushioning material for packaging”, the “minimum value of maximum acceleration in one drop” measured by dropping a weight from a height of 60 cm indicates a value of 80 G or less. Anisotropy in cushioning performance due to excellent cushioning performance, little deterioration in "buffering performance" even after repeated drop evaluation, no separation between extruded foamed strips, and small anisotropy of compression stress Thus, it is possible to provide an extruded foam strip bundle having a weak strength and an easy cushioning design.

【図面の簡単な説明】[Brief description of drawings]

【図1】押出機の押出用ダイ近傍における押出発泡細条
集束体の形成及び気泡の成長過程を示す説明図である。
FIG. 1 is an explanatory view showing a process of forming an extruded foam strip bundle and a bubble growth process in the vicinity of an extrusion die of an extruder.

【図2】図1の折れ線3の樹脂の流動圧力を機械的に高
めた場合の押出機の押出用ダイ近傍における押出発泡細
条集束体の形成、及び気泡の成長過程を示す説明図であ
る。
FIG. 2 is an explanatory diagram showing the formation of an extruded foamed strip bundle in the vicinity of the extrusion die of the extruder and the growth process of bubbles when the flow pressure of the resin of the polygonal line 3 in FIG. 1 is mechanically increased. .

【図3】ポリエチレン樹脂プランク発泡体の「一回落下
時の最大加速度の最小値J1」の発泡体の肉厚による違
いを示す説明図である。
FIG. 3 is an explanatory diagram showing a difference in “minimum value J 1 of maximum acceleration in one drop” of a polyethylene resin plank foam depending on the thickness of the foam.

【図4】本発明の押出発泡細条集束体にエチレンを含有
させることにより、押出発泡細条集束体に緩衝性能の維
持性やある特定な加工を行った後の寸法回復性を付与さ
せることが出来ることを示す説明図である。
FIG. 4 shows that the extruded foamed strip bundle of the present invention contains ethylene, thereby imparting to the extruded foamed strip bundle a property of maintaining the cushioning performance and a dimensional recovery after performing a certain specific process. It is explanatory drawing which shows that it is possible.

【符号の説明】[Explanation of symbols]

A 押出用ダイのランド部領域 B 押出用ダイのテーパ部領域 C 押出機の先端部領域 D、F、F’押出発泡細条 E1、E2、G1、G2 押出発泡細条集束体の気泡 Q1、Q2 発泡組成物の押出量 P 流動圧力 θ 押出用ダイのテーパの角度 J 最大加速度 I 静的応力 t20 肉厚20mmのポリエチレン系発泡体の動的衝
撃曲線図 t30 肉厚30mmのポリエチレン系発泡体の動的衝
撃曲線図 t40 肉厚40mmのポリエチレン系発泡体の動的衝
撃曲線図 K 緩衝性能低下度K R 圧縮後厚み回復率R Et エチレン含有量 1、2、3、3’、3” 樹脂の流動圧力値 4 発泡剤の系内温度における蒸気圧値 5 緩衝性能低下度K1.3を示す線 6 圧縮後厚み回復率R95%を示す線
A Land area of extrusion die B Tapered area of extrusion die C Tip area of extruder D, F, F'Extrusion foam strip E1, E2, G1, G2 Bubbles of extrusion foam strip bundle Q1, Q2 Extrusion amount of foamed composition P Flow pressure θ Angle of taper of extrusion die J Maximum acceleration I Static stress t20 Dynamic impact curve diagram of polyethylene foam with wall thickness of 20 mm t30 Polyethylene foam with wall thickness of 30 mm Dynamic impact curve diagram t40 Dynamic impact curve diagram of polyethylene foam having a wall thickness of 40 mm K Degree of decrease in cushioning performance K R Thickness recovery rate after compression R Et Ethylene content 1, 2, 3, 3 ′, 3 ”of resin Flow pressure value 4 Vapor pressure value at the system temperature of the foaming agent 5 Line showing the degree of buffer performance decrease K1.3 6 Line showing the thickness recovery rate after compression R95%

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 多数の並列に配置されたポリプロピレン
系樹脂押出発泡細条がその外面で相互に融着した押出発
泡細条集束体に於いて、上記ポリプロピレン系樹脂の2
軸伸長歪0.2に於ける2軸伸長粘度が3×106 po
ise以上であり、2軸歪硬化率αが0.25以上[但
し、2軸歪硬化率は、次式: α=0.77×(logη2−logη1) (式中、η1は2軸伸長歪0.01の時の2軸伸長粘度
を示し、η2は2軸伸長歪0.2の時の2軸伸長粘度を
示す)で定義される]であり、上記押出発泡細条集束体
の密度が0.005g/cm3以上0.04g/cm3
下であり、肉厚が20mm以上で、平均気泡径が0.4
mm以上2.0mm以下であり、独立気泡率が80%以
上であることを特徴とするポリプロピレン系樹脂押出発
泡細条集束体。
1. An extruded foamed strip bundle in which a large number of polypropylene-based resin extruded foamed strips arranged in parallel are fused to each other on the outer surface thereof.
Biaxial extensional viscosity at an axial extensional strain of 0.2 is 3 × 10 6 po
ise or more and the biaxial strain hardening rate α is 0.25 or more [however, the biaxial strain hardening rate is expressed by the following equation: α = 0.77 × (log η 2 −log η 1 ) (where, η 1 is 2 The biaxial extensional viscosity is 0.01 when the axial extensional strain is 0.01, and η 2 is the biaxial extensional viscosity when the biaxial extensional strain is 0.2]. the density of the body is at 0.005 g / cm 3 or more 0.04 g / cm 3 or less, with a wall thickness of 20mm or more, the average cell diameter of 0.4
A polypropylene-based resin extruded foamed strip bundle, which has a closed cell ratio of 80% or more and a diameter of at least 2.0 mm.
【請求項2】 上記押出発泡細条集束体の圧縮応力異方
度Zが1.8以下である請求項1記載のポリプロピレン
系樹脂押出発泡細条集束体。
2. The polypropylene resin extruded foamed strip bundle according to claim 1, wherein the extruded foamed strip bundle has a compressive stress anisotropy Z of 1.8 or less.
【請求項3】 上記ポリプロピレン系樹脂のスウェル値
Sが2以上である請求項1記載のポリプロピレン系樹脂
押出発泡細条集束体。
3. The polypropylene resin extruded foamed fine fiber bundle according to claim 1, wherein a swell value S of the polypropylene resin is 2 or more.
【請求項4】 上記ポリプロピレン系樹脂が線状樹脂で
ある請求項1記載のポリプロピレン系樹脂押出発泡細条
集束体。
4. The polypropylene resin extruded foamed strip bundle according to claim 1, wherein the polypropylene resin is a linear resin.
【請求項5】 上記ポリプロピレン系樹脂のエチレン含
有量が0.05〜8wt%である請求項1記載のポリプ
ロピレン系樹脂押出発泡細条集束体。
5. The polypropylene-based resin extruded foamed fine fiber bundle according to claim 1, wherein the polypropylene-based resin has an ethylene content of 0.05 to 8 wt%.
【請求項6】 上記ポリプロピレン系樹脂のGPC法に
より測定されるZ平均分子量が2×106以上、且つ、
Z平均分子量MZと重量平均分子量MWの比であるMZ
Wが5以上である請求項1記載のポリプロピレン系樹
脂押出発泡細条集束体。
6. The Z-average molecular weight of the polypropylene resin measured by GPC method is 2 × 10 6 or more, and
M Z / which is the ratio of Z average molecular weight M Z and weight average molecular weight M W
The polypropylene resin extruded foamed strip bundle according to claim 1, wherein M W is 5 or more.
【請求項7】 ポリプロピレン系樹脂に揮発性発泡剤を
含んでなる発泡性組成物を高温高圧下で混練後調温し複
数個の押出孔を有する押出用ダイから細条を低温低圧下
の領域に押出し発泡させ、その押出発泡細条を成形装置
内に導入集束し複数の押出発泡細条の相互が融着し一体
化された押出発泡細条集束体を製造する方法に於いて、
上記ポリプロピレン系樹脂の2軸伸長歪0.2に於ける
2軸伸長粘度が4.5×106 poise以上であり、
2軸歪硬化率αが0.30以上[但し、2軸歪硬化率
は、次式: α=0.77×(logη2−logη1) (式中、η1は2軸伸長歪0.01の時の2軸伸長粘度
を示し、η2は2軸伸長歪0.2の時の2軸伸長粘度を
示す)で定義される]であることを特徴とするポリプロ
ピレン系樹脂押出発泡細条集束体の製造方法。
7. A strip under pressure at low temperature and low pressure from an extrusion die having a plurality of extrusion holes, which is prepared by kneading a foamable composition containing a volatile foaming agent in polypropylene resin at high temperature and high pressure and then adjusting the temperature. In the method for producing an extruded foamed strip bundle body in which a plurality of extruded foamed strips are fused and integrated with each other by introducing and condensing the extruded foamed strips into a molding device.
The biaxial extensional viscosity at a biaxial extensional strain of 0.2 of the polypropylene resin is 4.5 × 10 6 poise or more,
2 axial strain hardening index alpha is 0.30 or more [However, 2 axial strain hardening rate, the following equation: α = 0.77 × (logη 2 -logη 1) ( wherein, eta 1 biaxial elongation strain 0. Of the polypropylene resin extruded foamed strip, wherein η 2 indicates the biaxial extensional viscosity when 01 and η 2 indicates the biaxial extensional viscosity when the biaxial extensional strain is 0.2). Method for manufacturing a bundle.
【請求項8】 上記押出用ダイのテーパ角度が40°〜
60°である請求項7記載のポリプロピレン系樹脂押出
発泡細条集束体の製造方法。
8. The taper angle of the extrusion die is 40 ° to
The method for producing a polypropylene-based resin extruded foam fine strip bundle according to claim 7, wherein the angle is 60 °.
【請求項9】 上記製造方法で上記ポリプロピレン系樹
脂及び発泡性組成物の温度が195℃を超えない請求項
7記載のポリプロピレン系樹脂押出発泡細条集束体の製
造方法。
9. The method for producing a polypropylene resin extruded foamed strip bundle according to claim 7, wherein the temperature of the polypropylene resin and the foamable composition does not exceed 195 ° C. in the production method.
JP7194097A 1995-07-07 1995-07-07 Bundle of extrusion-foamed polypropylene resin strings and its production Pending JPH0925354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7194097A JPH0925354A (en) 1995-07-07 1995-07-07 Bundle of extrusion-foamed polypropylene resin strings and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7194097A JPH0925354A (en) 1995-07-07 1995-07-07 Bundle of extrusion-foamed polypropylene resin strings and its production

Publications (1)

Publication Number Publication Date
JPH0925354A true JPH0925354A (en) 1997-01-28

Family

ID=16318904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7194097A Pending JPH0925354A (en) 1995-07-07 1995-07-07 Bundle of extrusion-foamed polypropylene resin strings and its production

Country Status (1)

Country Link
JP (1) JPH0925354A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006054714A1 (en) * 2004-11-19 2006-05-26 Prime Polymer Co., Ltd. Extruded propylene resin foam
WO2006054716A1 (en) * 2004-11-19 2006-05-26 Prime Polymer Co., Ltd. Extruded propylene resin foam
WO2006054715A1 (en) * 2004-11-19 2006-05-26 Praime Polymer Co., Ltd. Extruded propylene resin foam and process for producing extruded propylene resin foam
KR100620290B1 (en) * 1997-12-26 2006-10-24 스미또모 가가꾸 가부시끼가이샤 Manufacturing method of foamed thermoplastic resin sheet
WO2006118160A1 (en) * 2005-04-27 2006-11-09 Prime Polymer Co., Ltd. Extruded propylene-resin composite foam

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100620290B1 (en) * 1997-12-26 2006-10-24 스미또모 가가꾸 가부시끼가이샤 Manufacturing method of foamed thermoplastic resin sheet
WO2006054714A1 (en) * 2004-11-19 2006-05-26 Prime Polymer Co., Ltd. Extruded propylene resin foam
WO2006054716A1 (en) * 2004-11-19 2006-05-26 Prime Polymer Co., Ltd. Extruded propylene resin foam
WO2006054715A1 (en) * 2004-11-19 2006-05-26 Praime Polymer Co., Ltd. Extruded propylene resin foam and process for producing extruded propylene resin foam
EP1813643A1 (en) * 2004-11-19 2007-08-01 Prime Polymer Co., Ltd. Extruded propylene resin foam
JPWO2006054716A1 (en) * 2004-11-19 2008-06-05 株式会社プライムポリマー Propylene resin extruded foam
EP1813643A4 (en) * 2004-11-19 2008-12-31 Prime Polymer Co Ltd Extruded propylene resin foam
US7855239B2 (en) 2004-11-19 2010-12-21 Prime Polymer Co., Ltd. Extruded propylene resin foam
WO2006118160A1 (en) * 2005-04-27 2006-11-09 Prime Polymer Co., Ltd. Extruded propylene-resin composite foam
US7968180B2 (en) 2005-04-27 2011-06-28 Prime Polymer Co., Ltd. Extruded propylene-resin composite foam

Similar Documents

Publication Publication Date Title
JP3313371B2 (en) Extruded propylene polymer resin foam
JP4859076B2 (en) Method for producing foamed molded product in polypropylene resin mold
US6545094B2 (en) Blends of ethylenic polymers with improved modulus and melt strength and articles fabricated from these blends
JP5470129B2 (en) Resin foam sheet and method for producing resin foam sheet
EP4047043A1 (en) Expanded bead and method for producing the same
EP1870434B1 (en) Blends of ethylenic polymers with improved modulus and melt strength and articles fabricated from these blends
JP4680528B2 (en) Ethylene resin foam sheet for thermoforming, molded article, and method for producing ethylene resin foam sheet for thermoforming
EP3650492B1 (en) Olefinic thermoplastic elastomer foamed particles
JP5707048B2 (en) Resin foam sheet and method for producing resin foam sheet
JPH0925354A (en) Bundle of extrusion-foamed polypropylene resin strings and its production
JP5863531B2 (en) Polyethylene resin composition for foaming and polyethylene resin foam sheet
JP3547195B2 (en) Polypropylene resin
US6462101B1 (en) Foam comprising a blend of low density polyethylene and high melt tension polypropylene
JP4629313B2 (en) Method for producing polypropylene resin in-mold foam molded body and in-mold foam molded body
JP3347920B2 (en) Extruded polypropylene resin foam sheet and method for producing the same
JP5992193B2 (en) Resin composition for extrusion foaming, method for producing resin foam, and resin foam
US11952474B2 (en) Foam particles
JP3813349B2 (en) Propylene resin for foaming
JP7252751B2 (en) Method for producing extruded polyethylene-based resin foam, and polyethylene-based resin plate-shaped foam
JP4577883B2 (en) Polyethylene resin open cell foam
JP3088610B2 (en) Method for producing polypropylene resin foam
JP2007246776A (en) Uncrosslinked polyethylene-based resin foamed sheet for molding
JP2022167218A (en) Multilayer foamed particle
CN112469774A (en) Foamable polyolefin compositions and methods thereof
JP2019001966A (en) Cushioning material

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040513

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040608