JPH09251846A - Scanning type charged particle beam device - Google Patents
Scanning type charged particle beam deviceInfo
- Publication number
- JPH09251846A JPH09251846A JP8058802A JP5880296A JPH09251846A JP H09251846 A JPH09251846 A JP H09251846A JP 8058802 A JP8058802 A JP 8058802A JP 5880296 A JP5880296 A JP 5880296A JP H09251846 A JPH09251846 A JP H09251846A
- Authority
- JP
- Japan
- Prior art keywords
- charged particle
- potential
- particle beam
- sample
- scanning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002245 particle Substances 0.000 title claims description 24
- 238000010894 electron beam technology Methods 0.000 claims description 13
- 238000010884 ion-beam technique Methods 0.000 claims description 4
- 238000001514 detection method Methods 0.000 claims description 2
- 239000011163 secondary particle Substances 0.000 claims 2
- 230000003993 interaction Effects 0.000 claims 1
- 238000005036 potential barrier Methods 0.000 abstract description 9
- 230000006866 deterioration Effects 0.000 abstract 1
- 230000007423 decrease Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は走査型電子顕微鏡や
集束イオンビーム装置など、電子ビームやイオンビーム
を利用した観測装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an observation device using an electron beam or an ion beam, such as a scanning electron microscope or a focused ion beam device.
【0002】[0002]
【従来の技術】半導体デバイスの観測に用いられる走査
型電子顕微鏡を例に取る。2. Description of the Related Art A scanning electron microscope used for observing semiconductor devices is taken as an example.
【0003】走査型電子顕微鏡の原理と構成を図1に示
す。電子銃1から放出された電子ビーム2は、収束レン
ズ3および対物レンズ4によって細く絞られ、試料台5
に搭載された試料6の面上に焦点を結ぶ。同時に、電子
ビーム2は、偏向器7によってその軌道を偏向され、試
料面上を二次元走査する。電子ビーム2で照射された試
料部分からは、二次電子8が放出される。二次電子8
は、対物レンズを逆行し、通過した後、メッシュ電極9
に引きつけられる。メッシュ電極9には、10kv程度
の高電圧が印加されている。メッシュ電極9を通り抜け
た二次電子は、二次電子検出器10によって検知され、
電気信号に変換される。この二次電子信号は、増幅など
の信号処理を受けた後、ディスプレイ11を輝度変調す
るために使われる。ディスプレイ11は、電子ビーム2
の試料面上走査と同期して走査されており、ディスプレ
イ画面上に二次電子像が形成される。FIG. 1 shows the principle and structure of a scanning electron microscope. The electron beam 2 emitted from the electron gun 1 is narrowed down by the converging lens 3 and the objective lens 4, and the sample stage 5
Focus on the surface of the sample 6 mounted on. At the same time, the trajectory of the electron beam 2 is deflected by the deflector 7 and two-dimensionally scans the sample surface. Secondary electrons 8 are emitted from the sample portion irradiated with the electron beam 2. Secondary electron 8
Traverses the objective lens and passes through the mesh electrode 9
Be attracted to. A high voltage of about 10 kv is applied to the mesh electrode 9. The secondary electrons passing through the mesh electrode 9 are detected by the secondary electron detector 10,
Converted to electrical signals. This secondary electron signal is used for brightness-modulating the display 11 after undergoing signal processing such as amplification. The display 11 has an electron beam 2
Scanning is performed in synchronization with the scanning on the sample surface, and a secondary electron image is formed on the display screen.
【0004】ここで、試料面から対物レンズを経て二次
電子検出器10に至る二次電子通路は、試料台5および
対物レンズ4の磁極・磁路が接地されているため、電位
0の電位障壁(最低電位部)を有する。In the secondary electron path from the sample surface to the secondary electron detector 10 through the objective lens, the magnetic poles and magnetic paths of the sample table 5 and the objective lens 4 are grounded. It has a barrier (the lowest potential part).
【0005】[0005]
【発明が解決しようとする課題】絶縁物試料を観測する
場合、電子ビームの照射を受けて、試料表面が帯電す
る。試料表面の負帯電は、ハレーションなどの像障害を
引き起こす。半導体デバイスへの応用では、一般に1k
eV程度の低エネルギ電子ビームを用い、試料表面を正
に帯電させた状態で観測する。When observing an insulator sample, the sample surface is charged by being irradiated with an electron beam. The negative charge on the sample surface causes image defects such as halation. Generally 1k for application to semiconductor devices
Using a low energy electron beam of about eV, observation is performed with the surface of the sample being positively charged.
【0006】しかし、正の帯電すなわち正の試料表面電
位は、二次電子検出信号の減少、すなわち、像コントラ
ストの低下をもたらす。However, a positive charge, that is, a positive sample surface potential causes a decrease in secondary electron detection signal, that is, a decrease in image contrast.
【0007】試料表面が帯電していない場合を図2(b)
に示す。The case where the sample surface is not charged is shown in FIG.
Shown in
【0008】試料表面電位は、試料台5と同じく、0の
アース電位にある。したがって、試料表面から放出され
た二次電子8は、0電位よりも高いエネルギを持つ。こ
のため、総ての二次電子が、二次電子通路の電位障壁;
0電位を乗り越えて、二次電子検出器10に到達し得
る。像コントラストの低下は生じない。The sample surface potential is at the ground potential of 0, like the sample table 5. Therefore, the secondary electrons 8 emitted from the sample surface have energy higher than 0 potential. Therefore, all the secondary electrons are the potential barriers of the secondary electron passages;
The secondary electron detector 10 can be reached by surpassing the zero potential. No reduction in image contrast occurs.
【0009】試料表面が帯電し・正電位にある場合を図
2(c)に示す。FIG. 2C shows the case where the sample surface is charged and is at a positive potential.
【0010】試料表面から放出された二次電子8の一
部、二次電子エネルギ分布中の斜線で示す低エネルギ部
分は、電位障壁(0電位)よりも低いエネルギを持つこ
とになる。これ等低エネルギの二次電子は、二次電子通
路の電位障壁を乗り越えることができない。低エネルギ
二次電子が二次電子検出器10に到達できないため、像
コントラストは低下する。A part of the secondary electrons 8 emitted from the surface of the sample, a low energy part indicated by diagonal lines in the secondary electron energy distribution, has energy lower than the potential barrier (0 potential). These low-energy secondary electrons cannot overcome the potential barrier of the secondary electron passage. Since low energy secondary electrons cannot reach the secondary electron detector 10, the image contrast is reduced.
【0011】電子ビーム照射の初期・試料表面の帯電が
飽和するまでの間、二次電子像は像コントラストが低下
する方向で変化する。At the initial stage of electron beam irradiation and until the charge on the surface of the sample is saturated, the secondary electron image changes in the direction in which the image contrast decreases.
【0012】二次電子の運動エネルギ分布は数eVのと
ころにピークを持っており、試料表面の正電位が10e
V程度にまで上がると、像形成は困難になる。The kinetic energy distribution of secondary electrons has a peak at several eV, and the positive potential of the sample surface is 10 e.
If it goes up to about V, image formation becomes difficult.
【0013】本発明の目的は、帯電に起因した像コント
ラストの低下をなくすための手段を提供することにあ
る。An object of the present invention is to provide a means for eliminating the reduction in image contrast due to charging.
【0014】[0014]
【課題を解決するための手段】二次電子通路の最低電位
を、試料台の電位よりも、例えば、数十V程度高くす
る。The minimum potential of the secondary electron passage is set higher than the potential of the sample stage by, for example, about several tens of volts.
【0015】二次電子は二次電子通路の電位障壁を乗り
越えるに充分大きなエネルギを持つ。したがって、像コ
ントラストの低下は生じない。The secondary electrons have enough energy to overcome the potential barrier of the secondary electron passage. Therefore, the image contrast does not decrease.
【0016】[0016]
【発明の実施の形態】二次電子通路の電位障壁は対物レ
ンズ部分で形成されている。この部分の二次電子通路
を、図3に示すように、筒電極12で覆う。筒電極12
には、数十V程度の正電圧が印加される。印加された正
電圧が試料表面電位よりも高い値であれば、二次電子通
路の電位障壁は解消される。電位障壁がなくなれば、試
料表面が帯電し、正電位にあっても、総ての二次電子が
二次電子検出器に到達できるようになる。BEST MODE FOR CARRYING OUT THE INVENTION The potential barrier of the secondary electron passage is formed by the objective lens portion. The secondary electron passage in this portion is covered with the cylindrical electrode 12, as shown in FIG. Cylinder electrode 12
A positive voltage of about several tens of V is applied to. If the applied positive voltage is higher than the sample surface potential, the potential barrier of the secondary electron passage is eliminated. If the potential barrier is eliminated, all the secondary electrons can reach the secondary electron detector even if the sample surface is charged and has a positive potential.
【0017】二次電子通路最低電位部分の電位を可変に
すれば、電圧コントラストの観測が可能となる。By making the potential of the lowest potential portion of the secondary electron passage variable, the voltage contrast can be observed.
【0018】試料面上での荷電粒子線走査方法として、
電子ビームを偏向する方法を示したが、試料台を移動し
ながら走査することも可能である。また、電子ビーム偏
向と試料台移動を組み合わせて走査しても良い。As a charged particle beam scanning method on the sample surface,
Although the method of deflecting the electron beam is shown, it is also possible to scan while moving the sample table. Further, scanning may be performed by combining electron beam deflection and sample stage movement.
【0019】試料台が接地してある場合を示したが、試
料台すなわち試料が或る電位に保持されている状態でも
良い。Although the case where the sample table is grounded is shown, the sample table, that is, the sample may be held at a certain potential.
【0020】荷電粒子線として、電子ビームを用いる場
合を示したが、イオンビームを用いても良い。Although the electron beam is used as the charged particle beam, an ion beam may be used.
【0021】[0021]
【発明の効果】本発明によれば、放出された二次電子
は、総て、二次電子通路の電位障壁を乗り越えるに充分
大きなエネルギを持つことになり、像コントラストの低
下は生じない。According to the present invention, the emitted secondary electrons all have energy large enough to overcome the potential barrier of the secondary electron passage, and the image contrast is not deteriorated.
【図1】走査型電子顕微鏡の原理と構成の説明図。FIG. 1 is an explanatory diagram of the principle and configuration of a scanning electron microscope.
【図2】試料表面電位と二次電子通路電位分布,二次電
子エネルギ分布との関係の説明図。FIG. 2 is an explanatory diagram of a relationship between a sample surface potential, a secondary electron passage potential distribution, and a secondary electron energy distribution.
【図3】本発明の一実施例を示す説明図。FIG. 3 is an explanatory view showing one embodiment of the present invention.
2…電子ビーム、4…対物レンズ、5…試料台、6…試
料、9…メッシュ電極、10…二次電子検出器、12…
筒電極。2 ... Electron beam, 4 ... Objective lens, 5 ... Sample stage, 6 ... Sample, 9 ... Mesh electrode, 10 ... Secondary electron detector, 12 ...
Cylindrical electrode.
Claims (5)
と、荷電粒子線を発生するための荷電粒子線発生系と、
前記荷電粒子線を前記試料面上で細く絞るための収束レ
ンズ系と、前記荷電粒子線を前記試料面上で走査させる
ための荷電粒子線偏向系と、前記荷電粒子線と前記試料
との相互作用の結果、前記試料面から放出される二次荷
電粒子を前記収束レンズ系の少なくとも一部を通した後
で検出するための二次荷電粒子検出系とを有する走査型
荷電粒子線装置において、前記試料面から前記二次荷電
粒子検出器までの二次荷電粒子通路の電位を、正電荷を
持つ二次粒子の場合には前記試料台の電位よりも低く、
負電荷を持つ二次粒子の場合には前記試料台の電位より
も高くすることを特徴とする走査型荷電粒子線装置。1. A sample stage on which a sample for observation is placed, and a charged particle beam generation system for generating a charged particle beam,
A convergent lens system for narrowing down the charged particle beam on the sample surface, a charged particle beam deflection system for scanning the charged particle beam on the sample surface, and a mutual interaction between the charged particle beam and the sample. As a result of the action, in a scanning charged particle beam device having a secondary charged particle detection system for detecting secondary charged particles emitted from the sample surface after passing through at least a part of the convergent lens system, The potential of the secondary charged particle passage from the sample surface to the secondary charged particle detector is lower than the potential of the sample table in the case of secondary particles having a positive charge,
A scanning charged particle beam device characterized in that in the case of secondary particles having a negative charge, the potential is made higher than the potential of the sample stage.
電位、あるいは前記二次正荷電粒子通路の最高電位部分
の電位を可変にした請求項1の走査型荷電粒子線装置。2. The scanning charged particle beam device according to claim 1, wherein the potential of the lowest potential portion of the secondary negatively charged particle passage or the potential of the highest potential portion of the secondary positively charged particle passage is variable.
1または請求項2の走査型荷電粒子線装置。3. The scanning charged particle beam device according to claim 1, wherein the charged particle beam is an electron beam.
3の走査型荷電粒子線装置。4. The scanning charged particle beam device according to claim 3, wherein the secondary charged particles are secondary electrons.
項1または請求項2の走査型荷電粒子線装置。5. The scanning charged particle beam device according to claim 1, wherein the charged particle beam is an ion beam.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8058802A JPH09251846A (en) | 1996-03-15 | 1996-03-15 | Scanning type charged particle beam device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8058802A JPH09251846A (en) | 1996-03-15 | 1996-03-15 | Scanning type charged particle beam device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09251846A true JPH09251846A (en) | 1997-09-22 |
Family
ID=13094734
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8058802A Pending JPH09251846A (en) | 1996-03-15 | 1996-03-15 | Scanning type charged particle beam device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09251846A (en) |
-
1996
- 1996-03-15 JP JP8058802A patent/JPH09251846A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020082861A1 (en) | Low-energy scanning electron microscope system, scanning electron microscope system, and specimen detection method | |
US7960697B2 (en) | Electron beam apparatus | |
JP3291880B2 (en) | Scanning electron microscope | |
US6392231B1 (en) | Swinging objective retarding immersion lens electron optics focusing, deflection and signal collection system and method | |
US6218664B1 (en) | SEM provided with an electrostatic objective and an electrical scanning device | |
US6444981B1 (en) | Scanning electron microscope | |
US6043491A (en) | Scanning electron microscope | |
US6674075B2 (en) | Charged particle beam apparatus and method for inspecting samples | |
US6407387B1 (en) | Particle beam apparatus | |
US7541580B2 (en) | Detector for charged particle beam instrument | |
JP4176159B2 (en) | Environmentally controlled SEM using magnetic field for improved secondary electron detection | |
JP2000200579A (en) | Scanning electron microscope | |
JPS63146336A (en) | Spectrometer objective lens for corpuscular ray measuring apparatus | |
CN108807118A (en) | A kind of scanning electron microscope system and sample detection method | |
US6960766B2 (en) | Swinging objective retarding immersion lens electron optics focusing, deflection and signal collection system and method | |
US6617579B2 (en) | Scanning electronic beam apparatus | |
US7233008B1 (en) | Multiple electrode lens arrangement and a method for inspecting an object | |
JP2002025492A (en) | Method and apparatus for imaging sample using low profile electron detector for charged particle beam imaging system containing electrostatic mirror | |
JPH0955181A (en) | Scanning electron microscope | |
JPH09219170A (en) | Secondary electron detecting device for scanning electron microscope | |
JPH09251846A (en) | Scanning type charged particle beam device | |
JPH08264149A (en) | Secondary electron detecting apparatus for scanning electron microscope | |
JP3101141B2 (en) | Electron beam equipment | |
JPH0668832A (en) | Scanning electron microscope | |
JP2003203595A (en) | Electron microscope |