JPH09252513A - Method for attaching spacer for multiple conductors - Google Patents

Method for attaching spacer for multiple conductors

Info

Publication number
JPH09252513A
JPH09252513A JP8760896A JP8760896A JPH09252513A JP H09252513 A JPH09252513 A JP H09252513A JP 8760896 A JP8760896 A JP 8760896A JP 8760896 A JP8760896 A JP 8760896A JP H09252513 A JPH09252513 A JP H09252513A
Authority
JP
Japan
Prior art keywords
spacer
line
electric wire
mounting
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8760896A
Other languages
Japanese (ja)
Other versions
JP3455628B2 (en
Inventor
Tsunemasa Iwaki
恒雅 岩城
Koji Murase
厚司 村瀬
Shinichi Watanabe
伸一 渡邉
Junji Ohori
順司 大堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Toenec Corp
Original Assignee
Chubu Electric Power Co Inc
Toenec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Toenec Corp filed Critical Chubu Electric Power Co Inc
Priority to JP08760896A priority Critical patent/JP3455628B2/en
Publication of JPH09252513A publication Critical patent/JPH09252513A/en
Application granted granted Critical
Publication of JP3455628B2 publication Critical patent/JP3455628B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electric Cable Installation (AREA)
  • Suspension Of Electric Lines Or Cables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for attaching a spacer for multiple conductors which requires no correction by a worker on board a pendent cage after the attachment. SOLUTION: When intending to attach a spacer onto multiple electric wires 10 stringed with a space to a vertical direction, the computed value of the catenary angle θ0 of the electric wires at attaching positions of each spacer is obtained based on a slackness calculating formula. When the spacer is attached onto the electric wires with a pendent cage 7, the actual catenary angle θ of the electric wires at attaching positions of the spacer is measured. Then, the spacer is attached onto each electric wire by shifting the attaching position P13 on the bottom wire 13a by a corrected amount R (to an attaching position Pb) obtained by a calculating formula R = Dtan (θ-θ0 (where D is the space from the top to bottom wires) against the right angle attaching position to the top wire 11a.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、たとえば送電線
のように、上下に間隔をおいて鉄塔等の支持点間に架線
された複数本の電線(導体)にスペーサを取付ける取付
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mounting method for attaching a spacer to a plurality of electric wires (conductors) which are vertically extended and spaced between supporting points of a steel tower or the like, such as a power transmission line.

【0002】[0002]

【従来の技術】一般に発電所と一次変電所間、および一
次変電所相互間の送電線路は、図4および図5に示すよ
うに天線11,11、中線12,12、および地線1
3,13から成る6本の電線(6導体)10で構成され
る場合が多く、この場合は各電線間隔保持のためのスペ
ーサ2が、所定の距離(たとえば30〜50m)ごとに
取付けられる。このスペーサ2の取付は、通常電線10
上を走行する宙乗機7に乗った作業員によっておこなわ
れるが、宙乗機は通常約500Kg程度の大重量であ
り、これに搭乗する3〜4人の作業員の体重やスペーサ
重量も加わるので、スペーサ取付時には取付位置付近に
かなり大きな集中荷重がかかる。
2. Description of the Related Art Generally, power transmission lines between a power station and a primary substation, and between primary substations, include a skyline 11, 11, a midline 12, 12 and a ground line 1, as shown in FIGS.
In many cases, it is composed of 6 electric wires (6 conductors) 10 composed of 3 and 13, and in this case, the spacers 2 for holding the intervals between the electric wires are attached at a predetermined distance (for example, 30 to 50 m). This spacer 2 is usually attached to the electric wire 10
It is performed by a worker who rides on the airborne vehicle 7 traveling above, and the airborne vehicle usually has a large weight of about 500 kg, and the weights and spacer weights of 3 to 4 workers who ride on this are also added. Therefore, when mounting the spacer, a fairly large concentrated load is applied near the mounting position.

【0003】このため取付時に各電線に対して直角に取
付けられたスペーサが、宙乗機を電線上から降ろすと傾
斜して直角からずれた取付角度となり、この取付角の修
正は作業員が電線上を素乗りで移動しておこなう必要が
あり、手間がかかる上危険であり、好ましいものではな
かった。
For this reason, the spacers, which are mounted at right angles to the electric wires at the time of mounting, become tilted and deviate from the right angles when the airborne vehicle is lowered from above the electric wires. This is not preferable because it is necessary to move on top of the vehicle without doing anything, which is troublesome and dangerous.

【0004】[0004]

【発明が解決しようとする課題】この発明は上記従来の
問題点を解決するもので、宙乗機による取付後の修正作
業が不要である多導体用スペーサの取付方法を提供しよ
うとするものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and aims to provide a method for mounting a multi-conductor spacer that does not require a correction work after mounting by an airborne vehicle. is there.

【0005】[0005]

【課題を解決するための手段】この出願の第1の発明の
多導体用スペーサの取付方法は、上下に間隔をおいて架
線された複数本の電線にスペーサを取付けるに際して、
弛度計算式により各スペーサの取付位置における電線の
カテナリー角計算値θ0 を算出しておき、宙乗機を用い
てスペーサを電線に取付ける際に、スペーサの取付位置
における電線のカテナリー角実測値θを測定し、天線に
直角な取付位置に対して、下記計算式による補正量Rが
正のときは地線上の取付位置を距離Rだけ宙乗機進行方
向へシフトさせた状態で、該補正量Rが負のときは地線
上の取付位置を距離|R|だけ宙乗機進行方向とは反対
の方向へシフトさせた状態で、スペーサを各電線に取付
けることを特徴とする。 R=Dtan(θ−θ0 ) 但しD:天線〜地線の間隔寸法。
A method for mounting a spacer for multiconductor according to the first invention of the present application, in mounting the spacer on a plurality of electric wires which are vertically wired with a space therebetween,
Calculate the calculated catenary angle θ 0 of the wire at the mounting position of each spacer using the sag calculation formula, and then measure the catenary angle of the wire at the mounting position of the spacer when the spacer is mounted on the wire using the airborne machine. When θ is measured and the correction amount R calculated by the following formula is positive with respect to the mounting position perpendicular to the skyline, the mounting position on the ground line is shifted by the distance R in the traveling direction of the airborne vehicle. When the amount R is negative, the spacer is attached to each electric wire in a state where the attachment position on the ground line is shifted by a distance | R | in a direction opposite to the traveling direction of the airborne vehicle. R = Dtan (θ−θ 0 ), where D is the distance between the top line and the ground line.

【0006】またこの出願の第2の発明の多導体用スペ
ーサの取付方法は、上下に間隔をおいて架線された複数
本の電線にスペーサを取付けるに際して、弛度計算式に
より各スペーサの取付位置における電線のカテナリー角
計算値θ0 を算出しておき、宙乗機を用いてスペーサを
電線に取付ける際に、スペーサの取付位置における電線
のカテナリー角実測値θを測定し、天線に直角な取付位
置に対して、下記計算式による補正量Rが正のときは地
線上の取付位置を距離Rだけ宙乗機進行方向へシフトさ
せた状態で、該補正量Rが負のときは地線上の取付位置
を距離|R|だけ宙乗機進行方向とは反対の方向へシフ
トさせた状態で、スペーサを各電線に取付けることを特
徴とする。 R=Dπ(θ−θ0 )/180 但しD:天線〜地線の間隔寸法。 角度の単位:度。
The method of mounting the spacer for multiple conductors according to the second invention of this application is such that, when the spacers are mounted on a plurality of electric wires that are vertically spaced at intervals, a mounting position of each spacer is calculated by a sag calculation formula. Calculate the calculated catenary angle θ 0 of the wire in the above and measure the catenary angle measurement value θ of the wire at the spacer mounting position when mounting the spacer to the wire using the airborne machine, and mount it at a right angle to the top line. With respect to the position, when the correction amount R according to the following calculation formula is positive, the mounting position on the ground line is shifted by the distance R in the traveling direction of the airborne vehicle, and when the correction amount R is negative, it is on the ground line. The spacer is attached to each electric wire in a state where the attachment position is shifted by a distance | R | in a direction opposite to the traveling direction of the air vehicle. R = D [pi] ([theta]-[theta] 0 ) / 180 where D: distance between top line and ground line. Angle unit: degree.

【0007】またこの出願の第3の発明の多導体用スペ
ーサの取付方法は、上下に間隔をおいて架線された複数
本の電線にスペーサを取付けるに際して、弛度計算式に
より各スペーサの取付位置における電線のカテナリー角
計算値θ0 を算出しておき、宙乗機を用いてスペーサを
電線に取付ける際に、スペーサの取付位置における電線
のカテナリー角実測値θを測定し、天線に直角な取付位
置に対して、下記計算式による補正量Rが正のときは地
線上の取付位置を距離Rだけ宙乗機進行方向へシフトさ
せた状態で、該補正量Rが負のときは地線上の取付位置
を距離|R|だけ宙乗機進行方向とは反対の方向へシフ
トさせた状態で、スペーサを各電線に取付けることを特
徴とする。 R=2Dsin〔(θ−θ0 )/2〕 但しD:天線〜地線の間隔寸法。
Further, according to a third aspect of the invention of this application, a method for mounting a spacer for a multi-conductor is such that, when the spacer is mounted on a plurality of electric wires which are vertically spaced from each other, a mounting position of each spacer is calculated by a sag calculation formula. Calculate the calculated catenary angle θ 0 of the wire in the above and measure the catenary angle measurement value θ of the wire at the spacer mounting position when mounting the spacer to the wire using the airborne machine, and mount it at a right angle to the top line. With respect to the position, when the correction amount R according to the following calculation formula is positive, the mounting position on the ground line is shifted by the distance R in the traveling direction of the airborne vehicle, and when the correction amount R is negative, it is on the ground line. The spacer is attached to each electric wire in a state where the attachment position is shifted by a distance | R | in a direction opposite to the traveling direction of the air vehicle. R = 2Dsin [(θ−θ 0 ) / 2] where D is the distance between the top line and the ground line.

【0008】またこの出願の第4の発明の多導体用スペ
ーサの取付方法は、上下に間隔をおいて架線された複数
本の電線にスペーサを取付けるに際して、弛度計算式に
より各スペーサの取付位置における電線のカテナリー角
計算値θ0 を算出しておき、宙乗機を用いてスペーサを
電線に取付ける際に、スペーサの取付位置における電線
のカテナリー角実測値θを測定し、天線に直角な取付位
置に対して、下記計算式による補正量Rが正のときは地
線上の取付位置を距離Rだけ宙乗機進行方向へシフトさ
せた状態で、該補正量Rが負のときは地線上の取付位置
を距離|R|だけ宙乗機進行方向とは反対の方向へシフ
トさせた状態で、スペーサを各電線に取付けることを特
徴とする。 R=Dsin(θ−θ0 ) 但しD:天線〜地線の間隔寸法。
The mounting method of the multiconductor spacer according to the fourth invention of this application is such that, when the spacers are mounted on a plurality of electric wires which are vertically spaced apart from each other, a mounting position of each spacer is calculated by a sag calculation formula. Calculate the calculated catenary angle θ 0 of the wire in the above and measure the catenary angle measurement value θ of the wire at the spacer mounting position when mounting the spacer to the wire using the airborne machine, and mount it at a right angle to the top line. With respect to the position, when the correction amount R according to the following calculation formula is positive, the mounting position on the ground line is shifted by the distance R in the traveling direction of the airborne vehicle, and when the correction amount R is negative, it is on the ground line. The spacer is attached to each electric wire in a state where the attachment position is shifted by a distance | R | in a direction opposite to the traveling direction of the air vehicle. R = Dsin (θ−θ 0 ), where D is the distance between the top line and the ground line.

【0009】またこの出願の第5の発明の多導体用スペ
ーサの取付方法は、上下に間隔をおいて架線された複数
本の電線にスペーサを取付けるに際して、弛度計算式に
より各スペーサの取付位置における電線のカテナリー角
計算値θ0 を算出しておき、宙乗機を用いてスペーサを
電線に取付ける際に、スペーサの取付位置における電線
のカテナリー角実測値θを測定し、地線に直角な取付位
置に対して、下記計算式による補正量Rが正のときは天
線上の取付位置を距離Rだけ宙乗機進行方向へシフトさ
せた状態で、該補正量Rが負のときは天線上の取付位置
を距離|R|だけ宙乗機進行方向とは反対の方向へシフ
トさせた状態で、スペーサを各電線に取付けることを特
徴とする。 R=Dtan(θ0 −θ) 但しD:天線〜地線の間隔寸法。
The mounting method for a multiconductor spacer according to the fifth aspect of the present application is such that, when the spacers are mounted on a plurality of electric wires which are vertically spaced at intervals, a mounting position of each spacer is calculated by a sag calculation formula. Calculate the calculated catenary angle θ 0 of the electric wire in, and measure the catenary angle measurement value θ of the electric wire at the mounting position of the spacer at the time of attaching the spacer to the electric wire using the airborne machine. When the correction amount R calculated by the following formula is positive with respect to the mounting position, the mounting position on the skyline is shifted by the distance R in the traveling direction of the airborne vehicle, and when the correction amount R is negative, on the skyline. The spacer is attached to each electric wire in a state in which the mounting position of is shifted by a distance | R | in a direction opposite to the traveling direction of the airborne vehicle. R = Dtan (θ 0 −θ) where D: distance between the sky line and the ground line.

【0010】またこの出願の第6の発明の多導体用スペ
ーサの取付方法は、上下に間隔をおいて架線された複数
本の電線にスペーサを取付けるに際して、弛度計算式に
より各スペーサの取付位置における電線のカテナリー角
計算値θ0 を算出しておき、宙乗機を用いてスペーサを
電線に取付ける際に、スペーサの取付位置における電線
のカテナリー角実測値θを測定し、地線に直角な取付位
置に対して、下記計算式による補正量Rが正のときは天
線上の取付位置を距離Rだけ宙乗機進行方向へシフトさ
せた状態で、該補正量Rが負のときは天線上の取付位置
を距離|R|だけ宙乗機進行方向とは反対の方向へシフ
トさせた状態で、スペーサを各電線に取付けることを特
徴とする。 R=Dπ(θ0 −θ)/180 但しD:天線〜地線の間隔寸法。 角度の単位:度。
The mounting method of the multiconductor spacer according to the sixth invention of the present application is such that, when the spacers are mounted on a plurality of electric wires which are vertically spaced at intervals, a mounting position of each spacer is calculated by a sag calculation formula. Calculate the calculated catenary angle θ 0 of the electric wire in, and measure the catenary angle measurement value θ of the electric wire at the mounting position of the spacer at the time of attaching the spacer to the electric wire using the airborne machine. When the correction amount R calculated by the following formula is positive with respect to the mounting position, the mounting position on the skyline is shifted by the distance R in the traveling direction of the airborne vehicle, and when the correction amount R is negative, on the skyline. The spacer is attached to each electric wire in a state in which the mounting position of is shifted by a distance | R | in a direction opposite to the traveling direction of the airborne vehicle. R = Dπ (θ 0 −θ) / 180 where D is the distance between the sky line and the ground line. Angle unit: degree.

【0011】またこの出願の第7の発明の多導体用スペ
ーサの取付方法は、上下に間隔をおいて架線された複数
本の電線にスペーサを取付けるに際して、弛度計算式に
より各スペーサの取付位置における電線のカテナリー角
計算値θ0 を算出しておき、宙乗機を用いてスペーサを
電線に取付ける際に、スペーサの取付位置における電線
のカテナリー角実測値θを測定し、地線に直角な取付位
置に対して、下記計算式による補正量Rが正のときは天
線上の取付位置を距離Rだけ宙乗機進行方向へシフトさ
せた状態で、該補正量Rが負のときは天線上の取付位置
を距離|R|だけ宙乗機進行方向とは反対の方向へシフ
トさせた状態で、スペーサを各電線に取付けることを特
徴とする。 R=2Dsin〔(θ0 −θ)/2〕 但しD:天線〜地線の間隔寸法。
Further, according to the seventh aspect of the present invention, the spacer for multi-conductors is mounted by mounting the spacers on a plurality of electric wires which are vertically spaced apart from each other by using a sag calculation formula. Calculate the calculated catenary angle θ 0 of the electric wire in, and measure the catenary angle measurement value θ of the electric wire at the mounting position of the spacer at the time of attaching the spacer to the electric wire using the airborne machine. When the correction amount R calculated by the following formula is positive with respect to the mounting position, the mounting position on the skyline is shifted by the distance R in the traveling direction of the airborne vehicle, and when the correction amount R is negative, on the skyline. The spacer is attached to each electric wire in a state in which the mounting position of is shifted by a distance | R | in a direction opposite to the traveling direction of the airborne vehicle. R = 2Dsin [(θ 0 −θ) / 2] where D is the distance between the top line and the ground line.

【0012】またこの出願の第8の発明の多導体用スペ
ーサの取付方法は、上下に間隔をおいて架線された複数
本の電線にスペーサを取付けるに際して、弛度計算式に
より各スペーサの取付位置における電線のカテナリー角
計算値θ0 を算出しておき、宙乗機を用いてスペーサを
電線に取付ける際に、スペーサの取付位置における電線
のカテナリー角実測値θを測定し、地線に直角な取付位
置に対して、下記計算式による補正量Rが正のときは天
線上の取付位置を距離Rだけ宙乗機進行方向へシフトさ
せた状態で、該補正量Rが負のときは天線上の取付位置
を距離|R|だけ宙乗機進行方向とは反対の方向へシフ
トさせた状態で、スペーサを各電線に取付けることを特
徴とする。 R=Dsin(θ0 −θ) 但しD:天線〜地線の間隔寸法。
Further, according to an eighth aspect of the present invention, the spacer for multi-conductors is mounted by mounting the spacers on a plurality of electric wires which are vertically spaced apart from each other by a sag calculation formula. Calculate the calculated catenary angle θ 0 of the electric wire in, and measure the catenary angle measurement value θ of the electric wire at the mounting position of the spacer at the time of attaching the spacer to the electric wire using the airborne machine. When the correction amount R calculated by the following formula is positive with respect to the mounting position, the mounting position on the skyline is shifted by the distance R in the traveling direction of the airborne vehicle, and when the correction amount R is negative, on the skyline. The spacer is attached to each electric wire in a state in which the mounting position of is shifted by a distance | R | in a direction opposite to the traveling direction of the airborne vehicle. R = Dsin (θ 0 −θ) where D is the distance between the top line and the ground line.

【0013】この発明においては、カテナリー角実測値
θおよびカテナリー角計算値θ0 は、宙乗機進行方向側
の角度で、水平線を基準線として下向きの角度を正,上
向きの角度を負とする。
In the present invention, the catenary angle measured value θ and the catenary angle calculated value θ 0 are angles on the airborne vehicle advancing direction side, and the downward angle is positive and the upward angle is negative with the horizontal line as the reference line. .

【0014】第1〜第4の発明においては、地線上の取
付位置だけでなく、中線上の取付位置も、地線上の取付
位置のシフト方向と同方向に(d/D)|R|だけ(但
しd:天線〜中線の側面図における間隔寸法。)シフト
させた状態で、スペーサを中線に取付けるようにすれ
ば、スペーサの各線の取付位置が確実に同一平面上に来
るので、側面から見てスペーサが中折状態となることが
なく、特に好ましい。
In the first to fourth aspects, not only the mounting position on the ground line but also the mounting position on the center line is (d / D) | R | in the same direction as the shift direction of the mounting position on the ground line. (However, d: Space dimension in the side view of the top line to the center line.) If the spacers are mounted on the center line in the shifted state, the mounting positions of the spacer lines will surely be on the same plane. From the viewpoint, the spacer is not particularly folded, which is particularly preferable.

【0015】第5〜第8の発明においては、天線上の取
付位置だけでなく、中線上の取付位置も、天線上の取付
位置のシフト方向と同方向に(d/D)|R|だけ(但
しd:地線〜中線の側面図における間隔寸法。)シフト
させた状態で、スペーサを中線に取付けるようにすれ
ば、スペーサの各線の取付位置が確実に同一平面上に来
るので、側面から見てスペーサが中折状態となることが
なく、特に好ましい。
In the fifth to eighth inventions, not only the mounting position on the skyline but also the mounting position on the center line is (d / D) | R | in the same direction as the shift direction of the mounting position on the skyline. (However, d: distance between the ground line and the center line in the side view.) If the spacers are mounted on the center line in the shifted state, the mounting positions of the lines of the spacer are surely on the same plane. It is particularly preferable because the spacer is not folded in the center when viewed from the side.

【0016】この発明においては、電線のカテナリー角
計算値θ0 の算出時にスペーサの重量を電線の重量に加
算すれば、実際のスペーサ取付状態に近い高精度の計算
値が得られるので好ましい。このスペーサの重量は、各
スペーサ取付位置における集中荷重としてもよいが、ス
ペーサ総重量を電線全長(支持点間距離)で除した分布
荷重として電線の自重に加算すれば、上記分布荷重は電
線自重に対して比較的小さいため充分高精度の計算値が
得られるうえ、計算も容易であるので、特に好ましい。
In the present invention, it is preferable to add the weight of the spacer to the weight of the electric wire when calculating the calculated value of the catenary angle θ 0 of the electric wire, since a highly accurate calculated value close to the actual spacer attachment state can be obtained. The weight of this spacer may be a concentrated load at each spacer mounting position, but if the total weight of the spacer is divided by the total wire length (distance between supporting points) and added to the wire's own weight, the above distributed load will be the wire's own weight. Since it is relatively small, a sufficiently high-precision calculated value can be obtained, and the calculation is easy, which is particularly preferable.

【0017】この発明における電線のカテナリー角計算
値θ0 の算出は、カテナリー式あるいは近似式として放
物線式を用いた、弛度計算式(弛度張力計算式を含む)
によっておこなうことができ、一般的に用いられている
電子計算機による弛度計算プログラムを利用すれば、迅
速・正確に計算ができる。なお上記弛度計算プログラム
中に、電線上の任意の位置(各スペーサ取付位置)にお
けるカテナリー角の計算プログラムを包含していない場
合は、径間の電線最低点を算出し、この最低点から各ス
ペーサ取付点までの水平距離xをもとに、カテナリー式
使用の場合は下記(a)式、放物線式使用の場合は下記
(b)式により、それぞれ各スペーサ取付点におけるカ
テナリー角θ0 を求めればよい。なおこれらの計算にも
電子計算機を使用するのがよい。 tanθ0 =sinh(x/c) ……(a) tanθ0 =(W/T)・x ……(b) 但しc=T/W T=水平張力 W=電線単位重量
In the present invention, the calculated value of the catenary angle θ 0 of the electric wire is calculated by using the catenary formula or the parabolic formula as an approximate formula (including the sag tension formula).
It is possible to perform the calculation by using a commonly-used electronic computer sag calculation program, and the calculation can be performed quickly and accurately. If the program for calculating the degree of sag does not include the program for calculating the catenary angle at any position on the wire (each spacer mounting position), calculate the lowest point of the wire between the spans and Based on the horizontal distance x to the spacer mounting point, the catenary angle θ 0 at each spacer mounting point can be calculated by the following formula (a) when using the catenary system and by the following formula (b) when using the parabolic system. Good. An electronic calculator should be used for these calculations. tan θ 0 = sinh (x / c) (a) tan θ 0 = (W / T) · x (b) where c = T / WT T = horizontal tension W = unit weight of wire

【0018】[0018]

【作用】第1の発明における下記(1)式による補正量
Rのシフトにより、宙乗機を降ろした後においてスペー
サが各電線に対してほぼ直角に取付けられた状態となる
理由を、図1により説明する。 R=Dtan(θ−θ0 ) ……(1)
The reason why the spacer is attached at a substantially right angle to each electric wire after the spacecraft is lowered by shifting the correction amount R according to the following formula (1) in the first invention is shown in FIG. Will be described. R = Dtan (θ−θ 0 ) ... (1)

【0019】図1は、中線の図示を省略した6導体の送
電線路の側面図であり、11は宙乗機が乗っていない自
由懸架状態の天線、13は同状態の地線を示す。また1
1aは、スペーサ2を取付位置Pn に取付けるために取
付位置Pn の近傍に宙乗機(図示しない)が停止した状
態の天線、13aは同状態の地線を示す。
FIG. 1 is a side view of a 6-conductor power transmission line with the middle line omitted, where 11 is a skyline in a free suspension state on which an airborne vehicle is not mounted, and 13 is a ground line in the same state. Also one
Reference numeral 1a denotes a skyline in a state where an air vehicle (not shown) is stopped near the mounting position Pn for mounting the spacer 2 at the mounting position Pn, and 13a denotes a ground line in the same state.

【0020】宙乗機の乗っていない状態の天線11(お
よび地線13)のカテナリー計算値はθ0 であり、これ
らの電線に対して直角に取付けられたスペーサ2は、電
線の支持点間隔に比べて天線〜地線の間隔寸法Dが充分
小さいため、宙乗機が乗ることによってカテナリー実測
値がθとなった天線11a(および地線13a)と共に
鎖線で示すスペーサ2bの位置までほぼ垂直に下降し、
宙乗機が降ろされると2で示す位置までほぼ垂直に上昇
する。
The catenary calculation value of the ceiling line 11 (and the ground line 13) in the state where the airborne vehicle is not mounted is θ 0 , and the spacer 2 mounted at right angles to these electric wires is the spacing between the supporting points of the electric wires. Since the distance dimension D between the sky line and the ground line is sufficiently small compared to the above, the space liner is almost perpendicular to the position of the spacer 2b indicated by the chain line together with the sky line 11a (and the ground line 13a) whose actual catenary value was θ when the airborne vehicle got on. Down to
When the air vehicle is lowered, it will rise almost vertically to the position indicated by 2.

【0021】この宙乗機が乗った状態の天線11a(お
よび地線13a)に直角に取付けたスペーサ2aと、ス
ペーサ2bとのなす角αは、スペーサ2とスペーサ2a
のなす角、すなわち〔θ−θ0 〕に等しく(スペーサ2
と2bは平行であるため)、三角形△Pn1Pn3Pb は直
角三角形となるので、スペーサ2aの地線13aに対す
る取付位置Pn3から、Dtan(θ−θ0 )、すなわち
(1)式で得られる補正量Rだけ、矢印Xで示す宙乗機
の進行方向側へシフトさせた取付位置Pb にスペーサ2
aの下端部を取付ければ、この取付状態のスペーサは前
記スペーサ2bとほぼ一致するので、宙乗機を降ろせば
スペーサ2の位置、すなわち天線11(および地線1
3)に対してほぼ直角な取付状態になるのである。
The angle α formed by the spacer 2a and the spacer 2b mounted at a right angle to the ceiling line 11a (and the ground line 13a) on which this airborne vehicle is mounted is defined by the spacer 2 and the spacer 2a.
Angle, i.e. equal to [theta-theta 0] (spacer 2
And 2b are parallel to each other), the triangle ΔPn 1 Pn 3 Pb is a right triangle, so from the mounting position Pn 3 of the spacer 2a with respect to the ground line 13a, Dtan (θ-θ 0 ), that is, the equation (1) The spacer 2 is attached to the mounting position Pb shifted by the obtained correction amount R in the traveling direction of the air vehicle as indicated by the arrow X.
When the lower end of a is attached, the spacer in this attached state substantially coincides with the spacer 2b. Therefore, if the airborne vehicle is lowered, the position of the spacer 2, that is, the top line 11 (and the ground line 1).
The mounting state is almost perpendicular to 3).

【0022】なお図1におけるPn1Pb の長さ(点Pn1
とPb の間の直線長さ)は、厳密にはDと等しくないた
め、スペーサ2aの下端部を上記シフト位置に取付ける
と、取付位置は点Pb の位置より若干上の位置(後述の
図2における点Pc の位置)に来るが、角αは最大でも
5度程度であるので、点Pb の位置ずれ量は無視し得る
程度であって(sec5゜=1.0038)、上記の図
1にもとづく(1)式の補正量算出には殆ど影響しない
のである。
The length of Pn 1 Pb in FIG. 1 (point Pn 1
Strictly speaking, the linear length between Pb and Pb is not equal to D. Therefore, when the lower end of the spacer 2a is mounted at the above shift position, the mounting position is slightly above the point Pb (see FIG. However, since the angle α is about 5 degrees at the maximum, the amount of displacement of the point Pb is negligible (sec 5 ° = 1.0038), and the above-mentioned FIG. It has almost no effect on the calculation of the correction amount of the basic equation (1).

【0023】次に第2〜第4の発明における下記(2)
〜(4)式による補正量Rのシフトにより、宙乗機を降
ろした後においてスペーサが各電線に対してほぼ直角に
取付けられた状態となる理由を、図2により説明する。
なお(2)式におけるθおよびθ0 の単位は度であり、
π(θ−θ0 )/180は、(θ−θ0 )をラジアン
(弧度)に変換したものである。 R=Dπ(θ−θ0 )/180 ……(2) R=2Dsin〔(θ−θ0 )/2〕……(3) R=Dsin(θ−θ0 ) ……(4)
Next, the following (2) in the second to fourth inventions is given.
With reference to FIG. 2, the reason why the spacers are attached at substantially right angles to the respective electric wires after the airborne vehicle is lowered by shifting the correction amount R according to the equations (4) will be described.
The unit of θ and θ 0 in the equation (2) is degree,
π (θ−θ 0 ) / 180 is a conversion of (θ−θ 0 ) to radians. R = Dπ (θ−θ 0 ) / 180 (2) R = 2D sin [(θ−θ 0 ) / 2] (3) R = D sin (θ−θ 0 ) (4)

【0024】前述のように角α(=θ−θ0 )は最大で
も5度程度であるが、図2では説明の便宜上この角αを
図1よりもさらに大きく図示してあり、また図1と同一
部分および同一寸法には、同一符号を付して図示してあ
る。図中、Pn3Pb の長さは前記のように(1)式のR
に該当するものであり、またPn1を中心とし半径Dの円
(破線で図示)上の円弧Pn3Pc の弧長が(2)式の
R、同円のPn3Pc の弦の長さが(3)式のR、Pn3
d の長さが(4)式のRに該当することは、各三角形お
よび弧度の関係から明らかである(但しα=θ−
θ0 )。
As described above, the angle α (= θ−θ 0 ) is about 5 degrees at the maximum, but in FIG. 2, this angle α is shown to be larger than that in FIG. The same portions and the same dimensions as those of are denoted by the same reference numerals. In the figure, the length of Pn 3 Pb is R of the formula (1) as described above.
And the arc length of an arc Pn 3 Pc on a circle centered on Pn 1 and having a radius D (illustrated by a broken line) is R in the equation (2), and the length of the chord of Pn 3 Pc of the same circle. Is R, Pn 3 P in the equation (3)
It is clear from the relationship between each triangle and the radian that the length of d corresponds to R in equation (4) (where α = θ−
θ 0 ).

【0025】そして前記のように角αは最大でも5度程
度であるので、この角度範囲内では近似的に、 tanα=απ/180=2sin(α/2) =sinα という関係が成立つ。因みに、tan5゜:5π/18
0:2sin2.5゜:sin5゜=1.0:0.99
75:0.9971:0.9662であって、各値の
差、従って(1)〜(4)式のRの差は最大(tan5
゜とsin5゜の差)で0.4%にすぎない。従って、
角αが最大でも5度程度である実際のスペーサ取付条件
においては、(1)式のかわりに(2)〜(4)式のい
ずれの式による補正量Rを用いたシフトによっても、第
1の発明と同様に、各電線に対してほぼ直角なスペーサ
の取付状態が得られるのである。
As described above, since the angle α is about 5 degrees at the maximum, the relationship of tan α = απ / 180 = 2 sin (α / 2) = sin α approximately holds within this angle range. By the way, tan5 °: 5π / 18
0: 2 sin 2.5 °: sin 5 ° = 1.0: 0.99
75: 0.9971: 0.9662, and the difference between the values, and hence the difference between R in the expressions (1) to (4) is the maximum (tan5
(Difference between ° and sin 5 °) is only 0.4%. Therefore,
Under the actual spacer mounting condition in which the angle α is about 5 degrees at the maximum, the first amount may be obtained by shifting the correction amount R by any of the expressions (2) to (4) instead of the expression (1). In the same manner as in the above invention, it is possible to obtain the mounting state of the spacers which are substantially perpendicular to each electric wire.

【0026】また前記第1の発明において、図1におけ
る地線13aへの取付位置Pn3を変えずに、天線11a
への取付位置Pn1を前記(1)式と同じ値だけ、宙乗機
の進行方向とは反対の方向にシフトすれば前記と同様な
関係により宙乗機を降ろしたとき、スペーサ2aは天線
11(および地線13)に対してほぼ直角な取付状態と
なる。このシフトは矢印X方向と反対なので、シフト量
Rは(1)式の右辺にマイナスを付した値に等しく、こ
れを変形すれば、〔θ−θ0 〕は±90度未満なので R=−Dtan(θ−θ0 ) =Dtan(θ0 −θ) ……(5) となり、第5の発明におけるシフト量計算式となるので
ある。なおシフト後は、図1に破線で示すスペーサ2c
の状態となり、スペーサ2bに対して平行に、かつ距離
|R|だけ宙乗機の進行方向とは反対の位置に取付けら
れる。
In the first aspect of the invention, the ceiling line 11a is maintained without changing the mounting position Pn 3 on the ground line 13a in FIG.
If the mounting position Pn 1 to the space is shifted by the same value as in the formula (1) in the direction opposite to the traveling direction of the airborne vehicle, when the airborne vehicle is lowered due to the same relationship as described above, the spacer 2a is placed on the skyline. 11 (and the ground wire 13) is almost perpendicular to the mounting state. Since this shift is opposite to the direction of the arrow X, the shift amount R is equal to the value obtained by adding a minus to the right side of the equation (1), and if this is transformed, [θ-θ 0 ] is less than ± 90 degrees, so R =- Dtan (θ−θ 0 ) = Dtan (θ 0 −θ) (5), which is the shift amount calculation formula in the fifth aspect of the invention. After the shift, the spacer 2c shown by the broken line in FIG.
In this state, the spacer 2b is mounted parallel to the spacer 2b at a position | R | opposite to the traveling direction of the air vehicle.

【0027】また同様に前記第2〜第4の発明におい
て、地線13aへの取付位置Pn3を変えずに、天線11
aへの取付位置Pn1を前記(2)〜(4)式と同じ値だ
け、宙乗機の進行方向とは反対の方向にシフトしても、
前記第5の発明と同様なスペーサの取付状態が得られ、
前記(5)式の場合と同様に前記(2)〜(4)式の右
辺にマイナスを付し、変形することにより、 R=Dπ(θ0 −θ)/180 ……(6) R=2Dsin〔(θ0 −θ)/2〕……(7) R=Dsin(θ0 −θ) ……(8) という第6〜第8の発明のシフト量計算式が得られるの
である。そしてこのシフト後のスペーサは、図1のスペ
ーサ2cとほぼ同位置に取付けられるのである。
Similarly, in the second to fourth inventions, the ceiling line 11 is not changed while the mounting position Pn 3 to the ground line 13a is not changed.
Even if the mounting position Pn 1 to a is shifted by the same value as in the formulas (2) to (4) in the direction opposite to the traveling direction of the airborne vehicle,
A spacer attachment state similar to that of the fifth invention is obtained,
As in the case of the equation (5), by adding a minus to the right side of the equations (2) to (4) and transforming, R = Dπ (θ 0 −θ) / 180 (6) R = 2Dsin [(θ 0 −θ) / 2] (7) R = Dsin (θ 0 −θ) (8) The shift amount calculation formulas of the sixth to eighth inventions are obtained. Then, the spacer after the shift is attached at substantially the same position as the spacer 2c in FIG.

【0028】以上の説明における図1および図2は宙乗
機の進行方向に向って電線が前下りの場合を示し、数式
上、角度θおよびθ0 を水平線hを基準線として下向き
を正とすることから、〔θ−θ0 〕は正、〔θ0 −θ〕
は負となり、前記(1)〜(4)式の補正量Rは正、
(5)〜(8)式の補正量Rは負となって、前記各シフ
ト方向と一致する。また宙乗機の進行方向に向って電線
が前上りの場合は、図1において宙乗機進行方向Xおよ
び水平線hを右向きとした場合に相当し、宙乗機進行方
向に対するシフト方向を前記各場合の反対方向とするこ
とにより、前記各場合と同じスペーサ取付状態が得られ
るものである。そして数式上、角度θおよびθ0 を水平
線hを基準線として上向きを負とすることから、この前
上りの場合は〔θ−θ0 〕は負、〔θ0 −θ〕は正とな
り、前記(1)〜(4)式の補正量Rは負、(5)〜
(8)式の補正量Rは正となって、上記シフト方向(前
下りの場合の反対方向)と一致する。
The above Figures 1 and 2 in the description of the shows the case wires before down toward the traveling direction of the air-ride machine, a positive downward on formulas, the angle theta and theta 0 horizontal line h as the reference line Therefore, [θ-θ 0 ] is positive, [θ 0- θ]
Is negative, and the correction amount R in the equations (1) to (4) is positive,
The correction amount R in the equations (5) to (8) becomes negative and coincides with each shift direction. Further, the case where the electric wire goes up in the traveling direction of the airborne vehicle corresponds to the case where the airborne vehicle traveling direction X and the horizontal line h are set to the right in FIG. By setting the direction opposite to that of the case, the same spacer attachment state as in each of the above cases can be obtained. Then, in the mathematical expression, the angles θ and θ 0 are negative with the horizontal line h as a reference line, and therefore, in the case of the previous upward movement, [θ−θ 0 ] is negative and [θ 0 −θ] is positive, The correction amount R in equations (1) to (4) is negative, and (5) to
The correction amount R in the equation (8) becomes positive and coincides with the shift direction (the opposite direction to the case of the forward downhill).

【0029】以上の作用の説明においては、中線につい
ての説明は省略したが、スペーサの剛性が大きい場合
は、天線と地線の取付位置を決めてその位置でスペーサ
を取付ければ、中線取付用のクランプ具22(図6参
照)は自動的に位置が決まるので、天線と地線のあとで
そのまま中線への取付をおこなえばよい。またスペーサ
の剛性が比較的小さく、かつ開放状態のクランプ具22
の電線に対する摺動摩擦力が大きい場合等は、前記各式
による地線または天線の取付位置のシフトとともに、中
線の取付位置のシフトもおこなう方がよい。このときの
中線の補正量(シフト量)は、前記図1および図2にお
いて中線取付位置も直線2a〜2c上にあることから、
取付位置のシフトをおこなわない天線(請求項1〜4の
場合)または地線(請求項5〜8の場合)から中線まで
の側面図における線間隔をd(6導体の場合、図4参
照)とすると、前記各式におけるDの代りにdを用いた
値、すなわち(d/D)×Rとなる。従って天線または
地線に直角な取付位置に対して、地線または天線上の取
付位置のシフト方向と同方向に(d/D)|R|だけ中
線上の取付位置をシフトさせた状態でスペーサを中線に
取付ければ、1つのスペーサの天線、中線、地線の各取
付位置は側面から見て一直線上に並ぶため、スペーサは
中折状態とならず、良好な取付外観が得られるのであ
る。
In the above description of the operation, the description of the middle wire is omitted. However, if the spacer has a high rigidity, if the attachment position of the top line and the ground line is determined and the spacer is attached at that position, the middle line is attached. Since the position of the attachment clamp 22 (see FIG. 6) is automatically determined, the attachment to the center line may be performed as it is after the top line and the ground line. Further, the rigidity of the spacer is relatively small and the clamp tool 22 in the open state is used.
When the sliding frictional force with respect to the electric wire is large, it is preferable to shift the mounting position of the ground wire or the top wire according to the above equations as well as the mounting position of the middle wire. The correction amount (shift amount) of the middle line at this time is that the middle line mounting position is also on the straight lines 2a to 2c in FIGS. 1 and 2,
The line spacing in the side view from the top line (in the case of claims 1 to 4) or the ground line (in the case of claims 5 to 8) to the center line that does not shift the mounting position is d (in the case of 6 conductors, refer to FIG. 4). ), A value in which d is used instead of D in the above equations, that is, (d / D) × R. Therefore, with respect to the mounting position perpendicular to the top line or the ground line, the spacer with the mounting position on the midline shifted by (d / D) | R | in the same direction as the shift position of the mounting position on the ground line or the top line. If is attached to the center line, the top line, middle line, and ground line of one spacer are aligned on a straight line when viewed from the side, so the spacer does not fold and a good mounting appearance can be obtained. Of.

【0030】[0030]

【発明の実施の形態】以下図3〜図6により、第1の発
明の一具体例を説明する。この具体例では、送電線路の
一部を示す図2(但し電線は単線図示)における鉄塔
3,4間に支持された図5に示す6本の電線10すなわ
ち、各2本の天線11、中線12、および地線13に、
7個のスペーサ2の取付をおこなう。P1 〜P7 は第1
〜第7スペーサの取付位置を示す。各電線の単位重量は
2.614Kg/m、天線11と地線13の間隔寸法D
は1386mmであり、この電線10は図2に示すよう
に、径間長S=337.45m、支持点高低差H=1
2.54mの鉄塔3,4間に架線され、鉄塔との接続は
耐張がいし装置5(長さ8.935m、重量2083K
g)を介しておこなわれている。6はジャンパである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A specific example of the first invention will be described below with reference to FIGS. In this specific example, the six electric wires 10 shown in FIG. 5 supported between the steel towers 3 and 4 in FIG. 2 (however, the electric wire is shown as a single wire) showing a part of the power transmission line, that is, two heaven lines 11 each, On line 12 and ground line 13,
Attach the seven spacers 2. P 1 to P 7 are the first
~ Shows the mounting position of the seventh spacer. The unit weight of each wire is 2.614 Kg / m, and the space dimension D between the top wire 11 and the ground wire 13
Is 1386 mm, and the electric wire 10 has a span length S = 337.45 m and a supporting point height difference H = 1 as shown in FIG.
An overhead wire is installed between the 2.54 m steel towers 3 and 4, and the connection with the steel tower is a tension insulator device 5 (length 8.935 m, weight 2083 K).
g). 6 is a jumper.

【0031】鉄塔3側から順次取付をおこなう第1〜第
7スペーサ(取付位置P1 〜P7 )の電線に沿ったスペ
ーサ間隔(但し第1スペーサは碍子先端からの間隔)
は、表1に示す通りであり、この各スペーサ位置におけ
るカテナリー角計算値θ0 の計算結果は同表に示す通り
である。このカテナリー角計算値θ0 の計算は、カテナ
リー式にもとづいた弛度計算プログラムを利用して電子
計算機によりおこなったが、このときスペーサ2の重量
(32Kg×7個)を径間長×電線本数(6)で除して
0.111Kg/mだけ電線重量に加算して計算をおこ
なった。なお表1においてスペーサ間隔の単位はm、カ
テナリー角の単位は度であり、カテナリー角θ0 の値は
小数点第3位を四捨五入してある。
Spacer spacing along the wires of the first to seventh spacers (mounting positions P 1 to P 7 ) that are sequentially mounted from the steel tower 3 side (however, the first spacer is the distance from the tip of the insulator)
Is as shown in Table 1, and the calculation result of the calculated catenary angle θ 0 at each spacer position is as shown in the same table. The calculation of the calculated value of the catenary angle θ 0 was performed by an electronic calculator using a sag calculation program based on the catenary formula. At this time, the weight of the spacer 2 (32 kg × 7 pieces) was calculated as the span length × the number of electric wires. The calculation was performed by dividing by (6) and adding 0.111 Kg / m to the wire weight. In Table 1, the unit of the spacer interval is m, the unit of the catenary angle is degree, and the value of the catenary angle θ 0 is rounded off to two decimal places.

【0032】[0032]

【表1】 [Table 1]

【0033】またこの具体例では前記(1)式による計
算を、あらかじめ各スペーサ番号(位置)ごとにカテナ
リー角実測値θから補正量Rを直読できる数表を作成し
てこれを使用した。この数表は表2および表3に示す通
りで、先ず宙乗機上の作業員による角度の測定およびシ
フト量(補正量)の測長の精度を考慮し、角度は0.5
度、シフト量は1cmを最小単位とし、0.5度単位で丸
めた前記カテナリー角計算値θ0 を補正量0cmの基準角
度として、この基準角度の前後の0.5度とびの各カテ
ナリー角実測値θに対して、前記(1)式による計算を
おこない(たとえばR=Dtan1°=24mm)、これ
を1cmごとに丸めて(たとえば2.4→2cm)、数表化
したものである。
Further, in this specific example, the calculation by the above equation (1) was used by preparing a numerical table in which the correction amount R can be directly read from the actual catenary angle measurement value θ for each spacer number (position). This table is as shown in Tables 2 and 3. First, the angle is set to 0.5 in consideration of the accuracy of the angle measurement and the shift amount (correction amount) measurement by the worker on the air vehicle.
The degree and shift amount are 1 cm as the minimum unit, and the calculated value of the catenary angle θ 0 rounded in units of 0.5 degree is used as the reference angle of the correction amount of 0 cm, and each catenary angle of 0.5 degree step before and after this reference angle. The measured value θ is calculated according to the equation (1) (for example, R = Dtan1 ° = 24 mm), rounded for every 1 cm (for example, 2.4 → 2 cm), and tabulated.

【0034】[0034]

【表2】 [Table 2]

【0035】[0035]

【表3】 [Table 3]

【0036】次に上記数表等を用いた実際のスペーサ2
の取付方法を、第1スペーサを例にとって図4により説
明する。電線10上に載せられ作業員(図示しない)が
搭乗した宙乗機7を運転して、第1スペーサ2の取付位
置P1 に到達したら宙乗機7を停止させる。この位置ぎ
めは、本具体例では一方の中線12aに係合する回転ロ
ーラ式の距離測定機により、中線12aのクランプ先
(耐張がいし装置5の電線把持部)からの距離を測定し
ておこなった。そしてこの取付位置において、先ず直角
定規8を用いて各電線に天線11aに対して直角な取付
位置P12,P13をマーキングする。
Next, an actual spacer 2 using the above numerical table and the like
4 will be described by taking the first spacer as an example. The airborne machine 7 placed on the electric wire 10 and operated by an operator (not shown) operates the airborne machine 7, and when the mounting position P 1 of the first spacer 2 is reached, the airborne machine 7 is stopped. In this specific example, this positioning is performed by measuring the distance from the clamp tip of the middle wire 12a (the wire gripping portion of the tension insulator device 5) with a rotating roller type distance measuring device that engages with the one middle wire 12a. It was done. Then, at this mounting position, first, using a right-angled ruler 8, each electric wire is marked with mounting positions P 12 and P 13 that are perpendicular to the ceiling wire 11a.

【0037】次に第1スペーサ取付位置P1 における水
平線hに対するカテナリー実測角θの測定を、角度測定
器(傾斜計)9により中線12a上でおこなったとこ
ろ、9度であったので、表2から補正量R=10cmを読
取り、地線13a上の取付位置を位置P13からR=10
cmだけ宙乗機進行方向(矢印X方向)にシフトさせた取
付位置Pb をマーキングし、また側面図(図4)におけ
る天線11a〜中線12aの間隔dは前記Dの1/2な
ので、中線12aの取付位置としては上記Rの1/2
(5cm)だけシフトさせた位置Pe をマーキングし、ス
ペーサ2を取付位置P1 ,Pe ,Pb でそれぞれ電線に
クランプして、第1スペーサの取付を完了した。
Next, when the actual measurement angle θ of the catenary with respect to the horizontal line h at the first spacer mounting position P 1 was measured by the angle measuring device (inclinometer) 9 on the center line 12a, it was 9 degrees. The correction amount R = 10 cm is read from 2 and the mounting position on the ground wire 13a is read from the position P 13 to R = 10.
The mounting position Pb shifted by cm in the air travel direction (arrow X direction) is marked, and the distance d between the top line 11a and the center line 12a in the side view (FIG. 4) is 1/2 of the above D. The mounting position of the wire 12a is 1/2 of the above R
The position Pe shifted by (5 cm) was marked, and the spacer 2 was clamped to the wires at the mounting positions P 1 , Pe and Pb, respectively, to complete the mounting of the first spacer.

【0038】以下同様にして他の位置のスペーサの取付
も表2,3を用いて迅速容易におこなうことができる。
具体的には、第2〜第7スペーサの取付位置P2 〜P7
におけるカテナリー角実測値θ(度)は、表1に示す通
りであったので、表2,3を用いて第1スペーサと同様
な手順で各スペーサの取付を順次おこなった。なお表中
アンダーラインを付した数値が、この実施例の各スペー
サのカテナリー角実測値θであり、これに対応する上欄
の補正量Rの値によってシフトをおこなった。全スペー
サ取付後、宙乗機7を降ろし地上から観察したところ、
第1スペーサの例を示す図5のように、各スペーサ2と
電線10のなす角はほぼ直角であった。
Similarly, the attachment of spacers at other positions can be performed quickly and easily by using Tables 2 and 3.
Specifically, the mounting positions P 2 to P 7 of the second to seventh spacers
Since the actually measured catenary angle θ (degree) in Table 1 was as shown in Table 1, the spacers were sequentially attached using Tables 2 and 3 in the same procedure as the first spacer. The underlined numerical values in the table are the catenary angle measured values θ of the spacers of this embodiment, and the shift was performed according to the value of the correction amount R in the upper column corresponding thereto. After mounting all the spacers, the airborne aircraft 7 was lowered and observed from the ground.
As shown in FIG. 5 showing an example of the first spacers, the angle formed by each spacer 2 and the electric wire 10 was substantially a right angle.

【0039】次に上記具体例において、(1)式のかわ
りに第2〜第4発明の前記(2)〜(4)式を用い、他
は上記具体例と同条件(鉄塔,電線,スペーサの諸元お
よび取付位置等)で上記具体例と同様な補正量Rを直読
できる数表を作成したところ、それぞれ上記表2,3と
全く同じ数表が得られた。従って第2〜第4発明の具体
例においても、上記表2および表3を用いて上記具体例
と同内容のスペーサ取付作業をおこなうことになる。
Next, in the above concrete example, the above formulas (2) to (4) of the second to fourth inventions are used in place of the formula (1), and the other conditions are the same as those of the above concrete examples (steel tower, electric wire, spacer). The specifications and mounting positions) of the above example were used to prepare a numerical table in which the correction amount R similar to the above specific example can be directly read, and the same numerical tables as those in Tables 2 and 3 were obtained. Therefore, also in the concrete examples of the second to fourth inventions, the spacer mounting work having the same contents as in the concrete example is carried out using Tables 2 and 3 described above.

【0040】また上記具体例では天線11の取付位置は
シフトさせずに地線13の取付位置をシフトさせたが、
第5〜第8発明においてはこのかわりに地線13の取付
位置をシフトさせずに天線11の取付位置を反対方向に
シフトさせればよい。そして上記具体例と同様な補正量
Rを直読できる数表を上記具体例と同条件の場合に用い
るときは、上記表2および表3の最上欄の補正量Rの符
号を正負逆に(表2:−10cm〜0cm,表3:0cm〜1
0cm)しただけで、表中の他の数値等は全く同じものを
用いることになる。
In the above specific example, the mounting position of the top wire 11 is not shifted, but the mounting position of the ground wire 13 is shifted.
In the fifth to eighth inventions, instead of shifting the mounting position of the ground wire 13, the mounting position of the skyline 11 may be shifted in the opposite direction. When a numerical table that can directly read the correction amount R similar to the above-mentioned specific example is used under the same conditions as in the above-mentioned specific example, the signs of the correction amount R in the uppermost columns of the above-mentioned Tables 2 and 3 are reversed (in the table). 2: -10 cm to 0 cm, Table 3: 0 cm to 1
0 cm), the other values in the table will be exactly the same.

【0041】この発明は上記具体例に限定されるもので
はなく、たとえば補正量Rの算出値は、上記の数表以外
の形式の数表にあらわして使用してもよい。またスペー
サ2の剛性が大きい場合などは、中線位置における(1
/2)Rのシフト量のマーキングは、省略してもよい。
なお前記(1)〜(8)式のうち、(2)式および
(6)式以外の式におけるカテナリー角計算値θ0 およ
び同実測値θの単位としては、前記の度のかわりに、ラ
ジアンを用いることも(特に実測の場合に一般的ではな
く採用しにくいが)可能である。第2および第6発明に
おいて上記θ0 およびθの単位としてラジアンを用いる
場合は、(2)式のかわりに下記(2′)式を、(6)
式のかわりに下記(6′)式を、それぞれ用いればよ
い。 R=D(θ−θ0 ) ……(2′) R=D(θ0 −θ) ……(6′)
The present invention is not limited to the above specific example, and for example, the calculated value of the correction amount R may be represented by a numerical table in a format other than the above numerical table. If the spacer 2 has a large rigidity, etc., (1
The marking of the shift amount of / 2) R may be omitted.
The units of the catenary angle calculation value θ 0 and the actual measurement value θ in the formulas (1) to (8) other than the formulas (2) and (6) are radians instead of the degrees. Can be used (especially in the case of actual measurement, which is not common and difficult to adopt). When radians are used as the units of θ 0 and θ in the second and sixth inventions, the following formula (2 ′) is replaced by the formula (6) instead of the formula (2).
The following formula (6 ') may be used instead of the formula. R = D (θ−θ 0 ) ... (2 ′) R = D (θ 0 −θ) ...... (6 ′)

【0042】またこの発明は、たとえば8導体の場合な
ど、6導体以外の多導体用スペーサの取付方法にも適用
できるものである。
The present invention can also be applied to a method of mounting a multi-conductor spacer other than 6 conductors, for example, in the case of 8 conductors.

【0043】[0043]

【発明の効果】以上説明したようにこの発明によれば、
宙乗機によりスペーサを電線に取付ける際に、地線また
は天線上のスペーサの取付位置を所定量ずらせる(シフ
トさせる)という簡単な作業によって、宙乗機を降ろし
た状態でスペーサが電線に対してほぼ直角となる取付状
態が得られ、その後の素乗りによる修正作業は不要とな
り、人手がかからず架線工事の工期が短縮化され、安全
性向上にも寄与するものである。
As described above, according to the present invention,
When the spacer is attached to the wire by the airborne machine, the spacer can be attached to the wire with the airborne machine down by a simple work of shifting (shifting) the mounting position of the spacer on the ground line or the top line. The resulting installation state is almost right angle, and the subsequent repair work by bare riding is not necessary, and the work period for overhead line construction is shortened with no manual labor, contributing to improved safety.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明における宙乗機の有無により変化する
電線およびスペーサ位置を示す側面図である。
FIG. 1 is a side view showing the positions of electric wires and spacers that change depending on the presence or absence of an air vehicle in the present invention.

【図2】この発明における各計算式による補正量Rの関
係を示す宙乗機有のときの電線およびスペーサの側面図
である。
FIG. 2 is a side view of the electric wire and the spacer when the airborne structure is provided, showing the relationship of the correction amount R by each calculation formula in the present invention.

【図3】この発明の一具体例を示す電線の支持線図であ
る。
FIG. 3 is a support line diagram of an electric wire showing an example of the present invention.

【図4】図3における第1スペーサの取付方法を示す側
面図である。
FIG. 4 is a side view showing a method of mounting the first spacer in FIG.

【図5】図4におけるスペーサ取付後の側面図である。5 is a side view after mounting the spacer in FIG. 4. FIG.

【図6】図5のA−A線断面図である。FIG. 6 is a sectional view taken along line AA of FIG. 5;

【符号の説明】[Explanation of symbols]

2…スペーサ、2a…スペーサ、2b…スペーサ、3…
鉄塔、4…鉄塔、7…宙乗機、10…電線、11…天
線、11a…天線、12…中線、12a…中線、13…
地線、13a…地線。
2 ... spacer, 2a ... spacer, 2b ... spacer, 3 ...
Steel tower, 4 ... Steel tower, 7 ... Aircraft, 10 ... Electric wire, 11 ... Skyline, 11a ... Skyline, 12 ... Midline, 12a ... Midline, 13 ...
Ground line, 13a ... Ground line.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡邉 伸一 名古屋市港区千年3丁目1番32号 株式会 社トーエネック本店別館内 (72)発明者 大堀 順司 名古屋市港区千年3丁目1番32号 株式会 社トーエネック本店別館内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Shinichi Watanabe, Inventor Shinichi 3-chome, 1-32 Minato-ku, Nagoya City Toenec Main Store Annex Building (72) Inventor Junji Ohori 3-chome, 1-3-2 Minato-ku, Nagoya Toeneck head office annex in stock company

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 上下に間隔をおいて架線された複数本の
電線にスペーサを取付けるに際して、弛度計算式により
各スペーサの取付位置における電線のカテナリー角計算
値θ0 を算出しておき、宙乗機を用いてスペーサを電線
に取付ける際に、スペーサの取付位置における電線のカ
テナリー角実測値θを測定し、天線に直角な取付位置に
対して、下記計算式による補正量Rが正のときは地線上
の取付位置を距離Rだけ宙乗機進行方向へシフトさせた
状態で、該補正量Rが負のときは地線上の取付位置を距
離|R|だけ宙乗機進行方向とは反対の方向へシフトさ
せた状態で、スペーサを各電線に取付けることを特徴と
する多導体用スペーサの取付方法。 R=Dtan(θ−θ0 ) 但しD:天線〜地線の間隔寸法。 θ,θ0 :宙乗機進行方向側の角度で、水平線を基準線
として下向きの角度を正,上向きの角度を負とする。
1. When mounting a spacer on a plurality of electric wires that are vertically suspended at intervals, a calculated catenary angle θ 0 of the electric wire at the mounting position of each spacer is calculated by a sag calculation formula, When the spacer is attached to the electric wire using a rider, the actual measurement value θ of the electric wire's catenary angle at the spacer installation position is measured, and the correction amount R calculated by the following formula is positive with respect to the installation position perpendicular to the top line. Is a state in which the mounting position on the ground line is shifted in the traveling direction by the distance R, and when the correction amount R is negative, the mounting position on the ground line is opposite by the distance | R | A method for mounting a multi-conductor spacer, characterized in that the spacer is mounted on each electric wire while being shifted in the direction of. R = Dtan (θ−θ 0 ), where D is the distance between the top line and the ground line. θ, θ 0 : Angles on the traveling direction of the airborne vehicle, where the downward angle is positive and the upward angle is negative with the horizontal line as the reference line.
【請求項2】 上下に間隔をおいて架線された複数本の
電線にスペーサを取付けるに際して、弛度計算式により
各スペーサの取付位置における電線のカテナリー角計算
値θ0 を算出しておき、宙乗機を用いてスペーサを電線
に取付ける際に、スペーサの取付位置における電線のカ
テナリー角実測値θを測定し、天線に直角な取付位置に
対して、下記計算式による補正量Rが正のときは地線上
の取付位置を距離Rだけ宙乗機進行方向へシフトさせた
状態で、該補正量Rが負のときは地線上の取付位置を距
離|R|だけ宙乗機進行方向とは反対の方向へシフトさ
せた状態で、スペーサを各電線に取付けることを特徴と
する多導体用スペーサの取付方法。 R=Dπ(θ−θ0 )/180 但しD:天線〜地線の間隔寸法。 θ,θ0 :宙乗機進行方向側の角度(単位:度)で、水
平線を基準線として下向きの角度を正,上向きの角度を
負とする。
2. When mounting a spacer on a plurality of electric wires that are vertically suspended at intervals, a calculated catenary angle θ 0 of the electric wire at each spacer mounting position is calculated by a sag calculation formula, When the spacer is attached to the electric wire using a rider, the actual measurement value θ of the electric wire's catenary angle at the spacer installation position is measured, and the correction amount R calculated by the following formula is positive with respect to the installation position perpendicular to the top line. Is a state in which the mounting position on the ground line is shifted in the traveling direction by the distance R, and when the correction amount R is negative, the mounting position on the ground line is opposite by the distance | R | A method for mounting a multi-conductor spacer, characterized in that the spacer is mounted on each electric wire while being shifted in the direction of. R = D [pi] ([theta]-[theta] 0 ) / 180 where D: distance between top line and ground line. θ, θ 0 : Angles (unit: degrees) on the advancing direction of the airborne vehicle, where the downward angle is positive and the upward angle is negative with the horizontal line as the reference line.
【請求項3】 上下に間隔をおいて架線された複数本の
電線にスペーサを取付けるに際して、弛度計算式により
各スペーサの取付位置における電線のカテナリー角計算
値θ0 を算出しておき、宙乗機を用いてスペーサを電線
に取付ける際に、スペーサの取付位置における電線のカ
テナリー角実測値θを測定し、天線に直角な取付位置に
対して、下記計算式による補正量Rが正のときは地線上
の取付位置を距離Rだけ宙乗機進行方向へシフトさせた
状態で、該補正量Rが負のときは地線上の取付位置を距
離|R|だけ宙乗機進行方向とは反対の方向へシフトさ
せた状態で、スペーサを各電線に取付けることを特徴と
する多導体用スペーサの取付方法。 R=2Dsin〔(θ−θ0 )/2〕 但しD:天線〜地線の間隔寸法。 θ,θ0 :宙乗機進行方向側の角度で、水平線を基準線
として下向きの角度を正,上向きの角度を負とする。
3. When mounting a spacer on a plurality of electric wires that are vertically suspended at intervals, a calculated catenary angle θ 0 of the electric wire at the mounting position of each spacer is calculated by a sag calculation formula, and the space is calculated. When the spacer is attached to the electric wire using a rider, the actual measurement value θ of the electric wire's catenary angle at the spacer installation position is measured, and the correction amount R calculated by the following formula is positive with respect to the installation position perpendicular to the top line. Is a state in which the mounting position on the ground line is shifted in the traveling direction by the distance R, and when the correction amount R is negative, the mounting position on the ground line is opposite by the distance | R | A method for mounting a multi-conductor spacer, characterized in that the spacer is mounted on each electric wire while being shifted in the direction of. R = 2Dsin [(θ−θ 0 ) / 2] where D is the distance between the top line and the ground line. θ, θ 0 : Angles on the traveling direction of the airborne vehicle, where the downward angle is positive and the upward angle is negative with the horizontal line as the reference line.
【請求項4】 上下に間隔をおいて架線された複数本の
電線にスペーサを取付けるに際して、弛度計算式により
各スペーサの取付位置における電線のカテナリー角計算
値θ0 を算出しておき、宙乗機を用いてスペーサを電線
に取付ける際に、スペーサの取付位置における電線のカ
テナリー角実測値θを測定し、天線に直角な取付位置に
対して、下記計算式による補正量Rが正のときは地線上
の取付位置を距離Rだけ宙乗機進行方向へシフトさせた
状態で、該補正量Rが負のときは地線上の取付位置を距
離|R|だけ宙乗機進行方向とは反対の方向へシフトさ
せた状態で、スペーサを各電線に取付けることを特徴と
する多導体用スペーサの取付方法。 R=Dsin(θ−θ0 ) 但しD:天線〜地線の間隔寸法。 θ,θ0 :宙乗機進行方向側の角度で、水平線を基準線
として下向きの角度を正,上向きの角度を負とする。
4. When attaching a spacer to a plurality of electric wires which are vertically suspended at intervals, a calculated catenary angle θ 0 of the electric wire at the mounting position of each spacer is calculated according to a sag calculation formula, and the space is calculated in advance. When the spacer is attached to the electric wire using a rider, the actual measurement value θ of the electric wire's catenary angle at the spacer installation position is measured, and the correction amount R calculated by the following formula is positive with respect to the installation position perpendicular to the top line. Is a state in which the mounting position on the ground line is shifted in the traveling direction by the distance R, and when the correction amount R is negative, the mounting position on the ground line is opposite by the distance | R | A method for mounting a multi-conductor spacer, characterized in that the spacer is mounted on each electric wire while being shifted in the direction of. R = Dsin (θ−θ 0 ), where D is the distance between the top line and the ground line. θ, θ 0 : Angles on the traveling direction of the airborne vehicle, where the downward angle is positive and the upward angle is negative with the horizontal line as the reference line.
【請求項5】 上下に間隔をおいて架線された複数本の
電線にスペーサを取付けるに際して、弛度計算式により
各スペーサの取付位置における電線のカテナリー角計算
値θ0 を算出しておき、宙乗機を用いてスペーサを電線
に取付ける際に、スペーサの取付位置における電線のカ
テナリー角実測値θを測定し、地線に直角な取付位置に
対して、下記計算式による補正量Rが正のときは天線上
の取付位置を距離Rだけ宙乗機進行方向へシフトさせた
状態で、該補正量Rが負のときは天線上の取付位置を距
離|R|だけ宙乗機進行方向とは反対の方向へシフトさ
せた状態で、スペーサを各電線に取付けることを特徴と
する多導体用スペーサの取付方法。 R=Dtan(θ0 −θ) 但しD:天線〜地線の間隔寸法。 θ,θ0 :宙乗機進行方向側の角度で、水平線を基準線
として下向きの角度を正,上向きの角度を負とする。
5. When attaching a spacer to a plurality of electric wires that are vertically suspended at intervals, a calculated catenary angle θ 0 of the electric wire at each spacer attachment position is calculated by a looseness calculation formula, When mounting the spacer to the electric wire using a rider, measure the actual measured value of the catenary angle θ of the electric wire at the mounting position of the spacer, and for the mounting position perpendicular to the ground line, the correction amount R calculated by the following formula is positive. When the installation position on the skyline is shifted by the distance R in the traveling direction of the air vehicle, when the correction amount R is negative, the installation position on the skyline is the distance | R | A method for mounting a spacer for multiple conductors, characterized in that the spacer is mounted on each electric wire while being shifted in the opposite direction. R = Dtan (θ 0 −θ) where D: distance between the sky line and the ground line. θ, θ 0 : Angles on the traveling direction of the airborne vehicle, where the downward angle is positive and the upward angle is negative with the horizontal line as the reference line.
【請求項6】 上下に間隔をおいて架線された複数本の
電線にスペーサを取付けるに際して、弛度計算式により
各スペーサの取付位置における電線のカテナリー角計算
値θ0 を算出しておき、宙乗機を用いてスペーサを電線
に取付ける際に、スペーサの取付位置における電線のカ
テナリー角実測値θを測定し、地線に直角な取付位置に
対して、下記計算式による補正量Rが正のときは天線上
の取付位置を距離Rだけ宙乗機進行方向へシフトさせた
状態で、該補正量Rが負のときは天線上の取付位置を距
離|R|だけ宙乗機進行方向とは反対の方向へシフトさ
せた状態で、スペーサを各電線に取付けることを特徴と
する多導体用スペーサの取付方法。 R=Dπ(θ0 −θ)/180 但しD:天線〜地線の間隔寸法。 θ,θ0 :宙乗機進行方向側の角度(単位:度)で、水
平線を基準線として下向きの角度を正,上向きの角度を
負とする。
6. When a spacer is attached to a plurality of electric wires that are vertically suspended at intervals, the calculated catenary angle θ 0 of the electric wire at the mounting position of each spacer is calculated using a sag calculation formula, and the space is calculated. When mounting the spacer to the electric wire using a rider, measure the actual measured value of the catenary angle θ of the electric wire at the mounting position of the spacer, and for the mounting position perpendicular to the ground line, the correction amount R calculated by the following formula is positive. When the installation position on the skyline is shifted by the distance R in the traveling direction of the air vehicle, when the correction amount R is negative, the installation position on the skyline is the distance | R | A method for mounting a spacer for multiple conductors, characterized in that the spacer is mounted on each electric wire while being shifted in the opposite direction. R = Dπ (θ 0 −θ) / 180 where D is the distance between the sky line and the ground line. θ, θ 0 : Angles (unit: degrees) on the advancing direction of the airborne vehicle, where the downward angle is positive and the upward angle is negative with the horizontal line as the reference line.
【請求項7】 上下に間隔をおいて架線された複数本の
電線にスペーサを取付けるに際して、弛度計算式により
各スペーサの取付位置における電線のカテナリー角計算
値θ0 を算出しておき、宙乗機を用いてスペーサを電線
に取付ける際に、スペーサの取付位置における電線のカ
テナリー角実測値θを測定し、地線に直角な取付位置に
対して、下記計算式による補正量Rが正のときは天線上
の取付位置を距離Rだけ宙乗機進行方向へシフトさせた
状態で、該補正量Rが負のときは天線上の取付位置を距
離|R|だけ宙乗機進行方向とは反対の方向へシフトさ
せた状態で、スペーサを各電線に取付けることを特徴と
する多導体用スペーサの取付方法。 R=2Dsin〔(θ0 −θ)/2〕 但しD:天線〜地線の間隔寸法。 θ,θ0 :宙乗機進行方向側の角度で、水平線を基準線
として下向きの角度を正,上向きの角度を負とする。
7. When attaching a spacer to a plurality of electric wires that are vertically suspended at intervals, a calculated catenary angle θ 0 of the electric wire at the mounting position of each spacer is calculated by a sag calculation formula, and the space is calculated. When mounting the spacer to the electric wire using a rider, measure the actual measured value of the catenary angle θ of the electric wire at the mounting position of the spacer, and for the mounting position perpendicular to the ground line, the correction amount R calculated by the following formula is positive. When the installation position on the skyline is shifted by the distance R in the traveling direction of the air vehicle, when the correction amount R is negative, the installation position on the skyline is the distance | R | A method for mounting a spacer for multiple conductors, characterized in that the spacer is mounted on each electric wire while being shifted in the opposite direction. R = 2Dsin [(θ 0 −θ) / 2] where D is the distance between the top line and the ground line. θ, θ 0 : Angles on the traveling direction of the airborne vehicle, where the downward angle is positive and the upward angle is negative with the horizontal line as the reference line.
【請求項8】 上下に間隔をおいて架線された複数本の
電線にスペーサを取付けるに際して、弛度計算式により
各スペーサの取付位置における電線のカテナリー角計算
値θ0 を算出しておき、宙乗機を用いてスペーサを電線
に取付ける際に、スペーサの取付位置における電線のカ
テナリー角実測値θを測定し、地線に直角な取付位置に
対して、下記計算式による補正量Rが正のときは天線上
の取付位置を距離Rだけ宙乗機進行方向へシフトさせた
状態で、該補正量Rが負のときは天線上の取付位置を距
離|R|だけ宙乗機進行方向とは反対の方向へシフトさ
せた状態で、スペーサを各電線に取付けることを特徴と
する多導体用スペーサの取付方法。 R=Dsin(θ0 −θ) 但しD:天線〜地線の間隔寸法。 θ,θ0 :宙乗機進行方向側の角度で、水平線を基準線
として下向きの角度を正,上向きの角度を負とする。
8. When mounting a spacer on a plurality of electric wires that are vertically suspended at intervals, a calculated catenary angle θ 0 of the electric wire at the mounting position of each spacer is calculated by a sag calculation formula, When mounting the spacer to the electric wire using a rider, measure the actual measured value of the catenary angle θ of the electric wire at the mounting position of the spacer, and for the mounting position perpendicular to the ground line, the correction amount R calculated by the following formula is positive. When the installation position on the skyline is shifted by the distance R in the traveling direction of the air vehicle, when the correction amount R is negative, the installation position on the skyline is the distance | R | A method for mounting a spacer for multiple conductors, characterized in that the spacer is mounted on each electric wire while being shifted in the opposite direction. R = Dsin (θ 0 −θ) where D is the distance between the top line and the ground line. θ, θ 0 : Angles on the traveling direction of the airborne vehicle, where the downward angle is positive and the upward angle is negative with the horizontal line as the reference line.
【請求項9】 天線に対して直角な取付位置に対して、
中線上の取付位置を、地線上の取付位置のシフト方向と
同方向に(d/D)|R|だけシフトさせた状態で、ス
ペーサを中線に取付ける請求項1または2または3また
は4記載の多導体用スペーサの取付方法。 但しd:天線〜中線の側面図における間隔寸法。
9. A mounting position perpendicular to the top line,
The spacer is attached to the center line in a state where the attachment position on the center line is shifted by (d / D) | R | in the same direction as the shift position of the attachment position on the ground line. How to install the multi-conductor spacer. However, d: space dimension in the side view from the top line to the middle line.
【請求項10】 地線に対して直角な取付位置に対し
て、中線上の取付位置を、天線上の取付位置のシフト方
向と同方向に(d/D)|R|だけシフトさせた状態
で、スペーサを中線に取付ける請求項5または6または
7または8記載の多導体用スペーサの取付方法。 但しd:地線〜中線の側面図における間隔寸法。
10. A state in which the mounting position on the center line is shifted by (d / D) | R | in the same direction as the shifting position of the mounting position on the top line with respect to the mounting position perpendicular to the ground line. 9. The method for mounting a multi-conductor spacer according to claim 5, 6 or 7 or 8, wherein the spacer is mounted on the center wire. However, d: the space dimension in the side view of the ground line to the center line.
【請求項11】 スペーサの重量を電線の重量に加算し
て電線のカテナリー角計算値θ0 を算出する請求項1ま
たは2または3または4または5または6または7また
は8または9または10記載の多導体用スペーサの取付
方法。
11. The method according to claim 1, wherein the weight of the spacer is added to the weight of the electric wire to calculate a calculated value of the catenary angle θ 0 of the electric wire. How to install the multi-conductor spacer.
JP08760896A 1996-03-15 1996-03-15 Mounting method of multi-conductor spacer Expired - Fee Related JP3455628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08760896A JP3455628B2 (en) 1996-03-15 1996-03-15 Mounting method of multi-conductor spacer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08760896A JP3455628B2 (en) 1996-03-15 1996-03-15 Mounting method of multi-conductor spacer

Publications (2)

Publication Number Publication Date
JPH09252513A true JPH09252513A (en) 1997-09-22
JP3455628B2 JP3455628B2 (en) 2003-10-14

Family

ID=13919689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08760896A Expired - Fee Related JP3455628B2 (en) 1996-03-15 1996-03-15 Mounting method of multi-conductor spacer

Country Status (1)

Country Link
JP (1) JP3455628B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012182863A (en) * 2011-02-28 2012-09-20 Asahi Electric Works Ltd Spacer attachment ruler
CN113928558A (en) * 2021-09-16 2022-01-14 上海合时无人机科技有限公司 Method for automatically disassembling and assembling spacer based on unmanned aerial vehicle
CN114389222A (en) * 2022-01-07 2022-04-22 三峡大学 Method for calculating length of isolated gear phase-to-phase spacer of power transmission line

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012182863A (en) * 2011-02-28 2012-09-20 Asahi Electric Works Ltd Spacer attachment ruler
CN113928558A (en) * 2021-09-16 2022-01-14 上海合时无人机科技有限公司 Method for automatically disassembling and assembling spacer based on unmanned aerial vehicle
CN114389222A (en) * 2022-01-07 2022-04-22 三峡大学 Method for calculating length of isolated gear phase-to-phase spacer of power transmission line
CN114389222B (en) * 2022-01-07 2024-05-24 三峡大学 Method for calculating length of isolated gear phase spacer of power transmission line

Also Published As

Publication number Publication date
JP3455628B2 (en) 2003-10-14

Similar Documents

Publication Publication Date Title
CN106120559B (en) A kind of bridge limited bracket construction method and bridge
CN107090775A (en) A kind of full framing space beam-ends cable guide pipe construction localization method
JP3455628B2 (en) Mounting method of multi-conductor spacer
JPWO2016151680A1 (en) Method for measuring deflection of columnar structure and method for determining performance of columnar structure
CN102071780A (en) Method for manufacturing and mounting 120-meter long roof tile at high altitude
CN203008371U (en) Cast-in-place concrete stand suspended mold installation structure
CN212249118U (en) Installation device for sliding contact line of crown block
CN205604085U (en) Unsettled support of built -in fitting
CN110424267B (en) Bridge decorative board positioner
CN211775082U (en) Jig frame for large-span pipe truss
CN111581693B (en) Method for designing and manufacturing external prestressed tendon steering gear based on space rotation method
CN103033174A (en) Lining reinforcing steel bar scale distance ruler for inverted arch of tunnel and construction method carried out by scale distance ruler
CN205935416U (en) A positioner for rebar installation
JP5241152B2 (en) Calculation gauge and crane vehicle boom length calculation method
CN205061177U (en) Wire winding pile of installation ladder frame
JPS6118403B2 (en)
CN214993151U (en) Accurate quick positioner of short tower cable-stay bridge branch silk pipe cable saddle
CN105060030A (en) Wire wrapping pile for mounting ladder rack
CN217947163U (en) Corner unwrapping wire and measuring device of supplementary cable laying
CN212614718U (en) Total station fixing device for top side wall of shield tunnel
CN201688031U (en) Combination cable bracket
JPH0757046B2 (en) Tightening method for power lines
CN220080029U (en) Instrument type bracket for mounting enclosing purlin steel support
CN201317288Y (en) Travelling crane slide wire mounting and positioning device
CN219622309U (en) T-shaped bridge hanger rod positioning device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees