JPH09252581A - Operation of uninterruptive power supply - Google Patents

Operation of uninterruptive power supply

Info

Publication number
JPH09252581A
JPH09252581A JP8057187A JP5718796A JPH09252581A JP H09252581 A JPH09252581 A JP H09252581A JP 8057187 A JP8057187 A JP 8057187A JP 5718796 A JP5718796 A JP 5718796A JP H09252581 A JPH09252581 A JP H09252581A
Authority
JP
Japan
Prior art keywords
carrier frequency
power supply
voltage
converter
uninterruptible power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8057187A
Other languages
Japanese (ja)
Inventor
Mitsuteru Yukitake
光輝 雪竹
Keizo Shimada
恵三 嶋田
Hideaki Kunisada
秀明 国貞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP8057187A priority Critical patent/JPH09252581A/en
Publication of JPH09252581A publication Critical patent/JPH09252581A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To lessen noise of an uninterruptive power supply at the time when a power inverter is stopped and only a power rectifier is operated or at the time of light-load operation. SOLUTION: At the time of the stoppage of a power inverter 3 or at the time of light-load operation, an UPS control circuit 6 detects such an operating condition and then sends a signal for switching a carrier frequency of a power rectifier 2 to an analog switch and thereby the uninterruptive power supply device is operated with a different carrier frequency of the power rectifier 2. The carrier frequency of the power rectifier 2 at the time of the stoppage of the power inverter 3 and at the time of light-load operation is set higher than that at the rated operation. By this method, noise from an AC reactor, etc., can be lessened and noise of the uninterruptive power supply device can be lessened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は無停電電源装置の運
転方法に係り、特に騒音低減を可能にした無停電電源装
置の運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of operating an uninterruptible power supply, and more particularly to a method of operating an uninterruptible power supply capable of reducing noise.

【0002】[0002]

【従来の技術】無停電電源装置は、例えば、OHM社発
行の「パワーエレクトロニクスのすべて」に記載されて
いる。無停電電源装置は、整流器,蓄電池及びインバー
タから構成される。整流器及びインバータとしては、そ
れぞれPWMコンバータ,PWMインバータを採用してい
るのが一般的である。また無停電電源装置の順変換器及
び逆変換器に使用されるスイッチングデバイスとして
は、特に、IGBTを使用するケースが多い。IGBT
を使用する場合、2kHzから10kHz程度のキャリ
ア周波数が用いられている。
2. Description of the Related Art An uninterruptible power supply device is described, for example, in "All about power electronics" published by OHM. The uninterruptible power supply is composed of a rectifier, a storage battery and an inverter. A PWM converter and a PWM inverter are generally adopted as the rectifier and the inverter, respectively. Moreover, as a switching device used for a forward converter and an inverse converter of an uninterruptible power supply, an IGBT is often used in many cases. IGBT
Is used, a carrier frequency of about 2 kHz to 10 kHz is used.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術では、キ
ャリア周波数を2〜10kHzという可聴域の周波数に
設定しているので、交流リアクトルの騒音等がうるさい
という問題がある。
In the above prior art, since the carrier frequency is set to a frequency in the audible range of 2 to 10 kHz, there is a problem that noise of the AC reactor is noisy.

【0004】このキャリア周波数に起因する騒音を低減
するには、キャリア周波数を人間の可聴範囲外となる周
波数に設定すればよいが、キャリア周波数を高くすると
順変換器,逆変換器でのスイッチングデバイスの損失が
大きくなり、効率が著しく低下するという問題がある。
また無停電電源装置は、夜間において負荷機器を停止し
た場合、経済的な理由から逆変換器を停止して順変換器
のみを運転し、蓄電池を充電するという運転方法が一般
的である。この場合、負荷装置を運転している昼間より
も、無停電電源装置以外の装置が停止している夜間の方
が無停電電源装置の騒音が問題となることが多い。
In order to reduce the noise caused by the carrier frequency, the carrier frequency may be set to a frequency outside the audible range for humans. However, if the carrier frequency is increased, the switching device in the forward converter and the inverse converter will be used. However, there is a problem in that the loss becomes large and the efficiency remarkably decreases.
In addition, in the uninterruptible power supply, when the load device is stopped at night, the operating method is generally such that, for economical reasons, the reverse converter is stopped and only the forward converter is operated to charge the storage battery. In this case, the noise of the uninterruptible power supply often becomes a problem during nighttime when devices other than the uninterruptible power supply are stopped, rather than during daytime when the load device is operating.

【0005】本発明の目的は、無停電電源装置の特定の
運転状態(軽負荷運転時、あるいは逆変換器停止時)に
おいて、騒音を低減させるための無停電電源装置の運転
方法を提供することにある。
An object of the present invention is to provide a method of operating an uninterruptible power supply for reducing noise in a specific operating state of the uninterruptible power supply (during light load operation or when the inverse converter is stopped). It is in.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明では逆変換器を停止させ順変換器のみを運転
した場合や軽負荷運転時においては、キャリア周波数を
定格運転時よりも高い周波数(人間の可聴範囲外となる
周波数)に設定する。
In order to achieve the above object, in the present invention, when the inverse converter is stopped and only the forward converter is operated or at the time of light load operation, the carrier frequency is set to be lower than that at the time of rated operation. Set it to a high frequency (a frequency outside the human audible range).

【0007】この運転方法によれば、逆変換器を停止さ
せ順変換器のみを運転した場合や軽負荷運転時におい
て、人間の可聴範囲外のキャリア周波数で運転するの
で、交流リアクトルからの騒音等が低減され、無停電電
源装置の騒音低減が可能になる。
According to this operating method, when the inverse converter is stopped and only the forward converter is operated, or at the time of light load operation, the operation is performed at a carrier frequency outside the audible range of humans, so that noise from the AC reactor, etc. And the noise of the uninterruptible power supply can be reduced.

【0008】[0008]

【発明の実施の形態】本発明の第1の実施例を図1によ
り説明する。無停電電源装置(UPS)7は、順変換器
2,逆変換器3,蓄電池4,順変換器2及び逆変換器3
を制御するUPS制御回路6から構成される。順変換器
2は、交流電源1から供給される交流電圧を直流電圧に
変換し出力する。順変換器2の出力には逆変換器3と、
蓄電池4が接続されている。逆変換器3は、順変換器2
又は蓄電池4からの直流電圧を交流電圧に変換し負荷装
置5に供給する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIG. The uninterruptible power supply (UPS) 7 includes a forward converter 2, an inverse converter 3, a storage battery 4, a forward converter 2 and an inverse converter 3.
And a UPS control circuit 6 for controlling. The forward converter 2 converts an AC voltage supplied from the AC power supply 1 into a DC voltage and outputs the DC voltage. The output of the forward converter 2 has an inverse converter 3 and
The storage battery 4 is connected. The inverse converter 3 is the forward converter 2
Alternatively, the DC voltage from the storage battery 4 is converted into an AC voltage and supplied to the load device 5.

【0009】通常運転時、順変換器2は所定のキャリア
周波数により制御され、逆変換器3に直流電力を供給す
るとともに蓄電池4を充電する。逆変換器3は直流電力
を交流電力に変換し負荷装置5に供給する。夜間,休日
等に負荷装置5を停止して逆変換器3を停止し、順変換
器2のみを運転して蓄電池4を充電する場合、順変換器
2は逆変換器3の停止信号をUPS制御回路6で検知す
ることにより、通常運転時のキャリア周波数より高いキ
ャリア周波数に切換えて運転する。
During normal operation, the forward converter 2 is controlled by a predetermined carrier frequency to supply DC power to the reverse converter 3 and charge the storage battery 4. The inverse converter 3 converts DC power into AC power and supplies it to the load device 5. When the load device 5 is stopped and the reverse converter 3 is stopped at night, a holiday, etc., and only the forward converter 2 is operated to charge the storage battery 4, the forward converter 2 sends a stop signal of the reverse converter 3 to UPS. By detecting with the control circuit 6, the carrier frequency is switched to a higher carrier frequency than that in the normal operation to operate.

【0010】逆変換器3の停止時におけるキャリア周波
数切換え方法の一例を、図2により説明する。順変換器
2はPWM制御方式の三相ブリッジコンバータで、その
主回路は、入力端に設置されたコンデンサ9,交流リア
クトル10,IGBT11A〜11Fとそれに逆並列接続されたダ
イオード12A〜12F、及び直流平滑用コンデンサ1
3とで構成されている。
An example of a carrier frequency switching method when the inverse converter 3 is stopped will be described with reference to FIG. The forward converter 2 is a PWM control type three-phase bridge converter, and its main circuit is composed of a capacitor 9 installed at an input end, an AC reactor 10, IGBTs 11A to 11F and diodes 12A to 12F connected in antiparallel thereto, and a direct current. Smoothing capacitor 1
3 is comprised.

【0011】この主回路の制御回路の動作を説明する。
まず、直流平滑用コンデンサ13の両端電圧の帰還と出
力基準電圧14との差を演算増幅器15で増幅する。こ
の出力と交流電圧に同期した正弦波を発生する同期正弦
波発生手段16A〜16Cの出力とを、乗算器17A〜
17Cで掛け合わせ、乗算器17A〜17Cの出力と変
流器18A〜18Cによる交流入力電流の帰還との差
を、演算増幅器19A〜19Cで増幅する。演算増幅器
19A〜19Cの出力とアナログスイッチ23によって
選択される第一の三角波発生手段20又は第二の三角波
発生手段21のどちらかの出力とを、比較器22A〜2
2Cで比較し、比較器22A〜22Cの出力(PWM信
号)によってIGBT駆動手段8はIGBT11A〜11Fを駆動
する。
The operation of the control circuit of this main circuit will be described.
First, the difference between the feedback of the voltage across the DC smoothing capacitor 13 and the output reference voltage 14 is amplified by the operational amplifier 15. This output and the outputs of the synchronous sine wave generating means 16A to 16C that generate a sine wave synchronized with the AC voltage are multiplied by the multipliers 17A to 17A.
17C, and the difference between the output of the multipliers 17A to 17C and the feedback of the AC input current by the current transformers 18A to 18C is amplified by the operational amplifiers 19A to 19C. The outputs of the operational amplifiers 19A to 19C and the output of either the first triangular wave generating means 20 or the second triangular wave generating means 21 selected by the analog switch 23 are compared with the comparators 22A to 22A.
2C, and the IGBT driving means 8 drives the IGBTs 11A to 11F by the outputs (PWM signals) of the comparators 22A to 22C.

【0012】例えば、直流平滑用コンデンサ13の両端
電圧の帰還が出力基準電圧14より高い場合、乗算器1
7A〜17Cの出力は小さくなり、入力電流を低減する
よう制御されるので、直流平滑用コンデンサ13の両端
電圧は下がり、出力基準電圧14に一致するように保た
れる。また演算増幅器19A〜19Cにより入力交流電
圧に同期した乗算器17A〜17Cの出力と変流器18
A〜18Cによる交流入力電流とを一致させるよう制御
されるので、入力電流を正弦波に、かつ、入力力率を
1.0 に保つようになる。このときの三角波発生手段と
しては、無停電電源装置の運転状態により、第一の三角
波発生手段20(例えば、キャリア周波数:5kHz)
又は第二の三角波発生手段21(例えば、キャリア周波
数:20kHz)のどちらかを使用する。アナログスイッチ
23は、UPS制御装置7からの逆変換器運転信号24
により、逆変換器3運転時は、逆変換器運転信号24が
伝達され第一の三角波発生手段20側がONし、逆変換
器3停止時は、逆変換器運転信号24が伝達されず、第
一の三角波発生手段20側がOFFし、第二の三角波発
生手段21側がONする。したがって、逆変換器3運転
時は、第一の三角波発生手段20が選択され、交流リア
クトル10から5kHzの騒音が発生するが、逆変換器
3停止時には、第二の三角波発生手段21が選択され、
キャリア周波数は20kHzとなり可聴域を外れるので
騒音が無くなる。この無停電電源装置は、定格運転時の
発生損失に基づいて冷却設計が行われている。逆変換器
3停止時においては、この損失が大幅に低減されるので
キャリア周波数を上げても定格運転時の損失より小さな
損失しか発生せず、冷却装置を大きくすることなく無停
電電源装置の騒音低減を実現できる。
For example, when the feedback of the voltage across the DC smoothing capacitor 13 is higher than the output reference voltage 14, the multiplier 1
Since the outputs of 7A to 17C are reduced and controlled so as to reduce the input current, the voltage across the DC smoothing capacitor 13 is lowered and kept to match the output reference voltage 14. Further, the outputs of the multipliers 17A to 17C and the current transformer 18 synchronized with the input AC voltage by the operational amplifiers 19A to 19C.
Since the AC input currents from A to 18C are controlled to match each other, the input current is kept in a sine wave and the input power factor is kept at 1.0. As the triangular wave generating means at this time, the first triangular wave generating means 20 (for example, carrier frequency: 5 kHz) depends on the operating state of the uninterruptible power supply.
Alternatively, either the second triangular wave generating means 21 (for example, carrier frequency: 20 kHz) is used. The analog switch 23 has an inverse converter operation signal 24 from the UPS control device 7.
Thus, when the inverse converter 3 is in operation, the inverse converter operation signal 24 is transmitted and the first triangular wave generating means 20 side is turned on, and when the inverse converter 3 is stopped, the inverse converter operation signal 24 is not transmitted, The one triangular wave generating means 20 side is turned off and the second triangular wave generating means 21 side is turned on. Therefore, when the inverse converter 3 is in operation, the first triangular wave generating means 20 is selected and noise of 5 kHz is generated from the AC reactor 10. However, when the inverse converter 3 is stopped, the second triangular wave generating means 21 is selected. ,
Since the carrier frequency is 20 kHz, which is out of the audible range, noise is eliminated. This uninterruptible power supply is designed for cooling based on the loss generated during rated operation. When the inverse converter 3 is stopped, this loss is significantly reduced, so even if the carrier frequency is increased, only a smaller loss than the loss during rated operation occurs, and the noise of the uninterruptible power supply unit does not increase without increasing the cooling device. Reduction can be realized.

【0013】次に、第2の実施例を図3を用いて説明す
る。順変換器2の主回路は、図2と同じ構成であり、制
御回路構成は、基本的に図2と同じであるが、キャリア
周波数の切換え条件が異なる。逆変換器3は、PWM制
御方式の三相ブリッジインバータで、主回路は、IGBT26
A〜26Fとそれに逆並列接続されたダイオード27A〜27
Fと、直流平滑用コンデンサ25とで構成されている。
逆変換器3の制御回路の動作について説明すると、逆変
換器3の出力電圧を変圧器28で変圧し、この電圧と基
準正弦波発生器30A〜30Cの出力との差を演算増幅
器31A〜31Cで増幅する。演算増幅器31A〜31C
の出力とアナログスイッチ23によって選択される第一
の三角波発生手段20又は第二の三角波発生手段21の
どちらかの出力とを、比較器32A〜32Cで比較し、
比較器32A〜32Cの出力(PWM信号)によってIGB
T駆動手段33はIGBT26A〜26Fを駆動する。キャリア周
波数の切換え方法は、切換え信号を発生する切換え信号
発生器34に変流器29A,29Bで変流した逆変換器
3の出力電流値を入力し、切換え信号発生器34の出力
によって、アナログスイッチ23が切換えられる。切換
え信号発生器34は、逆変換器3の出力電流があるレベ
ル以上になったことを判定するヒステリシスコンパレー
タである。
Next, a second embodiment will be described with reference to FIG. The main circuit of the forward converter 2 has the same configuration as that of FIG. 2, and the control circuit configuration is basically the same as that of FIG. 2, but the carrier frequency switching conditions are different. The inverse converter 3 is a PWM control type three-phase bridge inverter, and the main circuit is an IGBT26.
A to 26F and diodes 27A to 27 connected in anti-parallel thereto
F and a DC smoothing capacitor 25.
Explaining the operation of the control circuit of the inverse converter 3, the output voltage of the inverse converter 3 is transformed by the transformer 28, and the difference between this voltage and the outputs of the reference sine wave generators 30A to 30C is calculated by the operational amplifiers 31A to 31C. Amplify with. Operational amplifier 31A to 31C
And the output of either the first triangular wave generating means 20 or the second triangular wave generating means 21 selected by the analog switch 23 are compared by the comparators 32A to 32C,
IGB by the output (PWM signal) of the comparators 32A to 32C
The T drive means 33 drives the IGBTs 26A to 26F. The carrier frequency is switched by inputting the output current value of the inverse converter 3 which has been transformed by the current transformers 29A and 29B to a switching signal generator 34 which generates a switching signal, and by the output of the switching signal generator 34, an analog signal is output. The switch 23 is switched. The switching signal generator 34 is a hysteresis comparator that determines that the output current of the inverse converter 3 has reached a certain level or higher.

【0014】具体的にその動作を図4,図5により説明
する。図4は、逆変換器3の出力電流の変化に対しての
切換え信号発生器34の動作,アナログスイッチ23の
動作、及びキャリア周波数の変化を表したものである。
この図では、まず逆変換器3の出力電流が定格の20%
を超えると切換え信号発生器34の出力がHになり、ア
ナログスイッチ23へ切換え信号が送られる。するとア
ナログスイッチ23は第一の三角波発生手段20側へ切
換え順変換器2はキャリア周波数5kHzで運転を行
う。次に逆変換器3の出力電流が定格の10%以下にな
ると切換え信号発生器34の出力がLになり、アナログ
スイッチ23へ切換え信号が送られる。するとアナログ
スイッチ23は第一の三角波発生手段20側から第二の
三角波発生手段21側へ切換わり、順変換器2はキャリ
ア周波数20kHzで運転を行う。ここで切換え信号発
生器34は、図5に示すようなヒステリシス特性をもた
せた装置で、逆変換器3の出力電流が定格の20%を超
えるとHになり、逆変換器3の出力電流が定格の10%
以下になるとLになる動作をする。切換え信号発生器3
4にヒステリシス特性をもたせた理由は、逆変換器3の
出力電流の変化によるアナログスイッチ23のチャタリ
ングを防ぐためである。
The operation will be specifically described with reference to FIGS. 4 and 5. FIG. 4 shows the operation of the switching signal generator 34, the operation of the analog switch 23, and the change of the carrier frequency with respect to the change of the output current of the inverse converter 3.
In this figure, first, the output current of the inverse converter 3 is 20% of the rated value.
When it exceeds, the output of the switching signal generator 34 becomes H, and the switching signal is sent to the analog switch 23. Then, the analog switch 23 is switched to the first triangular wave generating means 20 side, and the forward converter 2 operates at a carrier frequency of 5 kHz. Next, when the output current of the inverse converter 3 becomes 10% or less of the rated value, the output of the switching signal generator 34 becomes L, and the switching signal is sent to the analog switch 23. Then, the analog switch 23 switches from the first triangular wave generating means 20 side to the second triangular wave generating means 21 side, and the forward converter 2 operates at a carrier frequency of 20 kHz. Here, the switching signal generator 34 is a device having a hysteresis characteristic as shown in FIG. 5, and becomes H when the output current of the inverse converter 3 exceeds 20% of the rating, and the output current of the inverse converter 3 becomes 10% of rating
When it becomes the following, it operates to become L. Switching signal generator 3
The reason why 4 has a hysteresis characteristic is to prevent chattering of the analog switch 23 due to a change in the output current of the inverse converter 3.

【0015】上記の運転方法を使用すると、負荷機器も
含めたシステム全体が運転し、システム全体の騒音がう
るさい場合、無停電電源装置の騒音も大きいが、電源を
落とせない重要な負荷を除く負荷機器を停止してシステ
ム全体が静かになった場合、無停電電源装置の騒音も小
さくすることができるので、システムの中での無停電電
源装置の騒音も気にならなくなる。
When the above operating method is used, when the entire system including the load device is operated and the noise of the entire system is noisy, the uninterruptible power supply also makes a lot of noise, but the load except for the important load that cannot turn off the power supply. When the entire system becomes quiet by stopping the equipment, the noise of the uninterruptible power supply can be reduced, so that the noise of the uninterruptible power supply in the system is not noticed.

【0016】上記のように、無停電電源装置の定格運転
時に使用するキャリア周波数とは別に、もう一つのキャ
リア周波数(定格運転時に使用するキャリア周波数より
高い周波数)を用意し、無停電電源装置の運転状態によ
り、この2つのキャリア周波数を切換えることにより、
ある限定した運転状態における無停電電源装置の騒音を
低減することが可能となる。
As described above, in addition to the carrier frequency used during the rated operation of the uninterruptible power supply, another carrier frequency (frequency higher than the carrier frequency used during the rated operation) is prepared and By switching between these two carrier frequencies depending on the operating condition,
It is possible to reduce the noise of the uninterruptible power supply in a limited operating state.

【0017】[0017]

【発明の効果】本発明によれば、逆変換器を停止させ順
変換器のみを運転した場合や軽負荷運転時において、キ
ャリア周波数を高くすることができるので、交流リアク
トル10からの騒音等を低減する効果がある。
According to the present invention, since the carrier frequency can be increased when the inverse converter is stopped and only the forward converter is operated or when the load is light, the noise from the AC reactor 10 is reduced. There is an effect of reducing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成を示す図である。FIG. 1 is a diagram showing a configuration of an embodiment of the present invention.

【図2】順変換器のキャリア周波数切換え回路の一実施
例の構成を示す図である。
FIG. 2 is a diagram showing a configuration of an embodiment of a carrier frequency switching circuit of a forward converter.

【図3】キャリア周波数切換え回路の他の実施例の構成
を示す図である。
FIG. 3 is a diagram showing a configuration of another embodiment of a carrier frequency switching circuit.

【図4】図3内のキャリア周波数切換え信号の詳細を示
す図である。
FIG. 4 is a diagram showing details of a carrier frequency switching signal in FIG.

【図5】図3内の切換え信号発生器25の動作を示す図
である。
5 is a diagram showing an operation of a switching signal generator 25 in FIG.

【符号の説明】 1…交流電源、2…順変換器、3…逆変換器、4…蓄電
池、5…負荷装置、6…UPS制御回路、7…無停電電
源装置、8,33…IGBT駆動手段、9…コンデン
サ、10…交流リアクトル、11A〜11F,26A〜
26F…IGBT、12A〜12F,27A〜27F…
ダイオード、13,25…直流平滑用コンデンサ、14
…出力基準電圧、15,19A〜19C,31A〜31
C……演算増幅器、16A〜16C…同期正弦波発生手
段、17A〜17C…乗算器、18A〜18C,29A,
29B…変流器、20,21…三角波発生手段、22A
〜22C,32A〜32C…比較器、23…アナログス
イッチ、24…逆変換器運転信号、28…変圧器、30
A〜30C…基準正弦波発生器、34…切換え信号発生
器。
[Explanation of Codes] 1 ... AC power source, 2 ... Forward converter, 3 ... Inverter converter, 4 ... Storage battery, 5 ... Load device, 6 ... UPS control circuit, 7 ... Uninterruptible power supply device, 8, 33 ... IGBT drive Means, 9 ... Capacitor, 10 ... AC reactor, 11A-11F, 26A-
26F ... IGBT, 12A-12F, 27A-27F ...
Diodes, 13, 25 ... DC smoothing capacitors, 14
... Output reference voltage, 15, 19A to 19C, 31A to 31
C ... Operational amplifier, 16A-16C ... Synchronous sine wave generating means, 17A-17C ... Multiplier, 18A-18C, 29A,
29B ... Current transformer, 20, 21 ... Triangular wave generating means, 22A
22C, 32A to 32C ... Comparator, 23 ... Analog switch, 24 ... Inverse converter operation signal, 28 ... Transformer, 30
A to 30C ... Reference sine wave generator, 34 ... Switching signal generator.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 国貞 秀明 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Hideaki Kunisada 3-1-1, Saiwaicho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi factory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】交流電圧を直流電圧に変換する順変換器,
前記直流電圧により充電される蓄電池、および前記直流
電圧を交流電圧に変換して出力する逆変換器を備えた無
停電電源装置の運転方法において、 前記逆変換器を運転している場合、前記順変換器のキャ
リア周波数を第1のキャリア周波数に設定し、前記逆変
換器を停止し前記順変換器のみ運転して前記蓄電池を充
電する場合、前記順変換器のキャリア周波数を第2のキ
ャリア周波数に設定することを特徴とする無停電電源装
置の運転方法。
1. A forward converter for converting an AC voltage into a DC voltage,
In a method of operating an uninterruptible power supply device that includes a storage battery charged by the DC voltage, and an inverse converter that converts the DC voltage into an AC voltage and outputs the AC voltage, when operating the inverse converter, the order When the carrier frequency of the converter is set to the first carrier frequency, the inverse converter is stopped, and only the forward converter is operated to charge the storage battery, the carrier frequency of the forward converter is set to the second carrier frequency. A method of operating an uninterruptible power supply, characterized by setting to.
【請求項2】交流電圧を直流電圧に変換する順変換器,
前記直流電圧により充電される蓄電池、および前記直流
電圧を交流電圧に変換して出力する逆変換器を備えた無
停電電源装置において、 無停電電源装置が定格運転時には、前記順変換器のキャ
リア周波数を第1のキャリア周波数に設定し、定格運転
時に対して所定の割合以下の負荷で運転する場合、前記
順変換器のキャリア周波数を第2のキャリア周波数に設
定することを特徴とする無停電電源装置の運転方法。
2. A forward converter for converting an AC voltage into a DC voltage,
In the uninterruptible power supply device including a storage battery charged by the DC voltage, and an inverse converter that converts the DC voltage to an AC voltage and outputs the AC voltage, when the uninterruptible power supply device is in a rated operation, the carrier frequency of the forward converter. Is set to the first carrier frequency, and when the load is operated at a load equal to or less than a predetermined ratio with respect to the rated operation, the carrier frequency of the forward converter is set to the second carrier frequency. How to operate the device.
【請求項3】請求項1または請求項2において、前記第
2のキャリア周波数は第1のキャリア周波数よりも高い
ことを特徴とする無停電電源装置の運転方法。
3. The method for operating an uninterruptible power supply according to claim 1, wherein the second carrier frequency is higher than the first carrier frequency.
JP8057187A 1996-03-14 1996-03-14 Operation of uninterruptive power supply Pending JPH09252581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8057187A JPH09252581A (en) 1996-03-14 1996-03-14 Operation of uninterruptive power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8057187A JPH09252581A (en) 1996-03-14 1996-03-14 Operation of uninterruptive power supply

Publications (1)

Publication Number Publication Date
JPH09252581A true JPH09252581A (en) 1997-09-22

Family

ID=13048499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8057187A Pending JPH09252581A (en) 1996-03-14 1996-03-14 Operation of uninterruptive power supply

Country Status (1)

Country Link
JP (1) JPH09252581A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006197660A (en) * 2005-01-11 2006-07-27 Meidensha Corp Starting method and starter of uninterruptible power supply
JP2008228517A (en) * 2007-03-15 2008-09-25 Toshiba Corp Uninterruptible power supply device
CN101814851A (en) * 2009-02-23 2010-08-25 发那科株式会社 The PWM rectifier
WO2015104886A1 (en) * 2014-01-09 2015-07-16 東芝キヤリア株式会社 Power conversion device
JP2016178853A (en) * 2015-03-18 2016-10-06 台▲達▼▲電▼子工▲業▼股▲ふん▼有限公司 Commercial frequency current converter and control method therefor
JP2016208557A (en) * 2015-04-15 2016-12-08 富士電機株式会社 Control device for power conversion device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006197660A (en) * 2005-01-11 2006-07-27 Meidensha Corp Starting method and starter of uninterruptible power supply
JP4670351B2 (en) * 2005-01-11 2011-04-13 株式会社明電舎 Uninterruptible power supply controller.
JP2008228517A (en) * 2007-03-15 2008-09-25 Toshiba Corp Uninterruptible power supply device
CN101814851A (en) * 2009-02-23 2010-08-25 发那科株式会社 The PWM rectifier
DE102010007184A1 (en) 2009-02-23 2010-11-25 Fanuc Ltd PWM Rectifier
US8018747B2 (en) 2009-02-23 2011-09-13 Fanuc Ltd PWM rectifier
DE102010007184B4 (en) * 2009-02-23 2013-01-24 Fanuc Corporation PWM Rectifier
WO2015104886A1 (en) * 2014-01-09 2015-07-16 東芝キヤリア株式会社 Power conversion device
JPWO2015104886A1 (en) * 2014-01-09 2017-03-23 東芝キヤリア株式会社 Power converter
JP2016178853A (en) * 2015-03-18 2016-10-06 台▲達▼▲電▼子工▲業▼股▲ふん▼有限公司 Commercial frequency current converter and control method therefor
US10432105B2 (en) 2015-03-18 2019-10-01 Delta Electronics, Inc. Power frequency current converter and method for controlling the same
JP2016208557A (en) * 2015-04-15 2016-12-08 富士電機株式会社 Control device for power conversion device

Similar Documents

Publication Publication Date Title
JP2760666B2 (en) Method and apparatus for controlling PWM converter
JP2892183B2 (en) Power converter for photovoltaic power generation
US6094363A (en) Uninterruptible power supply with AC sine wave output and energy recycle function
US20020109412A1 (en) Power conversion apparatus and methods using balancer circuits
JP2006238621A (en) Uninterruptible power supply
JP4340843B2 (en) AC / DC combined power supply
JP3469918B2 (en) Uninterruptible power system
US6960901B2 (en) Bi-directional DC/DC power converter having a neutral terminal
JPH09252581A (en) Operation of uninterruptive power supply
US5369563A (en) Fast turn-off circuit for use with an AC bridge circuit
US6175510B1 (en) Direct conversion uninterruptible power supply
JP2008283729A (en) Uninterruptible power supply unit
JP3082849B2 (en) Uninterruptible power system
JP3541887B2 (en) Power converter
JP2003087976A (en) Uninterruptible power supply
JP2568271B2 (en) DC uninterruptible power supply
JP2004088862A (en) Self-excited power conversion device
JP4138497B2 (en) Power factor improvement method for power supply system, power supply system, switching power supply device and uninterruptible power supply device
JP3433412B2 (en) Regenerative energy processing method and regenerative energy processing device for inverter
JP2009177901A (en) Uninterruptible power supply device
JP3396126B2 (en) Control device for power converter
JP2956372B2 (en) Uninterruptible power system
JPH0775344A (en) Current loop control type pwm inverter
JP2762003B2 (en) Power converter
JPH0686557A (en) Uninterruptible power supply