JPH09251912A - Rare earth magnet powder producing apparatus and heat treating apparatus therefor - Google Patents

Rare earth magnet powder producing apparatus and heat treating apparatus therefor

Info

Publication number
JPH09251912A
JPH09251912A JP8358799A JP35879996A JPH09251912A JP H09251912 A JPH09251912 A JP H09251912A JP 8358799 A JP8358799 A JP 8358799A JP 35879996 A JP35879996 A JP 35879996A JP H09251912 A JPH09251912 A JP H09251912A
Authority
JP
Japan
Prior art keywords
raw material
earth magnet
rare earth
hydrogen
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8358799A
Other languages
Japanese (ja)
Other versions
JP3680465B2 (en
Inventor
Yoshinobu Motokura
義信 本蔵
Hiroshige Mitarai
浩成 御手洗
Takenobu Yoshimatsu
武展 吉松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP35879996A priority Critical patent/JP3680465B2/en
Publication of JPH09251912A publication Critical patent/JPH09251912A/en
Application granted granted Critical
Publication of JP3680465B2 publication Critical patent/JP3680465B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0553Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 obtained by reduction or by hydrogen decrepitation or embrittlement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rare earth magnet powder producing apparatus and a heat treating apparatus therefor whereby the temp. at hydrogen treatment of a rare earth magnet raw material is stabilized to produce a high quality rare earth type magnet with little magnetic characteristic dispersion. SOLUTION: A rare earth magnet raw material 2 is equally held in reaction tubes 10. A hold tube 27 holding a dummy material 25 having the same compsn. as the material 2 is put near the tubes 10 and heated at about 800 deg.C by a heater 4 to occlude hydrogen by the material 2 to generate the heat while hydrogen is discharged from the dummy material 25 to absorb the heat, and then hydrogen occluded by the material 2 is discharged to absorb the heat while hydrogen is occluded by the material 25 to generate the heat. The exothermic and endothermic actions are apt to cancel out, thus suppressing a great temp. variation of the material 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は希土類系磁石原料に
水素を吸蔵させた後、希土類系磁石原料から水素を放出
させることにより、希土類系磁石原料の磁気特性を向上
させる希土類系磁石粉末の製造に使用できる希土類系磁
石粉末の製造装置並びにこれに使用できる加熱処理装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the production of rare earth magnet powder for improving the magnetic properties of the rare earth magnet raw material by causing the rare earth magnet raw material to absorb hydrogen and then releasing hydrogen from the rare earth magnet raw material. The present invention relates to an apparatus for producing a rare earth magnet powder that can be used in and a heat treatment apparatus that can be used for the apparatus.

【0002】[0002]

【従来の技術】近年、磁気特性が優れている希土類系磁
石粉末の使用が盛んとなっている。磁気特性が優れた希
土類系磁石粉末を製造する技術として、希土類系磁石原
料を高温域例えば750〜950°Cに加熱しつつ希土
類系磁石原料に水素を吸蔵させる水素吸蔵工程と、その
後、希土類系磁石原料から水素を強制的に放出させる水
素放出工程とを順に実施する技術が知られている。
2. Description of the Related Art In recent years, rare earth magnet powders having excellent magnetic properties have been actively used. As a technique for producing a rare-earth magnet powder having excellent magnetic properties, a hydrogen-absorbing step of heating the rare-earth-based magnet raw material to a high-temperature region, for example, 750 to 950 ° C., and storing hydrogen in the rare-earth-based magnet raw material, There is known a technique of sequentially performing a hydrogen releasing step of forcibly releasing hydrogen from a magnet raw material.

【0003】この技術においては、水素吸蔵工程や水素
放出工程における水素処理温度がバラツクと、優れた磁
気特性をもつ希土類系磁石粉末が得にくいことが知られ
ている。ところでこの希土類系磁石原料によれば、水素
処理の際には、水素の吸蔵に伴い発熱し、水素の放出に
伴い吸熱する特性をもつ。そのため、水素吸蔵工程や水
素放出工程において希土類系磁石原料を温度を高精度で
均一化するのは、必ずしも容易ではない。
[0003] In this technique, it is known that the hydrogen treatment temperature in the hydrogen storage step and the hydrogen release step varies, and it is difficult to obtain rare-earth magnet powder having excellent magnetic properties. By the way, according to this rare earth magnet raw material, during the hydrogen treatment, heat is generated as hydrogen is absorbed, and heat is absorbed as hydrogen is released. Therefore, it is not always easy to make the temperature of the rare earth magnet raw material uniform with high accuracy in the hydrogen storage step or the hydrogen release step.

【0004】そこで従来より、蓄熱可能な蓄熱材を用
い、蓄熱材を希土類系磁石原料に接触させることによ
り、希土類系磁石原料の発熱時に蓄熱材に蓄熱し、希土
類系磁石原料の吸熱時に蓄熱材を放熱させ、これにより
希土類系磁石原料の温度の均一化を図る技術が開発され
ている。しかし蓄熱材によっても、希土類系磁石原料の
温度のバラツキ低減にはまだ充分ではない。
Therefore, conventionally, by using a heat storage material capable of storing heat and bringing the heat storage material into contact with the rare earth magnet raw material, heat is stored in the heat storage material when the rare earth magnet raw material generates heat, and is stored when the rare earth magnet raw material absorbs heat. Has been developed to dissipate heat and thereby make the temperature of the rare earth magnet raw material uniform. However, even the heat storage material is not yet enough to reduce the variation in the temperature of the rare earth magnet raw material.

【0005】また特開平5−163510号公報には、
希土類系磁石原料を高温域に加熱する際において、加熱
温度の均一化を図り易い輻射熱を用いる技術が開示され
ている。しかしこのものでも希土類系磁石原料の温度の
均一化には充分ではなく、水素処理温度のバラツキに起
因する磁気特性のバラツキを招来する。また特開平5−
171203号公報、特開平5−171204号公報に
は、希土類系磁石を高温域で水素処理する際において水
素ガスの供給源として水素吸蔵合金を採用した技術が開
示されている。このものでは、水素処理を行う水素ガス
の高純度化を図れるので、水素ガスに含まれている不純
物により磁石原料が汚染されることを回避でき、不純物
汚染による磁気特性のバラツキを回避できる。しかしこ
の公報の技術においても水素処理の際における希土類系
磁石原料の温度の均一化には充分ではなく、水素処理温
度のバラツキに起因する磁気特性の低下を招来する。
Japanese Patent Application Laid-Open No. 5-163510 discloses that
A technique using radiant heat, which makes it easy to make the heating temperature uniform when a rare earth magnet raw material is heated to a high temperature range, is disclosed. However, this is not enough to make the temperature of the rare earth magnet raw material uniform, and causes variations in magnetic characteristics due to variations in the hydrogen treatment temperature. Japanese Patent Laid-Open No. 5-
JP-A-171203 and JP-A-5-171204 disclose a technique in which a hydrogen storage alloy is used as a hydrogen gas supply source when a rare earth magnet is subjected to hydrogen treatment in a high temperature range. In this case, since the hydrogen gas to be subjected to the hydrogen treatment can be highly purified, it is possible to prevent the magnetic material from being contaminated by impurities contained in the hydrogen gas, and it is possible to avoid variations in magnetic characteristics due to impurity contamination. However, even the technique disclosed in this publication is not sufficient for making the temperature of the rare earth magnet raw material uniform during the hydrogen treatment, and causes a decrease in magnetic properties due to the variation in the hydrogen treatment temperature.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記した実情
に鑑みなされたものであり、希土類系磁石原料の発熱に
略同期する吸熱作用、及び希土類系磁石原料の吸熱に略
同期する発熱作用のうちの少なくとも一方を熱機能材で
行い、希土類系磁石原料を高温域において保持しつつ水
素を吸蔵させた後に放出させる水素処理において、希土
類系磁石原料の温度の均一化、安定化を図るようにする
ものであり、これにより希土類系磁石粉末における磁気
特性のバラツキ回避に有利であり、以て希土類系磁石粉
末の量産化や工業化に適する希土類系磁石粉末の製造装
置および加熱処理装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and has an endothermic action that is substantially in synchronism with the heat generation of the rare earth magnet raw material and an exothermic action that is approximately in synchronism with the heat absorption of the rare earth magnet raw material. At least one of them is made of a thermal functional material so that the temperature of the rare earth magnet raw material is made uniform and stable in the hydrogen treatment in which the rare earth magnet raw material is retained in a high temperature range and then hydrogen is absorbed and then released. The present invention is advantageous in avoiding variations in magnetic properties of rare earth magnet powders, and thus provides a rare earth magnet powder manufacturing apparatus and heat treatment apparatus suitable for mass production and industrialization of rare earth magnet powders. It is in.

【0007】[0007]

【課題を解決するための手段】本発明の希土類系磁石粉
末の製造方法は、発熱を伴う水素の吸蔵、及び吸熱を伴
う水素の放出により磁気特性が向上する特性をもつ希土
類系磁石原料と、希土類系磁石原料に接近して設けら
れ、吸熱性及び発熱性の少なくとも一方をもつ熱機能材
とを用い、希土類系磁石原料を加熱しつつ希土類系磁石
原料に水素を吸蔵させる水素吸蔵工程と、希土類系磁石
原料を加熱しつつ希土類系磁石原料から水素を放出させ
る水素放出工程とを順に実施する方法であって、水素吸
蔵工程における希土類系磁石原料の発熱に略同期する吸
熱、及び、水素放出工程における希土類系磁石原料の吸
熱に略同期する発熱のうちの少なくとも一方を、熱機能
材において行うことを特徴とするものである。
According to the present invention, there is provided a method for producing a rare earth magnet powder, comprising: a rare earth magnet raw material having a property of improving magnetic properties by absorbing hydrogen with heat generation and releasing hydrogen with heat absorption; A hydrogen storage step of being provided close to the rare-earth magnet raw material and using a heat functional material having at least one of endothermic property and heat-generating property, and storing hydrogen in the rare-earth magnetic raw material while heating the rare-earth magnetic raw material, A hydrogen releasing step of releasing hydrogen from the rare-earth magnet raw material while heating the rare-earth magnetic raw material, wherein the heat absorption and the hydrogen release substantially synchronized with the heat generation of the rare-earth magnetic raw material in the hydrogen storage step. At least one of the heat generation substantially synchronized with the heat absorption of the rare-earth-based magnet raw material in the process is performed by the thermal functional material.

【0008】本発明の希土類系磁石粉末の製造装置は、
上記した製造方法の実施に使用できるものであり、発熱
を伴う水素の吸蔵、及び吸熱を伴う水素の放出により磁
気特性が向上する特性をもつ希土類系磁石原料を保持す
る原料保持部と、原料保持部の希土類系磁石原料を加熱
する加熱装置と、原料保持部に水素を送給して該原料保
持部の希土類系磁石原料に水素を吸蔵させる水素ガス送
給装置と、原料保持部を減圧して該原料保持部の希土類
系磁石原料から水素を放出させる排気装置と、原料保持
部の希土類系磁石原料に接近して設けられ、吸熱性及び
発熱性をもつ熱機能材を保持する熱機能材保持部と、原
料保持部の希土類系磁石原料の発熱に略同期させて熱機
能材を吸熱させると共に、該原料保持部の希土類系磁石
原料の吸熱に略同期させて熱機能材を発熱させる同期手
段とを具備することを特徴とするものである。
[0008] The apparatus for producing a rare earth magnet powder of the present invention comprises:
A raw material holding portion for holding a rare earth magnet raw material having characteristics that magnetic characteristics are improved by absorbing hydrogen with heat generation and releasing hydrogen with heat absorption, which can be used for carrying out the above-described manufacturing method; A heating device for heating the rare-earth magnet raw material of the portion, a hydrogen gas feeding device for feeding hydrogen to the raw material holding portion and absorbing hydrogen in the rare-earth magnetic material of the raw material holding portion, and depressurizing the raw material holding portion. An exhaust device for releasing hydrogen from the rare-earth magnet raw material in the raw material holding unit, and a thermal functional material provided in close proximity to the rare-earth magnetic raw material in the raw material holding unit and holding a heat-absorbing and exothermic thermal functional material The holding unit and the heat absorbing material absorb heat of the rare earth-based magnet raw material in the raw material holding unit substantially in synchronization with the heat generation of the rare earth magnet raw material in the raw material holding unit. Means The one in which the features.

【0009】また、本発明の加熱処理装置は、加熱室を
形成する加熱容器と、該加熱室内に配置され該加熱室を
加熱または冷却する密閉容器と該密閉容器内に配置され
た水素吸蔵合金と該密閉容器内の水素ガス圧を制御する
水素ガス圧制御装置とからなる温度制御手段と、を具備
することを特徴とする。本発明に係る希土類系磁石原料
は、発熱を伴う水素の吸蔵、及び吸熱を伴う水素の放出
により磁気特性(保磁力、残留磁束密度等)が向上する
特性をもつ。一般的にはR−T−ボロン系、R−T−M
系を採用できる。Rは希土類元素の意味であり、Y、L
a、Ce、Pr、Nd、Sm、Gd、Tb、Dy、H
o、Er、Tm、Luを採用できる。Nd及びPrのう
ち1種または2種がRのうち50at%含むことができ
る。Tは鉄族元素の意味であり、Fe、Co、Niの少
なくとも1種を採用できるが、FeをTのうち50at
%含むことができる。Mは正方晶ThMn12型化合物を
生成するための元素であり、Ti、V、Cr、Moを採
用できる。
Further, the heat treatment apparatus of the present invention comprises a heating vessel forming a heating chamber, a sealed vessel arranged in the heating chamber for heating or cooling the heating chamber, and a hydrogen storage alloy arranged in the sealed vessel. And a hydrogen gas pressure control device for controlling the hydrogen gas pressure in the closed vessel. The rare-earth-based magnet raw material according to the present invention has characteristics in which magnetic properties (coercive force, residual magnetic flux density, etc.) are improved by absorbing hydrogen with heat generation and releasing hydrogen with heat absorption. Generally, RT-boron system, RT-M
The system can be adopted. R means a rare earth element, Y, L
a, Ce, Pr, Nd, Sm, Gd, Tb, Dy, H
o, Er, Tm, and Lu can be adopted. One or two of Nd and Pr may contain 50 at% of R. T means an iron group element, and at least one of Fe, Co, and Ni can be adopted.
% Can be included. M is an element for generating a tetragonal ThMn 12 type compound, and Ti, V, Cr, and Mo can be employed.

【0010】本発明に係る希土類系磁石原料として具体
的にはNd−Co−Ga−B−Fe系、Nd−Fe−T
i系、Nd−Fe−Ti−C系、Nd−Fe−V−C系
等を採用できる。本発明において、原料保持部は、希土
類系磁石原料を分割して互いに離間して保持する適数個
の管体で構成できる。管体は一般的には試験管状の多数
個の管体や多数個の容器を採用できる。管体の数は適宜
選択できるが、例えば3個、4個、5個それ以上にでき
る。数10個、数100個でも良い。管体等の原料保持
部は、熱伝導性が良く且つ熱容量の小さい材料、好まし
くはステンレス鋼などの金属で形成することが好まし
い。希土類系磁石原料の均熱化に有利だからである。
[0010] As the rare earth magnet raw material according to the present invention, specifically, Nd-Co-Ga-B-Fe system, Nd-Fe-T
i-type, Nd-Fe-Ti-C-type, Nd-Fe-VC-type and the like can be adopted. In the present invention, the raw material holder may be composed of an appropriate number of pipes that divide the rare earth magnet raw material and hold it separately from each other. As the pipe body, generally, a large number of test pipe pipes and a large number of containers can be adopted. The number of tubes can be selected as appropriate, but can be, for example, three, four, five or more. Several tens or several hundreds may be used. The raw material holding portion such as a tube is preferably formed of a material having good heat conductivity and a small heat capacity, preferably a metal such as stainless steel. This is because it is advantageous for soaking the rare-earth magnet raw material.

【0011】本発明に係る熱機能材は、吸熱性及び発熱
性の少なくとも一方をもつものであり、好ましくは吸熱
性及び発熱性の双方をもつものが良い。代表的な熱機能
材としては、水素吸蔵合金を挙げることが出来る。水素
吸蔵合金は水素ガス分圧を高くし、水素を吸蔵させると
きに発熱し、逆に水素ガス分圧を低くすることにより吸
蔵されている水素を放出して吸熱する。熱機能材に水素
吸蔵合金を用い、その水素ガス分圧を調節することによ
り発熱および吸熱の両機能を発揮できる。より具体的に
は、熱機能材として希土類系磁石粉末となる希土類系磁
石原料と同系または同一組成の希土類系磁石を主要成分
とするダミー材料を採用できる。
The thermal functional material according to the present invention has at least one of endothermic property and exothermic property, and preferably has both endothermic property and exothermic property. As a typical thermal functional material, a hydrogen storage alloy can be exemplified. The hydrogen storage alloy raises the hydrogen gas partial pressure and generates heat when storing hydrogen. Conversely, by reducing the hydrogen gas partial pressure, the stored hydrogen is released and heat is absorbed. By using a hydrogen storage alloy as the heat functional material and adjusting the hydrogen gas partial pressure, both functions of heat generation and heat absorption can be exhibited. More specifically, a dummy material mainly composed of a rare earth magnet having the same composition or the same composition as the rare earth magnet raw material to be the rare earth magnet powder can be used as the thermal functional material.

【0012】また、熱機能材として酸素ガス分圧を高く
することにより酸素と反応してより酸化され、酸素ガス
分圧を低くすると分解して酸素を放出する遷移金属等を
用いることもできる。さらには、酸素と反応して酸化さ
れ発熱する多くの金属を熱機能材として利用できる。本
発明装置に係る同期手段は、原料保持部の希土類系磁石
原料の発熱に略同期させて熱機能材を吸熱させると共
に、原料保持部の希土類系磁石原料の吸熱に略同期させ
て熱機能材を発熱させるものである。具体的には熱機能
材の作用ガスの吸蔵あるいは放出を行わせる作用ガス分
圧の調整を希土類系磁石原料の吸熱あるいは発熱に略同
期させるものである。
Further, a transition metal which reacts with oxygen by increasing the partial pressure of oxygen gas to be oxidized when the partial pressure of oxygen gas is increased and decomposes to release oxygen when the partial pressure of oxygen gas is reduced can be used as the heat functional material. Furthermore, many metals that are oxidized and generate heat by reacting with oxygen can be used as the thermal functional material. The synchronizing means according to the present invention absorbs the heat-functional material substantially in synchronization with the heat generation of the rare-earth-based magnet raw material in the raw material holding unit, and heat-generates the heat-functional material in substantially synchronization with the heat absorption of the rare-earth-based magnet raw material in the raw material holding unit. To generate heat. Specifically, the adjustment of the partial pressure of the working gas that causes the working gas of the thermal functional material to be absorbed or released is substantially synchronized with the heat absorption or heat generation of the rare earth magnet raw material.

【0013】本発明の加熱処理装置の加熱容器は加熱処
理される材料を収納する容器である。具体的にはこの加
熱容器として前記した希土類系磁石粉末の製造装置の原
料保持部を挙げることができる。また、この加熱容器を
化学反応装置の反応容器として、あるいは熱処理装置の
熱処理容器として使用することもできる。そして反応容
器内の化学原料あるいは熱処理容器内の被熱処理材の加
熱および/または冷却に使用できる。
The heating container of the heat treatment apparatus of the present invention is a container for storing a material to be heat-treated. Specifically, as the heating container, a raw material holding unit of the above-described rare earth magnet powder manufacturing apparatus can be used. Further, this heating container can be used as a reaction container of a chemical reaction device or a heat treatment container of a heat treatment device. And it can be used for heating and / or cooling of the chemical raw material in the reaction vessel or the material to be heat treated in the heat treatment vessel.

【0014】本発明の加熱処理装置の温度制御手段は、
加熱室内に配置され該加熱室を加熱または冷却する密閉
容器と該密閉容器内に配置された水素吸蔵合金と該密閉
容器内の水素ガス圧を制御する水素ガス圧制御装置とか
らなる温度制御手段とからなる。この密閉容器として、
前記した希土類系磁石粉末の製造装置の熱機能材保持部
を挙げることができる。より具体的には水素吸蔵合金を
内部に収納するパイプを密閉容器として使用することが
できる。水素ガス圧制御装置は密閉容器内の水素ガス圧
を高くしたり、低くしたりして制御するものである。具
体的には密閉容器と接合された水素ガスボンベ、ガス圧
調節弁および/またはコンプレッサで構成することがで
きる。
[0014] The temperature control means of the heat treatment apparatus of the present invention comprises:
A temperature control means comprising: a closed container disposed in the heating chamber for heating or cooling the heating chamber; a hydrogen storage alloy disposed in the closed container; and a hydrogen gas pressure control device for controlling a hydrogen gas pressure in the closed container. Consists of As this closed container,
An example of the above-described thermal functional material holding unit of the apparatus for manufacturing a rare earth magnet powder is described. More specifically, a pipe containing a hydrogen storage alloy therein can be used as a sealed container. The hydrogen gas pressure control device controls the hydrogen gas pressure in the closed vessel by increasing or decreasing it. Specifically, it can be constituted by a hydrogen gas cylinder, a gas pressure control valve and / or a compressor joined to a closed container.

【0015】本発明の加熱処理装置の加熱手段として内
部に収納室を持ち、該収納室を形成する炉壁の内部ある
いは内周面に発熱部をもつ加熱炉を採用できる。そして
この加熱炉の収納室には複数個の加熱容器を収容する事
ができる。
As the heating means of the heat treatment apparatus of the present invention, it is possible to employ a heating furnace having a storage chamber therein and having a heating portion inside or on the inner peripheral surface of a furnace wall forming the storage chamber. A plurality of heating vessels can be accommodated in the accommodation room of the heating furnace.

【0016】[0016]

【作用及び発明の効果】本発明方法においては、水素吸
蔵工程において希土類系磁石原料が水素を吸蔵すると、
希土類系磁石原料が発熱し、水素放出工程において希土
類系磁石原料から水素が放出されると、希土類系磁石原
料が吸熱する。これにより希土類系磁石原料の磁気特性
が向上する。
According to the method of the present invention, when the rare earth magnet raw material stores hydrogen in the hydrogen storage step,
When the rare earth magnet raw material generates heat and hydrogen is released from the rare earth magnet raw material in the hydrogen releasing step, the rare earth magnet raw material absorbs heat. This improves the magnetic properties of the rare earth magnet raw material.

【0017】この様に水素吸蔵工程及び水素放出工程に
おいて、希土類系磁石原料が発熱したり吸熱したりする
ため、希土類系磁石原料の温度が均一化しにくいおそれ
がある。この点本発明方法では、熱機能材やダミー材料
を希土類系磁石原料に接近させた状態で、水素吸蔵工程
における希土類系磁石原料の発熱に略同期して熱機能材
やダミー材料を吸熱させたり、或いは、水素放出工程に
おける希土類系磁石原料の吸熱に略同期して熱機能材や
ダミー材料を発熱させたりする。
As described above, in the hydrogen storage step and the hydrogen release step, the rare-earth magnet raw material generates heat or absorbs heat, so that the temperature of the rare-earth magnet raw material may not be easily uniformed. In this respect, in the method of the present invention, in a state where the thermal functional material or the dummy material is brought close to the rare earth magnet raw material, the thermal functional material or the dummy material is absorbed substantially in synchronization with the heat generation of the rare earth magnetic raw material in the hydrogen storage step. Alternatively, the heat-generating material or the dummy material is caused to generate heat substantially in synchronization with the heat absorption of the rare-earth magnet raw material in the hydrogen releasing step.

【0018】従って水素吸蔵工程における希土類系磁石
原料の発熱による温度上昇は、熱機能材やダミー材料に
よる吸熱により減少する。或いは、水素放出工程におけ
る希土類系磁石原料の吸熱による温度低下は、熱機能材
やダミー材料による発熱により減少する。従って本発明
方法によれば、水素吸蔵工程や水素放出工程において希
土類系磁石原料の温度の変動は、抑えられる。よって希
土類系磁石原料の均熱化に有利であり、製造された希土
類系磁石粉末の磁気特性のバラツキを軽減したり回避し
たりするのに有利である。そのため希土類系磁石粉末の
品質の安定化に貢献でき、希土類系磁石粉末の量産化や
工業化に適する。
Therefore, the temperature rise due to the heat generation of the rare earth magnet raw material in the hydrogen storage step is reduced by the heat absorption by the thermal functional material and the dummy material. Alternatively, the temperature decrease due to the endothermic heat of the rare earth magnet raw material in the hydrogen releasing step is reduced by the heat generated by the thermal functional material or the dummy material. Therefore, according to the method of the present invention, fluctuations in the temperature of the rare earth magnet raw material in the hydrogen storage step and the hydrogen release step can be suppressed. Therefore, it is advantageous for soaking the rare-earth magnet raw material, and it is advantageous for reducing or avoiding variation in the magnetic properties of the manufactured rare-earth magnet powder. Therefore, it can contribute to stabilization of the quality of the rare earth magnet powder, and is suitable for mass production and industrialization of the rare earth magnet powder.

【0019】希土類系磁石原料の量とダミー材料の量と
を相応させることにより、希土類系磁石原料による発熱
の程度と、熱機能材やダミー材料による吸熱の程度とを
近づけたり、同程度としたりするのに有利となる。故に
水素吸蔵工程や水素放出工程において希土類系磁石原料
の温度の変動は一層抑えられる。その結果希土類系磁石
原料の均熱化に有利であり、製造された希土類系磁石粉
末の磁気特性のバラツキを軽減したり回避したりするの
に有利である。そのため希土類系磁石粉末の品質の安定
化に貢献でき、希土類系磁石粉末の量産化や工業化に一
層適する。
By making the amount of the rare earth magnet raw material and the amount of the dummy material correspond to each other, the degree of heat generation by the rare earth magnet raw material and the degree of heat absorption by the thermal functional material or the dummy material can be made close to or equal to each other. It is advantageous to do so. Therefore, the fluctuation of the temperature of the rare-earth magnet raw material can be further suppressed in the hydrogen storage step and the hydrogen release step. As a result, it is advantageous for soaking the rare-earth magnet raw material, and it is advantageous for reducing or avoiding variation in the magnetic properties of the manufactured rare-earth magnet powder. Therefore, it is possible to contribute to stabilization of the quality of the rare earth magnet powder, and it is more suitable for mass production and industrialization of the rare earth magnet powder.

【0020】また、同期手段により、原料保持部の希土
類系磁石原料の発熱に略同期させて熱機能材を吸熱させ
ると共に、原料保持部の希土類系磁石原料の吸熱に略同
期させて熱機能材を発熱させることができる。そのため
上記した本発明方法を実施することができる。即ち、水
素吸蔵工程や水素放出工程において希土類系磁石原料の
温度の変動は一層抑えられ、希土類系磁石原料の均熱化
に有利であり、製造された希土類系磁石粉末の磁気特性
のバラツキを軽減したり回避したりするのに有利であ
る。
The synchronizing means absorbs the heat-functional material substantially in synchronization with the heat generation of the rare-earth magnet raw material in the raw material holding portion, and absorbs the heat-functional material substantially in synchronization with the heat absorption of the rare-earth magnetic material in the raw material holding portion. Can generate heat. Therefore, the method of the present invention described above can be performed. In other words, the fluctuation of the temperature of the rare earth magnet raw material is further suppressed in the hydrogen storage step and the hydrogen release step, which is advantageous for soaking the rare earth magnet raw material and reducing the variation in the magnetic characteristics of the manufactured rare earth magnet powder. It is advantageous to avoid or avoid.

【0021】また、希土類系磁石原料を分割して適数個
の管体に保持することにより、希土類系磁石原料を互い
に少量の部分に離間して分割できる。そのため隣設する
少量の希土類系磁石原料部分間において、互いに発熱や
吸熱は影響しにくい。従って水素吸蔵工程や水素放出工
程において希土類系磁石原料の温度の変動は一層抑えら
れ、希土類系磁石原料の均熱化に有利であり、製造され
た希土類系磁石粉末の磁気特性のバラツキを軽減したり
回避したりするのに有利である。
Further, by dividing the rare-earth-based magnet raw material and holding it in an appropriate number of tubes, the rare-earth-based magnetic raw material can be separated and divided into small portions. Therefore, heat generation and heat absorption hardly affect each other between the adjacent small amounts of rare earth magnet raw material portions. Therefore, fluctuations in the temperature of the rare earth magnet raw material are further suppressed in the hydrogen storage step and the hydrogen desorption step, which is advantageous for soaking the rare earth magnet raw material, and reduces variations in the magnetic characteristics of the produced rare earth magnet powder. It is advantageous to avoid or avoid.

【0022】また、熱機能材保持部は管体と同数個設け
ることができる。そして各熱機能材保持部は各管体の内
部に設ける。これにより管体ごとに、水素吸蔵工程にお
ける希土類系磁石原料の発熱に略同期して熱機能材を吸
熱させたり、或いは、水素放出工程における希土類系磁
石原料の吸熱に略同期して熱機能材を発熱させたりでき
る。
Further, the same number of heat function material holding portions as the number of tubes can be provided. And each thermal functional material holding | maintenance part is provided inside each tubular body. Thus, for each tube, the heat-absorbing material is absorbed substantially in synchronism with the heat generation of the rare-earth magnet raw material in the hydrogen storage step, or the heat-absorbing material is substantially synchronized with the heat absorption of the rare-earth magnetic material in the hydrogen releasing step Or to generate heat.

【0023】この様に適数個に分割した管体ごとに希土
類系磁石原料の温度の変動は抑えられるので、希土類系
磁石原料の均熱化に一層有利であり、製造された希土類
系磁石粉末の磁気特性のバラツキを軽減したり回避した
りするのに有利である。そのため希土類系磁石粉末の品
質の安定化に貢献でき、希土類系磁石粉末の量産化や工
業化に一層適する。
Since the fluctuation of the temperature of the rare-earth magnet raw material can be suppressed for each of the pipes divided into an appropriate number in this manner, it is more advantageous to equalize the temperature of the rare-earth magnet raw material, and the produced rare-earth magnet powder is produced. This is advantageous in reducing or avoiding variations in the magnetic characteristics of the magnetic head. Therefore, it is possible to contribute to stabilization of the quality of the rare earth magnet powder, and it is more suitable for mass production and industrialization of the rare earth magnet powder.

【0024】本発明の加熱処理装置は希土類系磁石粉末
の製造に使用できるとともに、精密な温度制御の必要な
化学反応装置、熱処理装置等としての利用を図るもの
で、反応物質および被熱処理材を直接加熱および/また
は冷却可能となり、温度制御がより容易となる。
The heat treatment apparatus of the present invention can be used as a chemical reaction apparatus or a heat treatment apparatus which requires precise temperature control while producing a rare earth magnet powder. Direct heating and / or cooling is possible, making temperature control easier.

【0025】[0025]

【実施例】以下、本発明の実施例を図面を参照して説明
する。 (製造装置)この例に係る製造装置の原理図を図1に示
す。図1に示す様に原料保持部1は、希土類系磁石原料
2を分割して互いに離間して保持する適数個の管体とし
ての反応管10で構成されている。なお反応管10の材
質はステンレス鋼である。
Embodiments of the present invention will be described below with reference to the drawings. (Manufacturing Apparatus) FIG. 1 shows a principle diagram of a manufacturing apparatus according to this example. As shown in FIG. 1, the raw material holding unit 1 is composed of a suitable number of reaction tubes 10 which divide the rare earth magnet raw material 2 and hold them separately from each other. The material of the reaction tube 10 is stainless steel.

【0026】本実施例では熱機能材としてダミー材料2
5を用いる。ダミー材料25は、希土類系磁石原料2と
同種つまり同一組成のものを用いる。ダミー材料25
は、熱機能材保持部としてのダミー材料保持管27の内
部に保持されている。ダミー材料保持管27は反応管1
0と同数個装備されており、反応管10の内部に内設さ
れている。従ってダミー材料保持管27内のダミー材料
25と反応管10の希土類系磁石原料2とは、互いに接
近して配置されている。なおダミー材料保持管27の材
質はステンレス鋼である。
In this embodiment, the dummy material 2 is used as the thermal functional material.
5 is used. As the dummy material 25, a material having the same kind, that is, the same composition as the rare earth magnet raw material 2 is used. Dummy material 25
Are held inside a dummy material holding tube 27 as a heat functional material holding portion. The dummy material holding tube 27 is the reaction tube 1
The same number as 0 is provided, and is provided inside the reaction tube 10. Therefore, the dummy material 25 in the dummy material holding tube 27 and the rare earth magnet raw material 2 in the reaction tube 10 are arranged close to each other. The material of the dummy material holding tube 27 is stainless steel.

【0027】第1分岐装置3は、各反応管10への水素
送給通路及び各反応管10からの水素放出通路を構成す
るものである。従ってこの第1分岐装置3は、各反応管
10に装入された多数個の第1分岐路30と、各第1分
岐路30を結合する第1集中路31とで構成されてい
る。この例では、各反応管10における水素処理の同期
性を確保すべく、各反応管10の材質、径、長さ、容積
等は基本的には均等にされており、更に、各第1分岐路
30の流路径、流路長も基本的には等しくされている。
The first branching device 3 constitutes a hydrogen supply passage to each reaction tube 10 and a hydrogen release passage from each reaction tube 10. Therefore, the first branching device 3 is composed of a number of first branch passages 30 charged in each reaction tube 10 and a first concentrated passage 31 connecting the first branch passages 30. In this example, the material, diameter, length, volume, and the like of each reaction tube 10 are basically made uniform to ensure the synchronization of the hydrogen treatment in each reaction tube 10. The flow path diameter and the flow path length of the path 30 are basically equal.

【0028】第2分岐装置7は、各ダミー材料保持管2
7への水素送給通路及び各ダミー材料保持管27からの
水素放出通路を構成するものである。従ってこの第2分
岐装置7は、各ダミー材料保持管27に装入された多数
個の第2分岐路70と、各第2分岐路70を結合する第
2集中路71とで構成されている。この例では、各ダミ
ー材料保持管27における水素処理の同期性を確保すべ
く、ダミー材料保持管27の材質、径、長さ、容積等は
基本的には均等にされており、更に、各第2分岐路70
の流路径、流路長も基本的には等しくされている。
The second branching device 7 includes the dummy material holding tubes 2
7 and a hydrogen release passage from each dummy material holding pipe 27. Therefore, the second branching device 7 is composed of a large number of second branch paths 70 charged in each dummy material holding pipe 27 and a second concentrated path 71 connecting the second branch paths 70. . In this example, the material, diameter, length, volume, and the like of the dummy material holding tubes 27 are basically equalized in order to ensure the synchronization of the hydrogen treatment in each dummy material holding tube 27. Second branch 70
Are basically equal to each other.

【0029】加熱装置4は希土類系磁石原料2やダミー
材料25を加熱するものであり、発熱体を装備した加熱
室40を備えている。加熱室40の温度は温度制御装置
45で制御される。水素ガス送給装置5は、希土類系磁
石原料2やダミー材料25に水素を送給して吸蔵させる
機能をもつ。この水素ガス送給装置5は、水素源として
の水素ボンベ50と、水素ガスの不純物を除去する精製
器51と、三方弁である第1切替バルブ52と、水素ボ
ンベ50から第1アキュムレータ53を経て第1切替バ
ルブ52に至る第1送給路54と、三方弁である第2切
替バルブ56と、水素ボンベ50から第2アキュムレー
タ57を経て第2切替バルブ56に至る第2送給路58
とを備えている。第1切替バルブ52には第1分岐装置
3の第1集中路31が接続されている。第2切替バルブ
56には第2分岐装置7の第2集中路71が接続されて
いる。
The heating device 4 heats the rare earth magnet raw material 2 and the dummy material 25, and has a heating chamber 40 equipped with a heating element. The temperature of the heating chamber 40 is controlled by a temperature control device 45. The hydrogen gas supply device 5 has a function of supplying hydrogen to the rare-earth magnet raw material 2 and the dummy material 25 to occlude them. The hydrogen gas supply device 5 includes a hydrogen cylinder 50 as a hydrogen source, a purifier 51 for removing impurities of hydrogen gas, a first switching valve 52 as a three-way valve, and a first accumulator 53 from the hydrogen cylinder 50. Via a first supply passage 54 leading to the first switching valve 52 via a second switching valve 56 which is a three-way valve; and a second supply passage 58 leading from the hydrogen cylinder 50 via the second accumulator 57 to the second switching valve 56.
And The first switching valve 52 is connected to the first concentrated path 31 of the first branch device 3. The second switching valve 56 is connected to the second concentrated path 71 of the second branch device 7.

【0030】排気装置6は、反応管10内を減圧して反
応管10内の希土類系磁石原料2から水素を放出させる
機能と、ダミー材料保持管27を減圧してダミー材料2
5から水素を放出させる機能とをもつ。従って排気装置
6は、第1真空ポンプ60と、第1切替バルブ52につ
ながる第1排気路61と、第2真空ポンプ65と、第2
切替バルブ56につながる第2排気路66とで構成され
ている。
The exhaust device 6 functions to release hydrogen from the rare-earth magnet raw material 2 in the reaction tube 10 by reducing the pressure in the reaction tube 10, and to reduce the pressure in the dummy material holding tube 27 to reduce the dummy material 2.
5 has a function of releasing hydrogen. Therefore, the exhaust device 6 includes the first vacuum pump 60, the first exhaust passage 61 connected to the first switching valve 52, the second vacuum pump 65, and the second vacuum pump 65.
And a second exhaust path 66 connected to the switching valve 56.

【0031】図1から理解できる様に、上記した温度制
御装置45の作動、切替バルブ52、56の切替、真空
ポンプ60、65の作動は、制御装置98により信号線
を介して制御される。後述の記載から理解できる様に、
制御装置98は、希土類系磁石原料2の水素吸蔵に伴う
発熱作用と、ダミー材料25の水素放出に伴う吸熱作用
とを同期させて行う。また制御装置98は、希土類系磁
石原料2の水素放出に伴う吸熱作用と、ダミー材料25
の水素吸蔵に伴う発熱作用とを同期させて行う。故に制
御装置98は同期手段として機能する。
As can be understood from FIG. 1, the operation of the temperature control device 45, the switching of the switching valves 52 and 56, and the operation of the vacuum pumps 60 and 65 are controlled by the control device 98 via signal lines. As can be understood from the description below,
The control device 98 synchronizes the heat generation effect of the rare earth magnet raw material 2 with the occlusion of hydrogen and the heat absorption operation of the dummy material 25 with the release of hydrogen. Further, the control device 98 controls the endothermic effect of the rare earth magnet raw material 2 accompanying the release of hydrogen and the dummy material 25.
Is performed in synchronization with the heat generation effect accompanying the hydrogen occlusion. Therefore, the control device 98 functions as a synchronization unit.

【0032】(水素吸蔵工程)本実施例では、250℃
で水素吸蔵させた後に水素放出させる予備処理をして塊
状の形態から粉粒体状(例えば2〜4mm程度)の形態
に変化させた希土類系磁石原料2を用いる。そしてこの
希土類系磁石原料2を各反応管10にそれぞれ均等に保
持する。1個の反応管10あたりの磁石原料2の保持量
は適宜選択できるが、例えば0.5〜5kg程度にでき
る。磁石原料2はNd−Co−Ga−B−Fe系であ
り、その組成は具体的にはat%でNdが12.3%、
Coが11.5%、Bが6.0%、Gaが1.7%、不
可避の不純物、残部実質的にFeである。
(Hydrogen Storage Step) In this embodiment, the temperature is 250 ° C.
The rare earth magnet raw material 2 is preliminarily treated to occlude hydrogen and then release hydrogen to change from a massive form to a granular form (for example, about 2 to 4 mm). Then, the rare earth magnet raw material 2 is uniformly held in each reaction tube 10. The holding amount of the magnet raw material 2 per one reaction tube 10 can be appropriately selected, but can be, for example, about 0.5 to 5 kg. The magnet raw material 2 is a Nd-Co-Ga-B-Fe-based material, and its composition is specifically at% in Nd of 12.3%,
Co is 11.5%, B is 6.0%, Ga is 1.7%, inevitable impurities, and the balance is substantially Fe.

【0033】本実施例では、予め水素を吸蔵させたダミ
ー材料25を用いる。そして、そのダミー材料25を各
ダミー材料保持管27に保持する。希土類系磁石原料2
を保持した状態の各反応管10をダミー材料保持管27
と共に、加熱装置4の加熱室40に装入する。これによ
り加熱装置4により反応管10内の希土類系磁石原料
2、ダミー材料保持管27内のダミー材料25は所定温
度領域に加熱される。
In this embodiment, a dummy material 25 in which hydrogen has been stored in advance is used. Then, the dummy material 25 is held in each dummy material holding tube 27. Rare earth magnet raw material 2
Each of the reaction tubes 10 in the state of holding the
At the same time, it is charged into the heating chamber 40 of the heating device 4. Thus, the heating device 4 heats the rare-earth magnet raw material 2 in the reaction tube 10 and the dummy material 25 in the dummy material holding tube 27 to a predetermined temperature range.

【0034】なお希土類系磁石原料2の温度は熱電対4
iにより測温し、ダミー材料25の温度は熱電対4kに
より測温する(図2参照)。この工程では制御装置98
により、第1切替バルブ52を操作して第1排気路61
と第1集中路31とを非連通にすると共に、第1送給路
54と第1集中路31とを連通する。これにより水素ガ
ス送給装置5に圧入されている高圧の水素ガスは、第1
送給路54、第1切替バルブ52、第1集中路31、第
1分岐路30を経て、各反応管10に送給される。
The temperature of the rare-earth magnet raw material 2 is controlled by the thermocouple 4
i, and the temperature of the dummy material 25 is measured by a thermocouple 4k (see FIG. 2). In this step, the control device 98
By operating the first switching valve 52, the first exhaust path 61
And the first concentrated path 31 are not communicated, and the first feed path 54 and the first concentrated path 31 are communicated. As a result, the high-pressure hydrogen gas press-fitted into the hydrogen gas supply device 5
The water is supplied to each reaction tube 10 via the supply path 54, the first switching valve 52, the first concentration path 31, and the first branch path 30.

【0035】この様に水素吸蔵工程では、反応管10内
の希土類系磁石原料2を加熱しつつ希土類系磁石原料2
に水素を吸蔵させる。この様な水素吸蔵に伴い、前述の
様に反応管10内の希土類系磁石原料2は発熱する。な
お本実施例において、水素を吸蔵させる際の磁石原料2
の目標温度は約800°C、吸蔵時間は約3時間であ
る。また水素の目標圧力は1.2〜1.5atmであ
る。
As described above, in the hydrogen storage step, the rare-earth magnet raw material 2 in the reaction tube 10 is heated while the rare-earth magnet raw material 2 is heated.
To absorb hydrogen. With the hydrogen occlusion, the rare-earth magnet raw material 2 in the reaction tube 10 generates heat as described above. In this embodiment, the magnet raw material 2 for absorbing hydrogen was used.
Has a target temperature of about 800 ° C. and a storage time of about 3 hours. The target pressure of hydrogen is 1.2 to 1.5 atm.

【0036】本実施例に係る水素吸蔵工程においては制
御装置98により、第2切替バルブ56を操作して、第
2排気路66と第2集中路71とを連通する。その状態
で第2真空ポンプ65を吸引作動させる。これにより第
2排気路66、第2切替バルブ56、第2集中路71、
第2分岐路70を経て、ダミー材料保持管27内を減圧
(例えば10-5〜10 -9 Torr)し、以てダミー材
料保持管27のダミー材料25に吸蔵されている水素を
強制的に放出する。この様なダミー材料25からの水素
放出に伴い、ダミー材料25は吸熱する。
In the hydrogen storage step according to the present embodiment, the second switching valve 56 is operated by the control device 98 to connect the second exhaust path 66 and the second concentrated path 71. In this state, the second vacuum pump 65 is operated by suction. As a result, the second exhaust passage 66, the second switching valve 56, the second concentrated passage 71,
The pressure in the dummy material holding tube 27 is reduced (for example, 10 −5 to 10 −9 Torr) through the second branch path 70, thereby forcibly removing the hydrogen occluded in the dummy material 25 of the dummy material holding tube 27. discharge. With such hydrogen release from the dummy material 25, the dummy material 25 absorbs heat.

【0037】即ち本実施例に係る水素吸蔵工程では、反
応管10の希土類系磁石原料2にダミー材料25を接近
させた状態で、希土類系磁石原料2の発熱作用に略同期
する様にダミー材料25において吸熱作用を発生させ
る。従って発熱と吸熱とが相殺され易くなる。故に水素
吸蔵工程における反応管10内の希土類系磁石原料2の
発熱作用に伴う温度上昇は、抑えられる。
That is, in the hydrogen storage step according to the present embodiment, the dummy material 25 is brought close to the rare earth magnet raw material 2 in the reaction tube 10 so as to be substantially synchronized with the heat generation action of the rare earth magnet raw material 2. At 25, an endothermic effect is generated. Therefore, the heat generation and the heat absorption are easily offset. Therefore, an increase in temperature due to the heat generation of the rare earth magnet raw material 2 in the reaction tube 10 in the hydrogen storage step is suppressed.

【0038】(水素放出工程)上記の様に水素吸蔵工程
を終了したら、水素放出工程を行う。即ち、制御装置9
8により、第1切替バルブ52を操作して第1集中路3
1と第1送給路54とを非連通にすると共に、第1集中
路31と第1排気路61とを連通させる。その状態で制
御装置98により第1真空ポンプ60を作動して反応管
10内を減圧して真空(例えば10-5〜10 -9 Tor
r)とする。これにより反応管10内の希土類系磁石原
料2に吸蔵されている水素を強制的に放出する。この様
な希土類系磁石原料2からの水素放出に伴い、反応管1
0内の希土類系磁石原料2は吸熱する。
(Hydrogen release step) After the hydrogen occlusion step is completed as described above, a hydrogen release step is performed. That is, the control device 9
8, the first switching valve 52 is operated to operate the first concentrated path 3
1 and the first supply path 54 are not communicated, and the first concentrated path 31 and the first exhaust path 61 are communicated. In this state, the first vacuum pump 60 is operated by the control device 98 to reduce the pressure inside the reaction tube 10 to vacuum (for example, 10 −5 to 10 −9 Torr).
r). As a result, the hydrogen occluded in the rare earth magnet raw material 2 in the reaction tube 10 is forcibly released. With the release of hydrogen from the rare earth magnet raw material 2, the reaction tube 1
The rare-earth magnet raw material 2 within 0 absorbs heat.

【0039】この様な水素放出工程における目標温度は
775〜850°Cとし、時間は約30分間とする。各
反応管10における水素放出処理は均等に行われる。本
実施例に係る水素放出工程においては、制御装置98に
より第2切替バルブ56を操作して第2排気路66と第
2集中路71とを非連通にすると共に、第2送給路58
と第2集中路71とを連通する。これにより第2送給路
58、第2切替バルブ56、第2集中路71及び第2分
岐路70を経て、水素ガス送給装置5の水素ガスは、各
ダミー材料保持管27に送給される。これにより各ダミ
ー材料保持管27内のダミー材料25は水素を吸蔵して
発熱する。
The target temperature in such a hydrogen releasing step is 775 to 850 ° C., and the time is about 30 minutes. The hydrogen releasing process in each reaction tube 10 is performed uniformly. In the hydrogen releasing step according to the present embodiment, the second switching valve 56 is operated by the control device 98 so that the second exhaust path 66 and the second concentrated path 71 are not communicated with each other, and the second supply path 58
And the second concentrated route 71. Thereby, the hydrogen gas of the hydrogen gas supply device 5 is supplied to each dummy material holding pipe 27 via the second supply path 58, the second switching valve 56, the second concentration path 71, and the second branch path 70. You. Thereby, the dummy material 25 in each dummy material holding tube 27 absorbs hydrogen and generates heat.

【0040】即ち本実施例に係る水素放出工程において
は、反応管10の希土類系磁石原料2にダミー材料25
を接近させた状態で、希土類系磁石原料2の吸熱作用に
略同期する様にダミー材料25において発熱作用を発生
させる。従って吸熱と発熱とが相殺され易くなる。故に
水素放出工程における反応管10内の希土類系磁石原料
2の吸熱作用に伴う温度低下は、抑えられる。
That is, in the hydrogen releasing step according to the present embodiment, the dummy material 25 is added to the rare earth magnet raw material 2 in the reaction tube 10.
Are generated in the dummy material 25 so as to be substantially synchronized with the endothermic action of the rare-earth-based magnet raw material 2 in a state where are brought close to each other. Therefore, heat absorption and heat generation are easily offset. Therefore, the temperature drop due to the endothermic effect of the rare earth magnet raw material 2 in the reaction tube 10 in the hydrogen releasing step is suppressed.

【0041】なお水素放出工を終えたら、希土類系磁石
原料2を急冷する急冷工程を行う。急冷工程はアルゴン
ガス等の冷却ガスや冷却水と希土類系磁石原料2とを接
触させたりして行う。冷却ガスや冷却水と反応管10と
を接触させて冷却させても良い。この様にして磁気特性
が向上した希土類系磁石粉末が製造される。 (効果)以上説明した様に本実施例では、水素吸蔵工程
において、反応管10の希土類系磁石原料2の発熱作用
に略同期する様に、ダミー材料25において吸熱作用を
発生させる。ここで反応管10内の希土類系磁石原料2
とダミー材料25とは互いに接近して配置されているの
で、希土類系磁石原料の発熱とダミー材料25の吸熱と
が相殺され易い。従って水素吸蔵工程における反応管1
0内の希土類系磁石原料2の発熱に伴う温度上昇は、抑
えられる。
After the hydrogen release process is completed, a quenching step of quenching the rare earth magnet raw material 2 is performed. The quenching step is performed by bringing cooling gas such as argon gas or cooling water into contact with the rare earth magnet raw material 2. The cooling gas or cooling water may be brought into contact with the reaction tube 10 for cooling. In this way, a rare earth magnet powder having improved magnetic properties is produced. (Effects) As described above, in the present embodiment, in the hydrogen storage step, an endothermic action is generated in the dummy material 25 so as to be substantially synchronized with the exothermic action of the rare-earth magnet raw material 2 in the reaction tube 10. Here, the rare earth magnet raw material 2 in the reaction tube 10
Since the dummy material 25 and the dummy material 25 are arranged close to each other, the heat generated by the rare earth magnet raw material and the heat absorbed by the dummy material 25 are easily offset. Therefore, the reaction tube 1 in the hydrogen storage step
The temperature rise due to the heat generation of the rare earth magnet raw material 2 within 0 can be suppressed.

【0042】同様に水素放出工程においても、反応管1
0の希土類系磁石原料2の吸熱作用に略同期する様に、
ダミー材料25において発熱作用を発生させる。従って
希土類系磁石原料2の吸熱とダミー材料25の発熱とが
相殺され易い。よって水素放出工程における反応管10
内の希土類系磁石原料2の吸熱に伴う温度低下は、抑え
られる。
Similarly, in the hydrogen releasing step, the reaction tube 1
0 so as to be substantially synchronized with the endothermic action of the rare earth magnet raw material 2,
The dummy material 25 generates heat. Therefore, the heat absorption of the rare earth magnet raw material 2 and the heat generation of the dummy material 25 are likely to be offset. Therefore, the reaction tube 10 in the hydrogen releasing step
The temperature drop due to the endothermic absorption of the rare-earth-based magnet raw material 2 therein is suppressed.

【0043】即ち、本実施例では水素吸蔵工程において
希土類系磁石原料2が発熱しても、希土類系磁石原料2
の温度の均一化、安定化を図り得る。同様に水素放出工
程においても希土類系磁石原料2が吸熱しても、希土類
系磁石原料2の温度の均一化、安定化を図り得る。従っ
て製造された希土類系磁石粉末の磁気特性の局部的なバ
ラツキを回避でき、本実施例で製造した希土類系磁石粉
末は、磁気特性(最大磁気エネルギ積、残留磁束密度、
保磁力など)が向上する。よって希土類系磁石粉末の高
品質化に貢献でき、希土類系磁石粉末の量産化や工業化
に適する。
That is, in this embodiment, even if the rare earth magnet raw material 2 generates heat in the hydrogen absorbing step, the rare earth magnet raw material 2
Temperature can be made uniform and stable. Similarly, even in the hydrogen release step, even if the rare earth magnet raw material 2 absorbs heat, the temperature of the rare earth magnet raw material 2 can be made uniform and stable. Therefore, local variations in the magnetic properties of the manufactured rare-earth magnet powder can be avoided, and the rare-earth magnet powder manufactured in this example has the magnetic properties (maximum magnetic energy product, residual magnetic flux density,
Coercive force). Therefore, it is possible to contribute to high quality of the rare earth magnet powder, and it is suitable for mass production and industrialization of the rare earth magnet powder.

【0044】しかも本実施例では、前述した様に、水素
処理を行う希土類系磁石原料2を多数個の反応管10に
少量づつ分割して保持すると共に、各反応管10にダミ
ー材料保持管27を内設しているので、各反応管10ご
とに希土類系磁石原料2の温度変動を抑えることができ
る。そのため、反応管10内の希土類系磁石原料2の過
剰発熱や過剰吸熱が抑制され、温度変動を抑えるのに一
層有利であり、量産化や工業化に一層適する。
Further, in this embodiment, as described above, the rare-earth magnet raw material 2 to be subjected to the hydrogen treatment is divided and held in a small number of the reaction tubes 10 by small amounts, and the dummy material holding tubes 27 are provided in each reaction tube 10. The temperature fluctuation of the rare earth magnet raw material 2 can be suppressed for each of the reaction tubes 10. Therefore, excessive heat generation and excessive heat absorption of the rare-earth magnet raw material 2 in the reaction tube 10 are suppressed, which is more advantageous for suppressing temperature fluctuation, and more suitable for mass production and industrialization.

【0045】更に本実施例では、反応管10の希土類系
磁石原料2の量とダミー材料保持管27のダミー材料2
5の量とは相応しており、具体的には同量である。その
ため、反応管10の希土類系磁石原料2の発熱の程度
と、ダミー材料25の吸熱の程度とは基本的には相応し
易い。よって水素吸蔵工程における反応管10内の希土
類系磁石原料2の温度の変動を抑えるのに一層有利であ
る。
Further, in this embodiment, the amount of the rare earth magnet raw material 2 in the reaction tube 10 and the amount of the dummy material 2 in the dummy material holding tube 27 are changed.
The amount of 5 corresponds to the specific amount. Therefore, the degree of heat generation of the rare earth magnet raw material 2 in the reaction tube 10 and the degree of heat absorption of the dummy material 25 are basically easily compatible. Therefore, it is more advantageous to suppress the fluctuation of the temperature of the rare earth magnet raw material 2 in the reaction tube 10 in the hydrogen storage step.

【0046】加えて本実施例では反応管10内に分割さ
れた希土類系磁石原料2は少量づつ分離され互いに離間
している。そのため反応管10内の希土類系磁石原料2
の発熱や吸熱は、隣設する反応管10の希土類系磁石原
料2に影響しにくくなる。よって局部的な過剰発熱や過
剰吸熱を抑制でき、希土類系磁石原料2の温度の均一
化、安定化に一層有利である。
In addition, in this embodiment, the rare-earth magnet raw material 2 divided in the reaction tube 10 is separated little by little and separated from each other. Therefore, the rare earth magnet raw material 2 in the reaction tube 10
Is less likely to affect the rare-earth magnet raw material 2 in the adjacent reaction tube 10. Therefore, local excessive heat generation or excessive heat absorption can be suppressed, which is more advantageous for uniformizing and stabilizing the temperature of the rare earth magnet raw material 2.

【0047】(熱履歴形態)図3は、上記した実施例に
係る希土類系磁石原料2の熱履歴形態を模式的に示す。
この例では、前記した様に希土類系磁石原料2は250
℃で水素吸蔵された後に、水素放出されて予備処理さ
れ、塊体の形態から粉粒体の形態に変化している。この
様に予備処理により粉粒体の形態とした希土類系磁石原
料2を用いて、800℃付近の領域において水素吸蔵工
程及び水素放出工程を順に実施するものである。
(Heat History Form) FIG. 3 schematically shows a heat history form of the rare earth magnet raw material 2 according to the above-described embodiment.
In this example, as described above, the rare earth magnet raw material 2 is 250
After occlusion of hydrogen at ° C, hydrogen is released and pre-treated, changing from a lump form to a granular form. As described above, the hydrogen storage step and the hydrogen release step are sequentially performed in the region near 800 ° C. by using the rare earth magnet raw material 2 in the form of powder or granules by the preliminary treatment.

【0048】また希土類系磁石原料2を250℃で予備
処理した後に、常温域に一旦冷却し、その後、再び80
0℃付近の領域で水素吸蔵工程、水素放出工程を実施す
ることにしても良い。 (加熱処理装置)実施例の製造装置の一部を本発明の加
熱処理装置として捉えることができる。加熱処理装置の
構成部分は、加熱室40を形成するとともに加熱手段を
内蔵する加熱装置4および温度制御装置45と、ダミー
材料25を保持するダミー材料保持管27と、各ダミー
材料保持管27に装入された多数個の第2分岐路70
と、各第2分岐路70を結合する第2集中路71とで構
成されている第2分岐装置7と、水素ボンベ50と精製
器51と第2切替バルブ56と第2送給路58とを備え
ている第2分岐装置7と、第2真空ポンプ65と第2排
気路66とで構成されている排気装置6と制御装置98
とからなる。
After preliminarily treating the rare-earth magnet raw material 2 at 250 ° C., it is once cooled to a normal temperature range, and then cooled again to 80 ° C.
The hydrogen storage step and the hydrogen release step may be performed in a region near 0 ° C. (Heat treatment apparatus) A part of the manufacturing apparatus of the embodiment can be regarded as the heat treatment apparatus of the present invention. The components of the heat treatment apparatus include a heating device 4 and a temperature control device 45 which form a heating chamber 40 and incorporate heating means, a dummy material holding tube 27 which holds a dummy material 25, and a dummy material holding tube 27. A large number of loaded second branch paths 70
, A second branching device 7 composed of a second concentrating path 71 connecting the second branching paths 70, a hydrogen cylinder 50, a purifier 51, a second switching valve 56, and a second supply path 58. A second branching device 7 having a vacuum pump 65 and a second exhaust passage 66, and a control device 98.
Consists of

【0049】ここで、加熱装置4および温度制御装置4
5は本発明の加熱処理装置の加熱容器および加熱手段を
構成する。同様に、ダミー材料25およびダミー材料保
持管27は本発明の加熱処理装置の水素吸蔵合金および
密閉容器を構成する。同様に、第2分岐装置7、排気装
置6および制御装置98は本発明の加熱処理装置の温度
制御手段を構成する。
Here, the heating device 4 and the temperature control device 4
5 constitutes a heating vessel and a heating means of the heat treatment apparatus of the present invention. Similarly, the dummy material 25 and the dummy material holding tube 27 constitute a hydrogen storage alloy and a sealed container of the heat treatment apparatus of the present invention. Similarly, the second branching device 7, the exhaust device 6, and the control device 98 constitute a temperature control means of the heat treatment apparatus of the present invention.

【0050】この加熱処理装置は、温度制御装置45の
温度制御により加熱装置4の加熱室40の温度を所定温
度に制御する。そしてさらに加熱室40内は、水素ボン
ベ50と排気装置6および制御装置98により水素分圧
が制御され水素分圧の制御により吸、発熱するダミー材
料保持管27で冷却あるいは加熱される。この加熱処理
装置は加熱室40内に配置された温度制御手段により加
熱室内の温度をより精度良く制御することができる。
This heat treatment device controls the temperature of the heating chamber 40 of the heating device 4 to a predetermined temperature by controlling the temperature of the temperature control device 45. Further, the inside of the heating chamber 40 is cooled or heated by the dummy material holding pipe 27 which absorbs and generates heat by controlling the hydrogen partial pressure by controlling the hydrogen partial pressure by the hydrogen cylinder 50, the exhaust device 6 and the control device 98. In this heat treatment apparatus, the temperature in the heating chamber can be controlled more accurately by the temperature control means disposed in the heating chamber 40.

【0051】本実施例では密閉容器として複数個のダミ
ー材料保持管27を採用したが、1個のダミー材料保持
管27でもよい。また、加熱装置としては、通常の電気
炉、タンマン管炉等の加熱炉を使用することもできる。
In this embodiment, a plurality of dummy material holding tubes 27 are employed as a closed container, but one dummy material holding tube 27 may be used. Further, as the heating device, a heating furnace such as a normal electric furnace or a Tamman tube furnace can be used.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の装置の概念を示す構成図である。FIG. 1 is a configuration diagram illustrating the concept of an apparatus according to an embodiment.

【図2】反応管付近を拡大して示す構成図である。FIG. 2 is an enlarged configuration diagram showing the vicinity of a reaction tube.

【図3】希土類系磁石原料の熱履歴形態を示すグラフで
ある。
FIG. 3 is a graph showing a thermal history form of a rare earth magnet raw material.

【符号の説明】[Explanation of symbols]

図中、1は原料保持部、10は反応管、2は希土類系磁
石原料、25はダミー材料、27はダミー材料保持管、
4は加熱装置、40は加熱室、45は温度制御装置、5
は水素ガス送給装置、6は排気装置、60、65は真空
ポンプ、98は制御装置を示す。
In the figure, 1 is a raw material holding unit, 10 is a reaction tube, 2 is a rare earth magnet raw material, 25 is a dummy material, 27 is a dummy material holding tube,
4 is a heating device, 40 is a heating chamber, 45 is a temperature control device, 5
Denotes a hydrogen gas supply device, 6 denotes an exhaust device, 60 and 65 denote vacuum pumps, and 98 denotes a control device.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】発熱を伴う水素の吸蔵、及び吸熱を伴う水
素の放出により磁気特性が向上する特性をもつ希土類系
磁石原料を保持する原料保持部と、 該原料保持部の希土類系磁石原料を加熱する加熱装置
と、 該原料保持部に水素を送給して該原料保持部の希土類系
磁石原料に水素を吸蔵させる水素ガス送給装置と、 該原料保持部を減圧して該原料保持部の希土類系磁石原
料から水素を放出させる排気装置と、 該原料保持部の希土類系磁石原料に接近して設けられ、
吸熱性及び発熱性をもつ熱機能材を保持する熱機能材保
持部と、 該原料保持部の希土類系磁石原料の発熱に略同期させて
該熱機能材を吸熱させると共に、該原料保持部の希土類
系磁石原料の吸熱に略同期させて該熱機能材を発熱させ
る同期手段とを具備することを特徴とする希土類系磁石
粉末の製造装置。
1. A raw material holding portion for holding a rare earth magnet raw material having a characteristic that magnetic characteristics are improved by absorbing hydrogen with heat generation and releasing hydrogen with heat absorption, and a rare earth magnet raw material of the raw material holding portion. A heating device for heating, a hydrogen gas feeding device for feeding hydrogen to the raw material holding part to occlude hydrogen in the rare earth magnet raw material of the raw material holding part, and reducing the raw material holding part to reduce the raw material holding part An exhaust device for releasing hydrogen from the rare earth-based magnet raw material of,
A heat functional material holding portion for holding a heat functional material having endothermic and heat generating properties; and a heat absorbing material for the heat functional material, substantially in synchronization with heat generation of the rare earth magnet raw material of the raw material holding portion, and An apparatus for producing a rare earth magnet powder, comprising: a synchronizing means for generating heat from the thermal functional material substantially in synchronization with heat absorption of the rare earth magnet raw material.
【請求項2】原料保持部は、希土類系磁石原料を分割し
て保持する適数個の管体で構成されていることを特徴と
する請求項5に記載の希土類系磁石粉末の製造装置。
2. The apparatus for producing rare earth magnet powder according to claim 5, wherein the raw material holding portion is composed of an appropriate number of tubes for dividing and holding the rare earth magnet raw material.
【請求項3】熱機能材保持部は管体と同数個設けられ、
各熱機能材保持部は各該管体の内部に設けられているこ
とを特徴とする請求項6に記載の希土類系磁石粉末の製
造装置。
3. The same number of thermal function material holding portions as the tubular body are provided,
The apparatus for manufacturing a rare earth magnet powder according to claim 6, wherein each of the thermal functional material holding units is provided inside each of the tubes.
【請求項4】該熱機能材は該希土類系磁石原料と同系の
希土類系磁石を主要成分とするダミー材料である請求項
5記載の希土類系磁石粉末の製造装置。
4. The apparatus for producing rare earth magnet powder according to claim 5, wherein the thermal functional material is a dummy material containing a rare earth magnet of the same type as the rare earth magnet raw material as a main component.
【請求項5】加熱室を形成する加熱容器と、 該加熱室を加熱する加熱手段と、 該加熱室内に配置され該加熱室を加熱または冷却する密
閉容器と該密閉容器内に配置された水素吸蔵合金と該密
閉容器内の水素ガス圧を制御する水素ガス圧制御装置と
からなる温度制御手段と、 を具備することを特徴とする加熱処理装置。
5. A heating container forming a heating chamber, heating means for heating the heating chamber, a closed container arranged in the heating chamber for heating or cooling the heating chamber, and hydrogen arranged in the closed container. A heat treatment device comprising: a temperature control means comprising a storage alloy and a hydrogen gas pressure control device for controlling the hydrogen gas pressure in the closed container.
【請求項6】該加熱容器は筒状の第1パイプであり、該
密閉容器は該第1パイプ内に配設された第2パイプであ
る請求項9記載の加熱処理装置。
6. The heat treatment apparatus according to claim 9, wherein the heating container is a cylindrical first pipe, and the closed container is a second pipe arranged in the first pipe.
【請求項7】該加熱手段は内部に収納室を持ち、該収納
室を形成する炉壁の内部あるいは内周面に発熱部をもつ
加熱炉であり、該加熱容器は該加熱炉の収納室に設けら
れている請求項10記載の加熱処理装置。
7. The heating means is a heating furnace having a storage chamber therein, and a heating portion inside or on an inner peripheral surface of a furnace wall forming the storage chamber, wherein the heating container is a storage chamber of the heating furnace. The heat treatment apparatus according to claim 10, which is provided in the.
【請求項8】該加熱炉の該収納室には複数個の該加熱容
器が収納されている請求項11記載の加熱処理装置。
8. The heat treatment apparatus according to claim 11, wherein a plurality of the heating containers are housed in the housing chamber of the heating furnace.
JP35879996A 1995-01-17 1996-12-26 Rare earth magnet powder manufacturing apparatus and heat treatment apparatus usable therefor Expired - Fee Related JP3680465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35879996A JP3680465B2 (en) 1995-01-17 1996-12-26 Rare earth magnet powder manufacturing apparatus and heat treatment apparatus usable therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP513195 1995-01-17
JP7-5131 1995-01-17
JP35879996A JP3680465B2 (en) 1995-01-17 1996-12-26 Rare earth magnet powder manufacturing apparatus and heat treatment apparatus usable therefor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8004537A Division JP2881397B2 (en) 1995-01-17 1996-01-16 Manufacturing method of rare earth magnet powder

Publications (2)

Publication Number Publication Date
JPH09251912A true JPH09251912A (en) 1997-09-22
JP3680465B2 JP3680465B2 (en) 2005-08-10

Family

ID=26339037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35879996A Expired - Fee Related JP3680465B2 (en) 1995-01-17 1996-12-26 Rare earth magnet powder manufacturing apparatus and heat treatment apparatus usable therefor

Country Status (1)

Country Link
JP (1) JP3680465B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6056830A (en) * 1996-10-28 2000-05-02 Aichi Steel Works, Ltd. Anisotropic magnet powders and their production method
US6113846A (en) * 1997-12-22 2000-09-05 Aichi Steel Works, Ltd. Production apparatus for rare earth anisotropic magnet powders
US6444052B1 (en) * 1999-10-13 2002-09-03 Aichi Steel Corporation Production method of anisotropic rare earth magnet powder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6056830A (en) * 1996-10-28 2000-05-02 Aichi Steel Works, Ltd. Anisotropic magnet powders and their production method
US6113846A (en) * 1997-12-22 2000-09-05 Aichi Steel Works, Ltd. Production apparatus for rare earth anisotropic magnet powders
KR100300509B1 (en) * 1997-12-22 2001-11-22 다카하시 아키오 Rare Earth Magnetic Powder Manufacturing Equipment
US6444052B1 (en) * 1999-10-13 2002-09-03 Aichi Steel Corporation Production method of anisotropic rare earth magnet powder

Also Published As

Publication number Publication date
JP3680465B2 (en) 2005-08-10

Similar Documents

Publication Publication Date Title
US5505794A (en) Method for heat treating metallic materials and apparatus therefor
US20220208399A1 (en) Control of low energy nuclear reactions in hydrides, and autonomously controlled heat module
US5851312A (en) Production method, production apparatus and heat treatment apparatus for anisotropic magnet powder
JPH09251912A (en) Rare earth magnet powder producing apparatus and heat treating apparatus therefor
JP3120172B2 (en) Equipment for manufacturing rare earth magnet powder
JP2881397B2 (en) Manufacturing method of rare earth magnet powder
CN114672714A (en) High-entropy hydrogen storage alloy and preparation method thereof
JPH07331304A (en) Producing device for rare earth based magnet powder
JP2897503B2 (en) Heat treatment equipment for metallic materials
JPH07188713A (en) Device for producing rare earth magnet powder
JP3424815B2 (en) Hydrogen storage alloy, method for absorbing and releasing hydrogen using the alloy, and hydrogen fuel cell using the method
JP2897502B2 (en) Heat treatment equipment for metallic materials
JPH11229030A (en) Reduction vacuum heat treating facility and controlling method thereof
KR20110088854A (en) Compact tritium storage vessel for recovering storing and delivering of tritium in nuclear fusion facilities
JP2002043112A (en) Method of manufacturing rare earth magnet powder
AU2022209801B2 (en) Heat generation method
JP2897500B2 (en) Heat treatment equipment for metallic materials
JPS6140801A (en) Hydrogen occludable body, its preparation and usage
JPH0214600B2 (en)
JP2022191021A (en) On-vehicle heating element cartridge and pretreatment method and regeneration treatment method of the same
JP2774439B2 (en) Diamond synthesis method
JP2003096532A (en) Hydrogen-absorbing alloy, method for absorption/ desorption of hydrogen using the alloy, and hydrogen fuel cell using the method
JPS5983897A (en) Hydrogen-gas purifying and storing apparatus
JPS61270329A (en) Gaseous hydrogen circulation type heat treatment device
JPH02248307A (en) Method and device for synthesizing nitride

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080527

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees