JPH09252770A - Microorganism carrier and biological treatment apparatus using the carrier - Google Patents

Microorganism carrier and biological treatment apparatus using the carrier

Info

Publication number
JPH09252770A
JPH09252770A JP8070400A JP7040096A JPH09252770A JP H09252770 A JPH09252770 A JP H09252770A JP 8070400 A JP8070400 A JP 8070400A JP 7040096 A JP7040096 A JP 7040096A JP H09252770 A JPH09252770 A JP H09252770A
Authority
JP
Japan
Prior art keywords
cord
microbial carrier
carrier according
carrier
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8070400A
Other languages
Japanese (ja)
Inventor
Yoshihiro Tomita
芳宏 富田
Hiroyasu Kato
博恭 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP8070400A priority Critical patent/JPH09252770A/en
Publication of JPH09252770A publication Critical patent/JPH09252770A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a microorganism carrier usable as a water-treatment carrier for the biological decomposition and removal of dissolved substances, a bioreactor, etc., by forming protrusions positively chargeable in water and having the form of a cord, etc., on a material acting as a swingable stem. SOLUTION: A cord having a bending resistance of >=6cm (by 45 deg. cantilever method in conformity to JIS L1085) is produced by planting fibers such as polyester fibers on a core made of e.g. a polyester by electrostatic planting. The cord is cut to about 8cm long, the cut cords are clamped nearly at the center part with a pair of stems 1 and the stems are twisted to fix the cords and obtain a structure having a number of protrusions 2 protruding perpendicular to the stem 1 in nearly radial symmetry. The protrusions 2 of the structure is sufficiently impregnated with an ethanol solution of a quanternarized polymer produced by reacting a random copolymer of 4-vinylpyridine and styrene with benzyl chloride and the solution is dried to obtain the objective microorganism carrier having the protrusions 2 positively chargeable in water and formed on the material 1 acting as an stem.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、新規な微生物担体に関
する。さらに詳しくは、溶解物質を生物学的に分解除去
する水処理や、特定物質を製造するためのバイオリアク
ターに好適に利用される新規な微生物担体に関するもの
である。
FIELD OF THE INVENTION The present invention relates to a novel microbial carrier. More specifically, the present invention relates to a novel microbial carrier which is preferably used in water treatment for biologically decomposing and removing dissolved substances and in bioreactors for producing specific substances.

【0002】[0002]

【従来の技術】従来から、下水、産業廃水、水道原水の
ような汚染水を浄化する方法として生物膜法があり、こ
の微生物を担持させる微生物担体として、ハニカム構造
体、波板、多孔円板等が知られている。また、特公平7
−10394号公報には、房状繊維を芯材から放射状に
突出させた廃水処理装置用の接触材が知られている。ま
た、特開平6−7789号公報には、表面および、また
は内部に陰イオン交換基を有する多孔質担体が知られて
いる。さらに特開平6−212544号公報には、不織
布表面に微生物吸着用ポリマーを付着させた微生物固定
化担体が知られている。
2. Description of the Related Art Conventionally, there is a biofilm method as a method for purifying contaminated water such as sewage, industrial wastewater, and raw water for tap water. As a microorganism carrier for supporting this microorganism, a honeycomb structure, a corrugated plate, a perforated disk is used. Etc. are known. In addition,
No. 10394 discloses a contact material for a wastewater treatment device in which tufted fibers are radially projected from a core material. Further, JP-A-6-7789 discloses a porous carrier having an anion exchange group on the surface and / or inside. Further, JP-A-6-212544 discloses a microorganism-immobilized carrier having a microorganism-adsorbing polymer attached to the surface of a nonwoven fabric.

【0003】しかしながらハニカム構造体、波板等の平
坦な表面を持つシートを組み合わせたり変形したりした
担体では、担体が占める単位容積当たりの微生物の付着
量が少なく、また、一旦付着してもすぐ剥離されてしま
う等の問題点があり、処理効率の向上が求められてい
た。多孔円板の場合は、平坦な表面のシートに比べれば
微生物の付着する量は多くなるが、初期の付着性が低く
装置の立上がりに長時間を必要とするものであった。さ
らに、円板の半径方向で水流が異なり中心部の流速が低
い部分では汚泥による閉塞が起こりやすく逆洗再生も困
難であるため、閉塞部分への汚泥の堆積により処理性能
が低下するという欠点があった。
However, in a carrier obtained by combining or deforming a sheet having a flat surface such as a honeycomb structure or a corrugated plate, the amount of adhering microorganisms per unit volume occupied by the carrier is small, and even after once adhering, There are problems such as peeling, and improvement in processing efficiency has been demanded. In the case of a porous disc, the amount of microorganisms attached is larger than that of a sheet having a flat surface, but the initial adhesiveness is low and it takes a long time to start up the apparatus. Furthermore, since the water flow is different in the radial direction of the disc and clogging with sludge is likely to occur in the central part where the flow velocity is low and backwash regeneration is difficult, the sludge accumulation on the clogging part reduces the treatment performance. there were.

【0004】一方、特公平7−10394号公報に記載
された担体は、房状糸に付着した微生物で処理を行うも
のであるが、初期における微生物の付着性が低く装置の
立上がりに長時間を必要とし、また微生物の担体への付
着力が十分強くないため、一旦形成された生物膜が容易
に剥離してしまう欠点があった。
On the other hand, the carrier described in Japanese Examined Patent Publication No. 7-10394 treats with microorganisms attached to tufts, but the adhesion of microorganisms is low in the initial stage and it takes a long time to start up the apparatus. Since it is necessary and the adhesion force of the microorganism to the carrier is not sufficiently strong, there is a drawback that the biofilm once formed is easily peeled off.

【0005】また、特開平6−7789号公報に記載さ
れた担体は、表面および、または内部に陰イオン交換基
を有する多孔質担体であるが、流動床の担体であり、水
中での見掛け比重が1に近く、かつ繰り返し起こる担体
同士あるいは装置内壁との衝突に絶え得る担体であるこ
とが要求されるため、担体の素材や形態が限られてい
た。また、流動させて使用したときに、担体の装置外へ
の流出を防ぐために設けたストレーナーを閉塞するトラ
ブルが発生し易く、装置の運転を難しくする問題があっ
た。
The carrier described in JP-A-6-7789 is a porous carrier having an anion exchange group on the surface and / or inside, but is a carrier in a fluidized bed and has an apparent specific gravity in water. However, the material and form of the carrier are limited because the carrier is required to be close to 1 and capable of withstanding repeated collisions between the carriers or the inner wall of the apparatus. In addition, when the fluid is used, there is a problem that the strainer provided to prevent the carrier from flowing out of the device is likely to be clogged, which makes the operation of the device difficult.

【0006】また、特開平6−212544号公報に記
載された担体は、担体の構造が単純なため、表面近傍に
おける被処理水の適度な乱流が起こらず、基質や酸素等
の拡散効率が悪かったため、目的の水質を得るために多
くの担体とスペースを必要とした。また、担体表面に微
生物吸着用ポリマーを付着させたことで、微生物が短期
間で付着して装置の立上がり時間が短くなった一方で、
逆に活性の落ちた微生物の剥離の進行を妨げることにな
り、結果として処理性能が低下するという欠点があっ
た。
Further, the carrier described in Japanese Patent Laid-Open No. 6-212544 has a simple structure of the carrier, so that an appropriate turbulent flow of the water to be treated does not occur near the surface, and the diffusion efficiency of the substrate, oxygen, etc. It was bad and required a lot of carriers and space to obtain the desired water quality. In addition, by attaching a polymer for adsorbing microorganisms to the surface of the carrier, microorganisms attach in a short period of time and the startup time of the device is shortened,
On the other hand, there is a drawback that the progress of peeling of microorganisms whose activity has been reduced is hindered and, as a result, the processing performance is lowered.

【0007】[0007]

【発明が解決しようとする課題】本発明者らは上記欠点
のない担体について鋭意検討した結果、次の発明に到達
した。本発明の目的は、取扱いが容易で、装置の立上が
り時間が短く、溶解物質の分解除去に優れた微生物担体
を提供することにある。
DISCLOSURE OF THE INVENTION The inventors of the present invention have made earnest studies on a carrier which does not have the above-mentioned drawbacks, and have arrived at the following invention. An object of the present invention is to provide a microbial carrier that is easy to handle, has a short device startup time, and is excellent in decomposing and removing dissolved substances.

【0008】[0008]

【課題を解決するための手段】本発明は、基本的には、
「軸となる素材に、水中で正に帯電し得る突出物が存在
することを特徴とする微生物担体。」により、その目的
が達成される。
Means for Solving the Problems The present invention basically comprises:
The object is achieved by "the microbial carrier characterized in that the shaft material has protrusions that can be positively charged in water."

【0009】本発明で用いうる軸となる素材としては、
軽量で耐久性に優れるという点からポリアミド系、ポリ
エステル系、ポリオレフィン系、ポリビニルアルコール
系、ポリ塩化ビニル、ポリ塩化ビニリデン等の公知の高
分子系素材、およびこれらの複数の組み合わせが好まし
いが、綿、絹、麻、羊毛などの天然繊維や天然素材、炭
素、金属等の無機系素材でもよい。あるいは高分子系素
材で被覆された針金等これらの複数の素材の組み合わせ
でもよい。また形態としては紐状、ロープ状が好まし
く、その太さや本数は目的により変わりうる。トータル
繊度が1,000〜20,000デニールのマルチフィ
ラメントからなる高分子系素材、天然素材、あるいはト
ータルの外径が0.5〜5mmの無機系素材が好まし
い。また軸は、水流等により適度に揺動可能であること
が好ましい。
The material used as the shaft that can be used in the present invention is
From the viewpoint of lightweight and excellent durability, polyamide-based, polyester-based, polyolefin-based, polyvinyl alcohol-based, polyvinyl chloride, known polymer-based materials such as polyvinylidene chloride, and a combination of a plurality of these are preferable, but cotton, Natural fibers and natural materials such as silk, hemp, and wool, and inorganic materials such as carbon and metal may be used. Alternatively, a combination of a plurality of these materials such as wire coated with a polymer material may be used. Further, the shape is preferably a cord shape or a rope shape, and the thickness and the number thereof can be changed depending on the purpose. A polymeric material composed of multifilaments having a total fineness of 1,000 to 20,000 denier, a natural material, or an inorganic material having a total outer diameter of 0.5 to 5 mm is preferable. Further, it is preferable that the shaft can be appropriately swung by water flow or the like.

【0010】本発明の突出物としては、微生物の付着す
る表面積が大きい構造体が好ましく、表面に立毛した繊
維が存在する構造体や多孔質構造体等が好ましい。
As the protrusion of the present invention, a structure having a large surface area to which microorganisms adhere is preferable, and a structure having napped fibers or a porous structure is preferable.

【0011】本発明の軸と突出物は、軸への突出物の挟
み込み、軸と突出物の交絡、接着剤による接着、熱融
着、およびこれらの組み合わせなどにより一体化されて
いるものである。使用中に突出物が脱落しにくいという
面から、軸が少なくとも2本の糸状物からなり、この糸
状物は単独で撚りがかけられており、さらにこの糸状物
同士が撚り合わさって突出物を挟み込み保持している構
造が好ましい。
The shaft and the projection of the present invention are integrated by sandwiching the projection on the shaft, entanglement of the shaft and the projection, adhesion with an adhesive, heat fusion, and a combination thereof. . The shaft consists of at least two filaments that are difficult to fall off during use. The filaments are twisted independently, and the filaments are twisted together to sandwich the protrusions. A retaining structure is preferred.

【0012】本発明の微生物担体においては、少なくと
もこの突出物が水中で正に帯電する性質をもつこと必要
である。水中で帯電すれば十分であるので、空気中ある
いは非水性溶媒中では、帯電しても、しなくてもかまわ
ない。また、該突出物以外にに、軸となる素材など他の
部材も水中で正に帯電する性質を有していてもかまわな
い。水中で正に帯電する性質は、該突出物の表面及び/
又は内部に有するものであり、特に限定されるものでは
ない。水中で正に帯電させる性質を付与させる方法とし
ては、例えば、水中で正に帯電する性質をもつ官能基を
有するように化学修飾する方法がある。本発明に使用さ
れる水中で正に帯電する性質をもつ官能基としては、第
4級アンモニウム基が好ましく、それを含む物質として
は、ビニルピリジン、ジアルキルアミノアルキル(メ
タ)アクリルアミド、ジアルキルアミノアルキル(メ
タ)アクリレートおよびこれらの4級化物、ポリエチレ
ンイミン、ポリエチレンポリアミン、ジメチルアミノエ
チル、アリルアミン、キトサン等が挙げられる。これら
の中ではビニルピリジンの4級化物を含む分子が微生物
付着効率が高いためより好ましい。一般に微生物表面は
水中で負に帯電しているため、これら水中で正に帯電す
る表面との電気的な相互作用により、微生物の付着能が
発現すると推定される。また、水中で正に帯電する性質
を担体の表面および/または内部に存在せしめる方法と
しては、上記物質を溶媒に溶解または分散させ、その溶
液を担体に含浸あるいはスプレーし、次いで乾燥あるい
は重合させる方法や、上記物質からなる固体を粉砕し、
次い担体表面に接着、熱融着させる方法などが挙げられ
る。上記物質の溶液を含浸させる方法は、比較的容易に
担体の表面および内部に水中で正に帯電する性質を導入
することができるため好ましい。また、担体に対する被
覆量は突出物の形態によって異なるが、被覆量が多すぎ
る場合、使用量の割には付着効果が上がらず、逆に微生
物付着に適した突出物の多孔構造を壊してしまうことが
あるため、必要以上に多くないことが好ましい。
In the microbial carrier of the present invention, it is necessary that at least the protrusion has a property of being positively charged in water. Since it suffices to charge in water, it may or may not be charged in air or in a non-aqueous solvent. In addition to the protrusion, other members such as a shaft material may have a property of being positively charged in water. The property of being positively charged in water is that the surface of the protrusion and / or
Alternatively, it is contained inside and is not particularly limited. As a method of imparting the property of being positively charged in water, for example, there is a method of chemically modifying the functional group to have a functional group having the property of being positively charged in water. The functional group having a property of being positively charged in water used in the present invention is preferably a quaternary ammonium group, and substances containing it include vinyl pyridine, dialkylaminoalkyl (meth) acrylamide, dialkylaminoalkyl ( Examples thereof include (meth) acrylate and quaternary products thereof, polyethyleneimine, polyethylenepolyamine, dimethylaminoethyl, allylamine and chitosan. Among these, a molecule containing a quaternized product of vinylpyridine is more preferable because of its high microbial adhesion efficiency. Generally, the surface of microorganisms is negatively charged in water, and it is presumed that the ability of microorganisms to adhere to the surface is manifested by electrical interaction with these positively charged surfaces in water. Further, as a method for allowing the carrier to have a property of being positively charged in water on the surface and / or inside of the carrier, a method of dissolving or dispersing the above substance in a solvent, impregnating or spraying the solution on the carrier, and then drying or polymerizing Or crush the solid consisting of the above substances,
Examples of the method include a method of adhering to the surface of the next carrier and a method of heat-sealing. The method of impregnating with a solution of the above substance is preferable because the property of positively charging in water can be introduced into the surface and inside of the carrier relatively easily. Further, the amount of coating on the carrier varies depending on the form of the protrusions, but if the amount of coating is too large, the adhesion effect does not increase relative to the amount used, and conversely the porous structure of the protrusions suitable for microorganism attachment is destroyed. Therefore, it is preferable that the amount is not more than necessary.

【0013】本発明の突出物は、水流等によって適度に
揺動可能な剛軟度を有することが好ましく、特に突出物
がコード状物である場合、JISL1085記載の45
°カンチレバ法による測定において4cm以上であるこ
とが好ましく、より好ましくは6cm以上、さらに好ま
しくは8cm以上である。突出物が水中で正に帯電して
いるため、微生物は強固に付着して増殖するが、突出物
同士が水流等によって適度に擦れ合い、過剰に付着した
活性の落ちた微生物が洗い落とされるため、常に活性の
高い微生物を担体表面に付着させておくことができ、結
果として安定した処理性能が得られる。剛軟度が4cm
以下の場合、隣り合うコード状物同士が絡み合ってしま
い、コード状物同士の接触による適度な汚泥の剥離が進
行しなくなり、微生物担体としての役割を果たさなくな
る。なおここで、カンチレバ法による測定であるが、コ
ード状物の1本をカンチレバ形試験装置上で緩やかに滑
らせることによって測定した。
It is preferable that the protrusion of the present invention has a rigidity so that it can be appropriately swung by a water flow or the like, and in particular, when the protrusion is a cord-like member, 45 described in JISL1085.
The measurement by the cantilever method is preferably 4 cm or more, more preferably 6 cm or more, further preferably 8 cm or more. Since the protrusions are positively charged in water, the microorganisms adhere firmly and proliferate, but the protrusions rub against each other appropriately due to water flow, etc., and the excessively attached microorganisms with reduced activity are washed off. As a result, a highly active microorganism can always be attached to the surface of the carrier, and as a result, stable treatment performance can be obtained. Bending degree of 4 cm
In the following case, the adjacent cord-shaped materials are entangled with each other, and the appropriate sludge is not peeled off due to the contact between the cord-shaped materials, and the cord-shaped materials do not serve as a microorganism carrier. Here, the measurement by the cantilever method was performed by gently sliding one cord-like material on a cantilever type testing device.

【0014】本発明の突出物の形態としては、コード
状、棒状、房状等、同軸上および/または隣り合う軸上
の突出物同士が揺動により互いに均一に擦れ合う形態が
好ましい。これらの中では、コード状物がより好まし
い。
As the form of the protrusions of the present invention, it is preferable that the protrusions on the same axis and / or the adjacent shafts such as cords, rods, tufts, etc. rub each other uniformly by rocking. Of these, the cord-like material is more preferable.

【0015】本発明のコード状物としては、芯となる素
材の周りに立毛した繊維が存在する形態を有する構造体
や多孔質構造体が好ましい。
The cord-like material of the present invention is preferably a structure or a porous structure having a form in which napped fibers are present around a core material.

【0016】コード状物として、芯となる素材の周りに
立毛した繊維が存在する形態を有する構造体を使用する
場合、芯となる素材としては、軽量で耐久性に優れると
いう点からポリアミド系、ポリエステル系、ポリオレフ
ィン系、ポリビニルアルコール系、ポリ塩化ビニル、ポ
リ塩化ビニリデン等の公知の高分子材料、およびこれら
の複数の組み合わせが好ましいが、綿、絹、麻、羊毛な
どの天然繊維や天然素材、あるいは炭素、金属等の無機
系素材でもよい。また形態としては繊維状、棒状が好ま
しく、その太さや本数は目的により変わりうる。トータ
ル繊度が200〜10,000デニールの高分子系素
材、天然素材、あるいはトータルの外径が0.5〜5m
mの無機系素材、棒状高分子系素材が好ましい。立毛し
た繊維の素材としては、炭素繊維、無機繊維、活性炭繊
維や、綿、絹、麻、羊毛などの天然繊維、あるいは繊維
形成能を有する高分子物質であるナイロン6、ナイロン
66、ナイロン12、共重合ナイロン等のポリアミド、
芳香族ポリアミド、ポリエチレンテレフタレート、共重
合ポリブチレンテレフタレートなどのポリエステル、全
芳香族ポリエステル、ポリエチレン、ポリプロピレン等
のポリオレフィン、ポリウレタン、ポリアクリロニトリ
ル、ポリ塩化ビニル、ポリビニルアルコール、ビニル重
合体、ポリ塩化ビニリデン、ポリハイドロサルファイ
ト、ポリフッ化エチレン、共重合ポリフッ化エチレン、
ポリオキシメチレン等が挙げられる。これらの中では炭
素繊維、活性炭繊維、ポリ塩化ビニル、ポリ塩化ビニリ
デンがより好ましい。これら繊維の種類の組み合わせや
高分子物質の複数を組み合わせた芯鞘構造、多重芯鞘構
造、海島構造、バイメタル構造などの複合繊維も目的に
応じて用いられる。繊維形状はストレート糸の他、捲縮
糸でもよく、また断面形状は、円形のみならず、異径断
面形状でもよい。繊維の太さは用途によって変わりうる
ので特に限定されるものではないが、0.01〜500
デニールが好ましい。また、本発明の芯と立毛する繊維
とは、芯への繊維の挟み込み、芯と繊維との交絡、接着
剤による接着、熱融着、およびこれらの組み合わせなど
により一体化されているか、あるいは繊維自身は芯の一
部を外周方向へ引き出したものであり、芯と立毛した繊
維が構造的あるいは材質的に異なっていても同一でもよ
い。繊維の立毛状態は、先端に自由端を有する短繊維
状、ループ状およびこれらの組み合わせである。ここ
で、先端に自由端を有する短繊維状の場合は、担体の設
置初期における微生物の捕捉性と定常処理時の自己洗浄
性が優れるためより好ましい。さらに、立毛した繊維の
根元から自由端までの長さは、用途や繊維の太さによっ
て変わりうるので特に限定されるものではないが、酸
素、基質等の拡散効率を考慮して0.5〜15mmが好
ましく、例えば繊維の太さが0.01〜30デニールの
場合、0.5〜8mmが好ましく、より好ましくは1〜
4mmであり、繊維の太さが30〜500デニールの場
合、3〜15mmが好ましく、より好ましくは3〜10
mmである。芯の長さ方向における繊維の立毛密度は、
被処理水の水質、繊維の形状、太さ、立毛状態等に応じ
て変わりうるが、おおよそ20〜20万本/cmの範囲
が好ましく、例えば繊維の太さが0.01〜30デニー
ルの場合、200〜20万本/cmが好ましく、より好
ましくは2000〜20万本/cmであり、繊維の太さ
が30〜500デニールの場合、20〜2万本/cmが
好ましく、より好ましくは200〜2万本/cmであ
る。20本/cm以下では微生物の付着量の増加が期待
できず、また20万本/cm以上では、立毛している繊
維間に空隙が少なくなり、繊維間に付着した微生物への
酸素および基質等の拡散が不十分になり、浄化性能が低
下してしまう。繊維の立毛方向は、特に限定されるもの
ではないが、芯の長さ方向に対して45〜90°の角度
で芯から離れていることが好ましい。また、繊維を芯か
ら立毛させる方法としては、繊維がループ状の場合は、
繊維にループを形成しつつ芯に挟み込む方法や、芯とな
る素材から芯の外周方向へ引き出す方法が好ましく、ま
た、繊維が先端に自由端を有する短繊維状の場合、繊維
種や繊維長等のコントロールが容易であることから、静
電植毛あるいは複数本の芯に繊維の途中部分を挟み込む
シェニール加工を行う方法が好ましい。
When a structure having a form in which napped fibers are present around a core material is used as the cord-like material, the core material is a polyamide-based material because it is lightweight and excellent in durability. Known polymer materials such as polyester-based, polyolefin-based, polyvinyl alcohol-based, polyvinyl chloride, polyvinylidene chloride and the like, and a combination of a plurality thereof are preferable, but natural fibers and natural materials such as cotton, silk, hemp, and wool, Alternatively, an inorganic material such as carbon or metal may be used. The form is preferably fibrous or rod-like, and the thickness and the number thereof can be changed depending on the purpose. Polymeric material with total fineness of 200-10,000 denier, natural material, or total outer diameter of 0.5-5 m
m inorganic material and rod-shaped polymer material are preferable. As the material of the napped fiber, carbon fiber, inorganic fiber, activated carbon fiber, natural fiber such as cotton, silk, hemp, and wool, or nylon 6, nylon 66, nylon 12, which is a polymer substance having a fiber-forming ability, Polyamide such as copolymer nylon,
Aromatic polyamide, polyethylene terephthalate, polyester such as copolymerized polybutylene terephthalate, wholly aromatic polyester, polyolefin such as polyethylene and polypropylene, polyurethane, polyacrylonitrile, polyvinyl chloride, polyvinyl alcohol, vinyl polymer, polyvinylidene chloride, polyhydro Sulfite, polyfluorinated ethylene, copolymerized polyfluorinated ethylene,
Examples include polyoxymethylene and the like. Among these, carbon fiber, activated carbon fiber, polyvinyl chloride, and polyvinylidene chloride are more preferable. Composite fibers having a core-sheath structure, a multi-core-sheath structure, a sea-island structure, a bimetal structure, etc., in which a combination of these fiber types or a plurality of polymer substances are combined are also used according to the purpose. The fiber shape may be a straight yarn or a crimped yarn, and the cross-sectional shape may be not only circular but also different-diameter cross-sectional shape. The thickness of the fiber is not particularly limited as it may vary depending on the application, but is 0.01 to 500.
Denier is preferred. Further, the core of the present invention and the fiber to be napped are integrated by sandwiching the fiber into the core, entanglement of the core with the fiber, adhesion with an adhesive, heat fusion, and a combination thereof, or the like. The core itself is a part of the core pulled out in the outer peripheral direction, and the core and the napped fibers may be different in structure or material and may be the same. The napped state of the fiber is a short fiber shape having a free end at the tip, a loop shape, or a combination thereof. Here, the case of a short fiber having a free end at the tip is more preferable because the ability to capture microorganisms at the initial stage of setting the carrier and the self-cleaning property at the time of steady treatment are excellent. Furthermore, the length from the root of the napped fiber to the free end is not particularly limited as it may vary depending on the application and the thickness of the fiber, but it is 0.5-0.5 in consideration of diffusion efficiency of oxygen, substrate and the like. 15 mm is preferable, for example, when the thickness of the fiber is 0.01 to 30 denier, 0.5 to 8 mm is preferable, and 1 to 10 is more preferable.
When the fiber thickness is 4 mm and the fiber thickness is 30 to 500 denier, 3 to 15 mm is preferable, and 3 to 10 is more preferable.
mm. The fiber nap density in the length direction of the core is
Although it may vary depending on the water quality of the water to be treated, the shape and thickness of the fiber, the state of naps, etc., it is preferably in the range of approximately 200 to 200,000 fibers / cm, for example, when the fiber thickness is 0.01 to 30 denier. , 200 to 200,000 fibers / cm, more preferably 2000 to 200,000 fibers / cm, and if the fiber thickness is 30 to 500 denier, 20 to 20,000 fibers / cm is preferred, and 200 is more preferred. ~ 20,000 / cm. If it is less than 20 fibers / cm, it is not possible to expect an increase in the amount of adhered microorganisms, and if it is more than 200,000 fibers / cm, the voids between the fibers that are napped will be reduced, and oxygen and substrates to the microorganisms adhered between the fibers, etc. Is insufficiently diffused, and the purification performance is reduced. The napped direction of the fibers is not particularly limited, but it is preferable that the fibers are separated from the core at an angle of 45 to 90 ° with respect to the length direction of the core. Also, as a method of raising the fibers from the core, when the fibers are in a loop shape,
A method of sandwiching it in the core while forming a loop in the fiber, or a method of drawing out from the material to be the core in the outer peripheral direction of the core is preferable, and when the fiber is a short fiber having a free end at the tip, fiber type, fiber length, etc. The method of performing electrostatic flocking or performing chenille processing in which the middle part of the fiber is sandwiched between a plurality of cores is preferable because it is easy to control.

【0017】また一方、コード状物として多孔質構造体
を使用する場合、多孔質構造体は特に限定されるもので
はなく、従来公知のものが使用でき、糸束、中空糸、
紐、織布、編み物、不織布、繊維絡合体、網、発砲体等
の単独またはこれらの組み合わせ、あるいはこれらと高
分子ゲル、高分子樹脂との複合体等が挙げられる。水中
における酸素や基質等の拡散効率をよくするという面か
ら、空隙率は好ましくは70〜99%、より好ましくは
80〜99%である。
On the other hand, when the porous structure is used as the cord, the porous structure is not particularly limited, and conventionally known ones can be used, such as a yarn bundle, a hollow fiber,
Examples thereof include a string, a woven fabric, a knitted fabric, a non-woven fabric, a fiber entangled body, a net, and a foaming body, or a combination thereof, or a complex of these with a polymer gel or a polymer resin. The porosity is preferably 70 to 99%, more preferably 80 to 99% from the viewpoint of improving the diffusion efficiency of oxygen and substrates in water.

【0018】軸と一体化されたコード状物の林立状態
は、先端に自由端を有する棒状、ループ状およびこれら
の組み合わせである。ここで、先端に自由端を有する棒
状のコード状物であれば、軸近傍の微生物への酸素や基
質の十分な供給が可能であり、また、コード状物同志の
接触によって剥離された汚泥が担体外に確実に脱落し、
閉塞が起こりにくいためより好ましい。自由端を有する
コード状物の場合、コード状物の根元から自由端までの
長さは、5mm以上が好ましく、より好ましくは1cm
以上、さらに好ましくは2cm以上である。5mm以下
では、コード状物の揺動が起こらず、自己洗浄性が悪
く、浄化性能が低下する。軸の長さ方向におけるコード
状物の林立密度は、特に限定されるものではなく、被処
理水の性質、コード状物の形状、用途等に応じて調節す
ればよいが、0.5〜20本/cmが好ましく、1〜1
5本/cmがより好ましい。コード状物の林立方向は特
に限定されるものではないが、被処理水との接触効率、
装置の立ち上げ初期における微生物捕捉性能の面から、
軸の長さ方向に対して45〜90°の角度で軸から離れ
ていることが好ましい。
The forested state of the cord-like material integrated with the shaft is rod-like having a free end at the tip, loop-like, or a combination thereof. Here, if it is a rod-shaped cord having a free end at the tip, it is possible to sufficiently supply oxygen and substrate to the microorganisms near the axis, and the sludge separated by the contact of the cords Be sure to drop it out of the carrier,
It is more preferable because clogging hardly occurs. In the case of a cord having a free end, the length from the root of the cord to the free end is preferably 5 mm or more, more preferably 1 cm.
It is more than 2 cm, more preferably more than 2 cm. When the thickness is 5 mm or less, the cord-like material does not swing, the self-cleaning property is poor, and the purification performance is deteriorated. The forest density of the cord-like material in the length direction of the shaft is not particularly limited and may be adjusted according to the property of the water to be treated, the shape of the cord-like material, the use, etc., but is 0.5 to 20. Book / cm is preferable, 1 to 1
5 lines / cm is more preferable. The direction in which the cords stand in the forest is not particularly limited, but the contact efficiency with the water to be treated,
From the aspect of microbial capture performance in the initial stage of device startup,
It is preferable that the shaft is separated from the shaft at an angle of 45 to 90 with respect to the longitudinal direction of the shaft.

【0019】本発明品は、好ましくは接触曝気方式等の
水処理装置、生物脱臭装置、環境用水の直接浄化、ある
いは特定物質を製造するためのバイオリアクター等に好
適に用いられる。水処理装置では、突出物同士が被処理
水の流れにより揺動して適度に接触するような配置で、
硝化槽、脱窒槽等の処理装置内に固定する方法が好まし
く用いられる。この場合の接触は、同一軸上の突出物同
士でもよいし、あるいは隣り合う軸上の突出物同士でも
よい。また、生物脱臭装置では、担体を装置内に隙間な
く吊り下げ、悪臭成分を溶解した水を流下させる方法が
好ましく用いられる。また、環境用水の直接浄化では、
水流と溶存酸素を確保できる適所に担体を設置する方法
が好ましく用いられる。また、バイオリアクターでは、
特定微生物を高濃度に保持する目的で使用され、リアク
ター内の適所に担体を設置する方法が好ましく用いられ
る。
The product of the present invention is preferably used for a water treatment device such as a contact aeration system, a biological deodorizing device, a direct purification of environmental water, or a bioreactor for producing a specific substance. In the water treatment device, the protrusions are arranged so that the protrusions oscillate due to the flow of the water to be treated and are in proper contact with each other,
A method of fixing in a treatment device such as a nitrification tank or a denitrification tank is preferably used. In this case, the contacts may be protrusions on the same axis or protrusions on adjacent axes. Further, in the biological deodorizing apparatus, a method of suspending the carrier in the apparatus without any space and flowing down the water in which the malodorous component is dissolved is preferably used. Also, in the direct purification of environmental water,
A method in which a carrier is installed in a suitable place where a water flow and dissolved oxygen can be secured is preferably used. Also, in the bioreactor,
It is used for the purpose of keeping a specific microorganism at a high concentration, and a method of installing a carrier at an appropriate position in the reactor is preferably used.

【0020】[0020]

【実施例】以下の実施例によって本発明をさらに詳細に
説明するが、本発明はこれらの実施例により限定される
ものではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0021】実施例1 ポリエステル製の繊維(単糸繊度:8デニール、繊維
長:4mm)をポリエステル製の芯(トータル繊度:3
00デニール)に静電植毛することにより、剛軟度が4
5°カンチレバ法による測定において約18cmである
コード状物を得た。次いでこのコード状物を約8cmに
複数切断し、それらのほぼ中央を2本の軸の間に挟み込
み、ねじって固定して軸に対して垂直方向に、かつほぼ
放射状対称に林立させた構造体を得た。このときの軸上
でのコード状物の密度は7本/cmにした。前記構造体
に、4−ビニルピリジンとスチレンのランダム共重合体
(共重合比率1:1)に4−ビニルピリジンと等モル量
の塩化ベンジルを反応させて4級化した重合体(分子量
5000)の4重量%エタノール溶液を十分含浸させた
後、熱風乾燥器中で乾燥させることにより、表面および
内部が水中で正に帯電する性質を有する微生物担体を得
た。この担体(長さ:30cm)を容量6Lの接触曝気
槽の中に10cmの間隔を空けて縦方向に4本配置し
た。種汚泥添を添加した後、有機成分、アンモニア態窒
素を主成分としたBOD濃度250ppmの人工排水を
BOD容積負荷2kg/m3 ・dで供給し、接触曝気処
理槽、沈殿槽を経た処理水中のBOD濃度の測定を行っ
た。結果を表1に示す。
Example 1 A polyester fiber (single yarn fineness: 8 denier, fiber length: 4 mm) was used to make a polyester core (total fineness: 3).
Bending degree of 4 by electrostatic flocking to 00 denier)
A cord-like material having a size of about 18 cm as measured by the 5 ° cantilever method was obtained. Next, this cord is cut into multiple pieces of about 8 cm, and the center of each piece is sandwiched between two shafts, which is screwed and fixed to make the forest stand in a direction perpendicular to the shaft and in a substantially radial symmetry. Got The density of cords on the shaft at this time was set to 7 cords / cm. A polymer obtained by quaternizing the above structure with a random copolymer of 4-vinylpyridine and styrene (copolymerization ratio 1: 1) with 4-vinylpyridine and an equimolar amount of benzyl chloride (molecular weight 5000). After sufficiently impregnating it with a 4% by weight ethanol solution of 1., it was dried in a hot air drier to obtain a microbial carrier having a property that the surface and the inside were positively charged in water. Four of these carriers (length: 30 cm) were arranged in the vertical direction in a contact aeration tank having a volume of 6 L at intervals of 10 cm. After adding seed sludge addition, artificial waste water with a BOD concentration of 250 ppm containing organic components and ammonia nitrogen as the main components was supplied at a BOD volume load of 2 kg / m 3 · d, and the treated water passed through a contact aeration treatment tank and a precipitation tank. The BOD concentration of was measured. The results are shown in Table 1.

【0022】実施例2 実施例1で得られた構造体を、3重量%カルボジイミド
存在下でポリエチレンイミン(分子量25000)の3
重量%メタノール溶液を用いる以外は同様にして処理す
ることにより、表面および内部が水中で正に帯電する性
質を有する微生物担体を得た。この微生物担体用いて、
実施例1と同様の測定を行った。結果を表1に示す。
Example 2 The structure obtained in Example 1 was treated with polyethyleneimine (molecular weight 25000) 3% in the presence of 3% by weight of carbodiimide.
By performing the same treatment except using a weight% methanol solution, a microbial carrier having a property that the surface and the inside thereof are positively charged in water was obtained. With this microbial carrier,
The same measurement as in Example 1 was performed. The results are shown in Table 1.

【0023】実施例3 コード状物の剛軟度が45°カンチレバ法による測定に
おいて約9cmであること以外は実施例1と同様の微生
物担体を用いて、実施例1と同様の測定を行った。結果
を表1に示す。
Example 3 The same measurement as in Example 1 was carried out using the same microbial carrier as in Example 1 except that the bending resistance of the cord-like material was about 9 cm as measured by the 45 ° cantilever method. . The results are shown in Table 1.

【0024】比較例1 コード状物の剛軟度が45°カンチレバ法による測定に
おいて約3cmであること以外は実施例1と同様の微生
物担体を用いて、実施例1と同様の測定を行った。結果
を表1に示す。
Comparative Example 1 The same measurement as in Example 1 was performed using the same microbial carrier as in Example 1 except that the bending resistance of the cord-like material was about 3 cm as measured by the 45 ° cantilever method. . The results are shown in Table 1.

【0025】[0025]

【表1】 表1より明らかなように、コード状物の剛軟度が適度で
ありかつ表面および内部が水中で正に帯電する性質を有
する実施例によれば、表面に付着させた物質の種類に関
わらず、装置の立ち上がりが早く、その後も軸およびコ
ード状物が水流で揺動したことでコード状物に過剰に付
着した微生物の自己洗浄が繰り返されたため、適量の微
生物が活性の高い状態で保たれ、安定した処理性能を示
した。一方比較例では、装置を立ち上げてから3週間後
には安定した性能を示したが、コード状物の剛軟度が小
さかったため、付着した微生物の荷重によりコード状物
が軸と一体化して棒状になってしまい、浄化性能が大き
く低下した。
[Table 1] As is clear from Table 1, according to the examples in which the bending resistance of the cord-like material is moderate and the surface and the inside are positively charged in water, no matter what kind of substance is attached to the surface, , The device started up quickly, and after that, the shaft and the cord-like objects were shaken by the water flow, and the self-cleaning of microorganisms excessively attached to the cord-like substances was repeated, so that an appropriate amount of microorganisms was kept in a highly active state. , Showed stable processing performance. On the other hand, in the comparative example, stable performance was shown 3 weeks after the apparatus was started up, but the cord-like material had a small bending resistance, so the cord-like material was integrated with the shaft due to the load of the attached microorganisms, and the rod-like shape was formed. Therefore, the purification performance was significantly reduced.

【0026】実施例4 厚さ5mmのポリエステル製の不織布(単糸繊度:6デ
ニール、空隙率:90%)に幅5mmでスリット加工を
行い、剛軟度が45°カンチレバ法による測定において
約15cmであるコード状物を得た。次いでこのコード
状物を長さ約8cmに複数切断し、ねじって固定して軸
に対して垂直方向に、かつほぼ放射状対称に林立させた
構造体を得た。このときの軸上でのコード状物の密度は
2本/cmにした。この担体の表面および内部に、実施
例1と同様の方法で4−ビニルピリジンとスチレンの共
重合体に4−ビニルピリジンと等モル量の塩化ベンジル
を反応させて4級化した重合体を付着させた微生物担体
を得て、実施例1と同様の測定を行った。結果を表2に
示す。
Example 4 A non-woven fabric made of polyester having a thickness of 5 mm (single yarn fineness: 6 denier, porosity: 90%) was slit with a width of 5 mm, and a bending resistance of about 45 cm was measured by the cantilever method. The cord-like thing which is is obtained. Next, this cord-like material was cut into a plurality of pieces each having a length of about 8 cm, which was fixed by being twisted to obtain a structure which stands in a direction perpendicular to the axis and in a substantially radial symmetry. The density of the cord-like material on the shaft at this time was set to 2 cords / cm. A quaternized polymer was prepared by reacting a copolymer of 4-vinylpyridine and styrene with 4-vinylpyridine and an equimolar amount of benzyl chloride on the surface and inside of the carrier in the same manner as in Example 1. The microbial carrier thus obtained was obtained, and the same measurement as in Example 1 was performed. Table 2 shows the results.

【0027】比較例2 4−ビニルピリジンとスチレンの共重合体に4−ビニル
ピリジンと等モル量の塩化ベンジルを反応させて4級化
した重合体を付着させないこと以外は、実施例1と同様
の微生物担体を用いて、実施例1と同様の測定を行っ
た。結果を表2に示す。
Comparative Example 2 Same as Example 1 except that the copolymer of 4-vinylpyridine and styrene was reacted with 4-vinylpyridine and an equimolar amount of benzyl chloride to prevent the quaternized polymer from being attached. The same measurement as in Example 1 was carried out using the microbial carrier of. Table 2 shows the results.

【0028】比較例3 実施例2と同様で同量の不織布を幅8cmの帯状に切断
し、その3枚を積層して中央部を縫合し、花びら状の断
面をもつ構造体を得た。この構造物に実施例1と同様の
方法で4−ビニルピリジンとスチレンの共重合体に4−
ビニルピリジンと等モル量の塩化ベンジルを反応させて
4級化した重合体を付着させて微生物担体を得て、実施
例1と同様の測定を行った。結果を表2に示す。
Comparative Example 3 In the same manner as in Example 2, the same amount of nonwoven fabric was cut into strips having a width of 8 cm, three of them were laminated and the central portion was sewn to obtain a structure having a petal-shaped cross section. In this structure, a 4-vinylpyridine-styrene copolymer was prepared in the same manner as in Example 1.
The same measurement as in Example 1 was carried out by reacting vinyl pyridine and an equimolar amount of benzyl chloride to attach a quaternized polymer to obtain a microbial carrier. Table 2 shows the results.

【0029】比較例4 4−ビニルピリジンとスチレンの共重合体に4−ビニル
ピリジンと等モル量の塩化ベンジルを反応させて4級化
した重合体を付着させないこと以外は、比較例3と同様
の微生物担体を用いて、実施例1と同様の測定を行っ
た。結果を表2に示す。
Comparative Example 4 Similar to Comparative Example 3 except that a copolymer of 4-vinylpyridine and styrene was reacted with 4-vinylpyridine and an equimolar amount of benzyl chloride to prevent the quaternized polymer from being attached. The same measurement as in Example 1 was carried out using the microbial carrier of. Table 2 shows the results.

【0030】[0030]

【表2】 表2から明らかなように、本発明によれば、装置の立ち
上げてから約1週間で水中で正に帯電した表面および内
部に十分量の微生物が付着し、BOD20ppm以下の
処理水が得られた。その後も、コード状の不織布および
軸が水流で揺動したことで過剰に付着した微生物の自己
洗浄が繰り返されたため、適量の微生物が活性の高い状
態で保たれ、安定した処理性能を示した。一方、比較例
2では、装置を立ち上げてから微生物が付着して浄化性
能を発揮するまでに時間がかかり、また、比較例3で
は、装置の立上がりは比較的早かったものの、長期にわ
たる運転において、必要量以上の微生物の付着や付着微
生物の一括剥離が起こり、浄化性能が低下した。比較例
4は、比較例2、3と同様の理由で性能が低かった。
[Table 2] As is clear from Table 2, according to the present invention, a sufficient amount of microorganisms adhere to the positively charged surface and the inside of water in about one week after the apparatus is started up, and treated water having a BOD of 20 ppm or less can be obtained. It was After that, since the cord-shaped nonwoven fabric and the shaft were shaken by the water flow, self-cleaning of excessively adhered microorganisms was repeated, so that an appropriate amount of microorganisms was kept in a highly active state and stable treatment performance was exhibited. On the other hand, in Comparative Example 2, it took time for the microorganisms to adhere and to exert the purification performance after the apparatus was started up, and in Comparative Example 3, the apparatus started up relatively quickly, but in long-term operation. However, the purification performance was deteriorated due to the adhesion of more than the required amount of microorganisms and the simultaneous exfoliation of attached microorganisms. The performance of Comparative Example 4 was low for the same reason as Comparative Examples 2 and 3.

【0031】[0031]

【発明の効果】本発明は、上述したような構成を有する
ことにより以下の効果を生じる。
According to the present invention, the following effects are obtained by having the above-described configuration.

【0032】(1)本発明品は、軸から突出物が広く外
側に出ている構造であり、かつ表面および/または内部
が水中で正に帯電する性質を有しているため、微生物を
捕捉しやすく、装置の運転開始後短期間で性能が安定す
る。
(1) The product of the present invention has a structure in which protrusions are widely projected to the outside from the shaft, and has a property that the surface and / or the inside thereof are positively charged in water. The performance is stable within a short period of time after the start of operation of the device.

【0033】(2)従来の担体は、長期間の使用におい
て、汚泥による部分的な閉塞あるいは生物膜の一括剥離
に伴う浄化性能の低下が避けられなかったが、本発明品
では、流体流によって担体同士が常時接触し合い、過剰
についた微生物を適度に脱落させるため、活性を失った
微生物が長時間担体表面に止まることがなく、担体に付
着した微生物に酸素や基質が十分拡散し、微生物の増殖
環境が好適に維持される。
(2) In the conventional carrier, deterioration of the purification performance due to partial clogging by sludge or collective peeling of biofilm was unavoidable after long-term use. Since the carriers are in constant contact with each other and the excessively attached microorganisms are appropriately removed, the microorganisms that have lost their activity do not stay on the surface of the carrier for a long time, and oxygen and the substrate are sufficiently diffused into the microorganisms attached to the carrier. The growth environment of is preferably maintained.

【0034】(3)本発明の微生物担体は、突出物の構
造を自由に選択できるため、使用条件に合わせて様々な
構造の担体を作製することが可能である。
(3) Since the microbial carrier of the present invention can freely select the structure of the protrusions, it is possible to prepare carriers having various structures according to the use conditions.

【0035】(4)本発明を用いた生物処理装置は、微
生物担体の汚泥による閉塞が起こらないため、メンテナ
ンスが容易である。
(4) Since the biological treatment apparatus using the present invention does not cause clogging of the microbial carrier with sludge, maintenance is easy.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の微生物担体を軸方向からみた模式図
である。
FIG. 1 is a schematic view of the microbial carrier of the present invention as viewed from the axial direction.

【図2】 本発明の微生物担体を軸と垂直の方向からみ
た模式図である。
FIG. 2 is a schematic view of the microbial carrier of the present invention viewed from a direction perpendicular to an axis.

【図3】 立毛した繊維が自由端であるコード状物と、
立毛した繊維がループ状であるコード状物が同軸上に存
在する本発明の微生物担体を軸と垂直の方向からみた概
略図である。
FIG. 3 is a cord-like material in which napped fibers have free ends,
FIG. 3 is a schematic view of the microbial carrier of the present invention in which a cord-like material in which napped fibers are loop-shaped is present on the same axis as seen from a direction perpendicular to an axis.

【図4】 立毛した繊維がループ状であるコード状物が
存在する本発明の微生物担体を軸と垂直の方向からみた
概略図である。
FIG. 4 is a schematic view of a microbial carrier of the present invention in which a cord-like material in which napped fibers have a loop shape is present, as seen from a direction perpendicular to an axis.

【図5】 立毛した繊維の先端が自由端である本発明の
微生物担体を軸と垂直の方向からみた概略図である。
FIG. 5 is a schematic view of the microbial carrier of the present invention in which the tips of napped fibers are free ends, as viewed in a direction perpendicular to the axis.

【図6】 先端が自由端である繊維とループ状の繊維と
が同芯上に立毛している本発明の微生物担体を軸と垂直
の方向からみた概略図である。
FIG. 6 is a schematic view of the microbial carrier of the present invention in which a fiber having a free end and a loop-shaped fiber are napped on the same core, as viewed from a direction perpendicular to an axis.

【図7】 先端が自由端であるコード状物とループ状の
コード状物とが同軸上に存在している本発明の微生物担
体を軸と垂直の方向からみた概略図である。
FIG. 7 is a schematic view of the microbial carrier of the present invention in which a cord-shaped material having a free end and a loop-shaped cord-shaped material are coaxially present, as viewed from a direction perpendicular to an axis.

【図8】 コード状物がループ状である本発明の微生物
担体を軸と垂直の方向からみた概略図である。
FIG. 8 is a schematic view of the microbial carrier of the present invention in which the cord-like material has a loop shape as viewed from a direction perpendicular to the axis.

【図9】 突起物が多孔質構造体である本発明の微生物
担体を軸と垂直の方向からみた概略図である。
FIG. 9 is a schematic view of the microbial carrier of the present invention in which the protrusion has a porous structure, as viewed from a direction perpendicular to the axis.

【符号の説明】[Explanation of symbols]

1:軸 2:突出物 3:立毛した繊維 4:ループ状の立毛した繊維 5:コード状の突出物 6:ループ状の突起物 7:多孔質構造体である突起物 1: axis 2: protrusions 3: napped fibers 4: looped napped fibers 5: cord-shaped protrusions 6: loop-shaped protrusions 7: protrusions that are porous structures

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 軸となる素材に、水中で正に帯電し得る
突出物が存在することを特徴とする微生物担体。
1. A microbial carrier, characterized in that the shaft material has protrusions that can be positively charged in water.
【請求項2】 軸が揺動可能であることを特徴とする請
求項1に記載の微生物担体。
2. The microbial carrier according to claim 1, wherein the shaft is swingable.
【請求項3】 突出物がコード状物であることを特徴と
する請求項1に記載の微生物担体。
3. The microbial carrier according to claim 1, wherein the protrusion is a cord.
【請求項4】 コード状物の先端が自由端であることを
特徴とする請求項3に記載の微生物担体。
4. The microbial carrier according to claim 3, wherein the tip of the cord-like material is a free end.
【請求項5】 コード状物の剛軟度がJISL1085
記載の45°カンチレバ法による測定において6cm以
上であることを特徴とする請求項3に記載の微生物担
体。
5. The bending resistance of the cord-like material is JIS L1085.
The microbial carrier according to claim 3, which has a size of 6 cm or more in the measurement by the 45 ° cantilever method described above.
【請求項6】 コード状物の根元から自由端までの長さ
が2cm以上であることを特徴とする請求項4に記載の
微生物担体。
6. The microbial carrier according to claim 4, wherein the length from the root to the free end of the cord-like material is 2 cm or more.
【請求項7】 コード状物が、芯となる素材の周りに立
毛した繊維が存在する形態であることを特徴とする請求
項3に記載の微生物担体。
7. The microbial carrier according to claim 3, wherein the cord-like material has a form in which napped fibers are present around a core material.
【請求項8】 立毛した繊維の先端が自由端であること
を特徴とする請求項7に記載の微生物担体。
8. The microbial carrier according to claim 7, wherein the tips of the napped fibers are free ends.
【請求項9】 立毛した繊維がループ状に立毛している
ことを特徴とする請求項7に記載の微生物担体。
9. The microbial carrier according to claim 7, wherein the napped fibers are napped in a loop.
【請求項10】 繊維の立毛が静電植毛により得られた
ものであることを特徴とする請求項8に記載の微生物担
体。
10. The microbial carrier according to claim 8, wherein the napped fibers are obtained by electrostatic flocking.
【請求項11】 繊維の立毛がシェニール加工により得
られたものであることを特徴とする請求項7に記載の微
生物担体。
11. The microbial carrier according to claim 7, wherein the napped fibers are obtained by chenille processing.
【請求項12】 立毛した繊維の根元から自由端までの
長さが0.5〜8mmであることを特徴とする請求項7
に記載の微生物担体。
12. The length from the root to the free end of the napped fiber is 0.5 to 8 mm.
A microorganism carrier according to item 1.
【請求項13】 芯の長さ方向における繊維の立毛密度
が2000〜20万本/cmであることを特徴とする請
求項7に記載の微生物担体。
13. The microbial carrier according to claim 7, wherein the napped density of the fibers in the length direction of the core is 2000 to 200,000 fibers / cm.
【請求項14】 コード状物が多孔質構造体であること
を特徴とする請求項3に記載の微生物担体。
14. The microbial carrier according to claim 3, wherein the code-like material is a porous structure.
【請求項15】 軸が少なくとも2本の糸状物からな
り、該糸状物は単独で撚りがかけられており、さらに該
糸状物同士が撚り合わさって突出物を挟み込み保持して
いることを特徴とする請求項1に記載の微生物担体。
15. The shaft is composed of at least two filaments, the filaments are twisted independently, and the filaments are twisted with each other to sandwich and hold the protrusion. The microbial carrier according to claim 1.
【請求項16】 突出物の表面および/または内部がピ
リジニウム基を有することを特徴とする請求項1に記載
の微生物担体。
16. The microbial carrier according to claim 1, wherein the surface and / or the inside of the protrusion has a pyridinium group.
【請求項17】 請求項1に記載の微生物担体を用いた
ことを特徴とする生物処理装置。
17. A biological treatment apparatus comprising the microbial carrier according to claim 1.
JP8070400A 1996-03-26 1996-03-26 Microorganism carrier and biological treatment apparatus using the carrier Pending JPH09252770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8070400A JPH09252770A (en) 1996-03-26 1996-03-26 Microorganism carrier and biological treatment apparatus using the carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8070400A JPH09252770A (en) 1996-03-26 1996-03-26 Microorganism carrier and biological treatment apparatus using the carrier

Publications (1)

Publication Number Publication Date
JPH09252770A true JPH09252770A (en) 1997-09-30

Family

ID=13430375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8070400A Pending JPH09252770A (en) 1996-03-26 1996-03-26 Microorganism carrier and biological treatment apparatus using the carrier

Country Status (1)

Country Link
JP (1) JPH09252770A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000049140A3 (en) * 1999-02-19 2001-03-15 Vyzk Ustav Pivovarsky A Sladar Carrier of biomass, method of fermentation therewith and devices therefor
JP2005066595A (en) * 2003-08-06 2005-03-17 Asahi Kasei Clean Chemical Co Ltd Fiber-made contact material, water treatment apparatus and water treating method
JP2007007575A (en) * 2005-06-30 2007-01-18 Ebara Corp Microorganism carrier and its production method
JP2007237100A (en) * 2006-03-09 2007-09-20 Institute Of National Colleges Of Technology Japan Water purification material and artificial alga, and their manufacturing method
JP2009521329A (en) * 2005-12-27 2009-06-04 バイオプロセス エイチツーオー エルエルシー Biomedia device and method of use thereof
JP2017047136A (en) * 2015-09-04 2017-03-09 株式会社スギノマシン Environment cleaning agent, environment cleaning method, and production method for environment cleaning agent

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000049140A3 (en) * 1999-02-19 2001-03-15 Vyzk Ustav Pivovarsky A Sladar Carrier of biomass, method of fermentation therewith and devices therefor
JP2005066595A (en) * 2003-08-06 2005-03-17 Asahi Kasei Clean Chemical Co Ltd Fiber-made contact material, water treatment apparatus and water treating method
JP2007007575A (en) * 2005-06-30 2007-01-18 Ebara Corp Microorganism carrier and its production method
JP2009521329A (en) * 2005-12-27 2009-06-04 バイオプロセス エイチツーオー エルエルシー Biomedia device and method of use thereof
JP2007237100A (en) * 2006-03-09 2007-09-20 Institute Of National Colleges Of Technology Japan Water purification material and artificial alga, and their manufacturing method
JP2017047136A (en) * 2015-09-04 2017-03-09 株式会社スギノマシン Environment cleaning agent, environment cleaning method, and production method for environment cleaning agent

Similar Documents

Publication Publication Date Title
JP4807777B2 (en) Method for treating contaminated fluid, system for treating contaminated fluid, and method of making a biomass carrier suitable for treating contaminated fluid
JP2006518661A (en) Supported biofilm apparatus and method
JP2012179517A (en) Water-retaining body for water-spray type cleaning apparatus, water-spray type cleaning apparatus, and method for operating the same
JPH09252770A (en) Microorganism carrier and biological treatment apparatus using the carrier
JP3619880B2 (en) Floating vegetation floor
JP2017516655A (en) Fiber bundles for supporting microorganisms
JP2007098195A (en) Biologically contact filter and method for treating water
JPH09234067A (en) Carrier for microorganism and biological treatment device using the same
JPH024496A (en) Contact material for biological treatment
JP2004330156A (en) Fringe pattern biological membrane carrier and biological membrane contact oxidation water cleaning method
JPS6297695A (en) Contact material for water treatment
JP2004188284A (en) Biological membrane water cleaner
JPH07251191A (en) Carrier for biological membrane and water treating method
JP4039407B2 (en) Vegetation method
JP2596763B2 (en) Contact material for biological treatment and method for producing the same
JPH10202282A (en) Carrier for microorganism, biological treating device using that, and contact filter device
KR102066161B1 (en) Plant-derived carrier and a method for preparation thereof
KR200296743Y1 (en) Support Media of Net Type for the Sewage or Wastewater Treatment
JPH0133199Y2 (en)
JPS61293591A (en) Contact material for sewage treatment
JPH04135481A (en) Biocatalyst-carrying material for bioreactor, biocatalyst-immobilized carrying material, and method for treating with biocatalyst
JPH0721196U (en) Sewage treatment contact material
JP2003520655A (en) Antimicrobial fiber media
JPH08103272A (en) Carrier for immobilizing microorganism
JPS62798Y2 (en)