JPH09250897A - Heat transfer complex pipe for waste heat boiler utilizing dust combustion discharged gas with superior anti-particle corrosion characteristic - Google Patents

Heat transfer complex pipe for waste heat boiler utilizing dust combustion discharged gas with superior anti-particle corrosion characteristic

Info

Publication number
JPH09250897A
JPH09250897A JP6128496A JP6128496A JPH09250897A JP H09250897 A JPH09250897 A JP H09250897A JP 6128496 A JP6128496 A JP 6128496A JP 6128496 A JP6128496 A JP 6128496A JP H09250897 A JPH09250897 A JP H09250897A
Authority
JP
Japan
Prior art keywords
heat transfer
less
corrosion resistance
waste heat
heat boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6128496A
Other languages
Japanese (ja)
Inventor
Shunichi Yoshitake
俊一 吉武
Tomoyoshi Kiwake
友義 木分
Saburo Wakita
三郎 脇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP6128496A priority Critical patent/JPH09250897A/en
Publication of JPH09250897A publication Critical patent/JPH09250897A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a heat transfer complex pipe of a waste heat boiler utilizing dust combustion discharged gas having a high temperature anti-corrosion characteristic, in particular a superior anti-particle corrosion characteristic. SOLUTION: This heat transfer complex pipe for a waste heat boiler utilizing dust combustion discharged gas with a superior high temperature anti-particle corrosion includes an outer layer composed of an Ni base alloy having a composition of Cr: 38 to 50wt.%, C: 0.001 to 0.05wt.%, Si: 0.1wt.% or less, Mg: 0.001 to 0.1wt.%, B: 0.001 to 0.1wt.%, P: 0.03wt.% or less, S: 0.03wt.% or less, one or two of Mo and W: 0.1 to 2wt.%, and further includes the following (a) and/or (b) as required, the balance is Ni and unavoidable impurities, and a normal steel for a boiler, where (a) one or two elements or more of rare earth elements: 0.001 to 0.1wt.%, Y: 0.001 to 0.1wt.%, Zr: 0.001 to 0.1wt.%, Hf: 0.001 to 0.5wt.% and (b) one or two elements or more of Mn: 0.01 to 1.0wt.%, Ca: 0.001 to 0.1wt.%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、高温耐食性、特
に高温耐粒界腐食性に優れたごみ焼却排ガス利用廃熱ボ
イラの伝熱用複合管に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite pipe for heat transfer of a waste heat boiler utilizing refuse incineration exhaust gas, which is excellent in high-temperature corrosion resistance, particularly high-temperature intergranular corrosion resistance.

【0002】[0002]

【従来の技術】一般に、ごみ焼却施設には排ガスのもつ
高温潜熱を利用する目的で、廃熱ボイラが設置されてい
る。また、前記廃熱ボイラの構造部材である伝熱用複合
管は、腐食性の強いHClやSO2 ガス、Na2 SO4
などの溶融硫酸塩、さらにNaClやKClなどの溶融
塩化物などの腐食性生成物を含有する高温の排ガスにさ
らされ、かつ前記硫酸塩や塩化物などが表面に堆積した
環境下におかれることから、その製造には高温耐食性の
優れた各種の材料が用いられている。
2. Description of the Related Art Generally, a waste heat boiler is installed in a refuse incineration plant for the purpose of utilizing high-temperature latent heat of exhaust gas. Further, the composite tube for heat transfer, which is a structural member of the waste heat boiler, is made of highly corrosive HCl or SO 2 gas, Na 2 SO 4
Exposed to high-temperature exhaust gas containing corrosive products such as molten sulfates such as molten chlorides such as NaCl and KCl, and placed in an environment where the sulfates and chlorides are deposited on the surface. Therefore, various materials having excellent high-temperature corrosion resistance are used for the production.

【0003】従来、高温耐食性に優れた各種の材料とし
て、特開平1−132732号公報に見られる様な、重
量%で(以下、%は重量%を示す)、Cr:38〜50
%、C:0.05%以下、N:0.04%以下、Moお
よびWのうちの1種または2種:0.1〜2%を含有
し、残りがNiと不可避不純物からなる組成を有するN
i基合金で構成された材料が知られており、このNi基
合金で構成された伝熱管を廃熱ボイラに組み込み利用し
ようとする考え方も知られており、またこれら材料で構
成された伝熱管は一般に高価であるところから、通常の
ボイラ用鋼の外側に被覆し、通常のボイラ用鋼からなる
内層と新しく開発されたNi基合金で構成された外層か
らなる複合管を前記せる伝熱管として使用しようとする
こ試みも知られている。
Conventionally, as various materials excellent in high temperature corrosion resistance, Cr: 38 to 50 by weight% (hereinafter,% means weight%) as seen in JP-A-1-132732.
%, C: 0.05% or less, N: 0.04% or less, one or two kinds of Mo and W: 0.1 to 2%, and the balance of Ni and unavoidable impurities. Have N
A material composed of an i-based alloy is known, and an idea of incorporating a heat transfer tube composed of this Ni-based alloy into a waste heat boiler is also known, and a heat transfer tube composed of these materials is also known. Since it is generally expensive, it is used as a heat transfer tube that covers the outside of ordinary boiler steel and a composite pipe consisting of an inner layer made of ordinary boiler steel and an outer layer made of newly developed Ni-based alloy. Attempts to use are also known.

【0004】[0004]

【発明が解決しようとする課題】しかし一方、近年の切
迫したエネルギー事情から、ごみ焼却による廃熱を最大
限に利用するために廃熱ボイラの蒸気条件を高温高圧化
する傾向にあり、これに伴ない伝熱用複合管の管壁温度
はさらに上昇し、かつごみの高カロリー化およびプラス
チックの増加により排ガスの腐食性も一段と激しさを増
す傾向にあり、この激しい腐食部分では粒界腐食が発生
し易い。かかる点から廃熱ボイラの伝熱用複合管には、
より一層の耐粒界腐食性が要求され、この要求に対して
提供された上記従来の各種材料は、排ガスに対する高温
耐食性がかなり向上しているが未だ十分でなく、したが
って、この従来の各種材料からなる伝熱用複合管の寿命
は、十分に満足のいくものではなかった。
On the other hand, due to the recent urgent energy situation, there is a tendency to increase the steam condition of the waste heat boiler to high temperature and pressure in order to maximize the use of waste heat from waste incineration. As a result, the wall temperature of the heat transfer composite pipe further rises, and the corrosiveness of exhaust gas tends to become more violent due to high calorie content and increase in plastics. It is easy to occur. From this point, the heat transfer composite pipe of the waste heat boiler has
Further conventional intergranular corrosion resistance is required, and the above-mentioned various conventional materials provided to meet this requirement have considerably improved high-temperature corrosion resistance to exhaust gas, but they are still insufficient. The life of the composite tube for heat transfer consisting of was not fully satisfactory.

【0005】[0005]

【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、より一段と優れた耐粒界腐食性
を有する高温耐食性に優れた長寿命のごみ焼却排ガス利
用廃熱ボイラ用伝熱用複合管を開発すべく研究を行なっ
た結果、 (a)従来の特開平1−132732号公報記載のNi
基合金で構成された伝熱管は、高温耐粒界腐食性が十分
でないために、腐食性の強いHClやSO2 ガス、Na
2 SO4 、K2 SO4 などの溶融硫酸塩、さらにNaC
l、KCl、PbCl2 、ZnCl2 などの溶融塩化物
などが表面に付着堆積した状態で300〜1000℃の
高温の排ガスにさらされると、粒界腐食が進行し、その
結果として十分な高温耐食性が得られず、従って、十分
な寿命が得られない。 (b)上記従来の特開平1−132732号公報記載の
Ni基合金の成分組成を一部組み替え、更に加えて、特
にMg:0.001〜0.1%含有せしめると、熱間加
工性が優れると共に高温耐粒界腐食性が向上したNi基
合金が得られ、このNi基合金で構成された外層を有す
るごみ焼却排ガス利用廃熱ボイラの伝熱用複合管を塑性
加工で製造すると、このMgを0.001〜01.%含
有するNi基合金で構成された外層は熱間加工性が優れ
るところから通常のボイラ用鋼からなる内層との間の密
着性に優れた伝熱用複合管が得られ、さらに高温耐粒界
腐食性が優れるところから、結果として高温耐食性が一
層向上し、伝熱用複合管の寿命が一層伸びる、などの研
究結果を得たのである。
Means for Solving the Problems Accordingly, the present inventors have
From the above viewpoints, as a result of conducting research to develop a heat transfer composite pipe for a waste heat exhaust gas utilization waste heat boiler, which has excellent high temperature corrosion resistance and further excellent intergranular corrosion resistance, and has a long life, ( a) Ni described in Japanese Patent Application Laid-Open No. 1-132732
Since the heat transfer tube made of a base alloy does not have sufficient resistance to high-temperature intergranular corrosion, it has strong corrosive properties such as HCl, SO 2 gas, and Na.
Molten sulfate such as 2 SO 4 , K 2 SO 4 and NaC
When molten chlorides such as 1, KCl, PbCl 2 , ZnCl 2 and the like adhere to the surface and are exposed to high temperature exhaust gas at 300 to 1000 ° C., intergranular corrosion proceeds, resulting in sufficient high temperature corrosion resistance. Is not obtained, and therefore a sufficient life cannot be obtained. (B) When the composition of the Ni-based alloy described in the above-mentioned conventional Japanese Patent Laid-Open No. Hei 1-132732 is partially recombined and further added, in particular, when Mg: 0.001 to 0.1% is contained, the hot workability is A Ni-based alloy that is excellent and has improved high temperature intergranular corrosion resistance is obtained, and when a heat transfer composite pipe of a waste incineration exhaust gas utilization waste heat boiler having an outer layer composed of this Ni-based alloy is manufactured by plastic working, Mg from 0.001 to 01. %, The outer layer composed of the Ni-based alloy has excellent hot workability, so that a heat transfer composite tube with excellent adhesion to the inner layer made of ordinary steel for boilers can be obtained. From the excellent inter-field corrosion resistance, the research results showed that as a result, the high temperature corrosion resistance was further improved and the life of the heat transfer composite pipe was further extended.

【0006】この発明は、上記の研究結果にもとづいて
なされたものであって、 Cr:38〜50%、C:0.001〜0.05%、S
i:0.1%以下、Mg:0.001〜0.1%、B:
0.001〜0.1、P:0.03%以下、S:0.0
3%、MoおよびW:0.1〜2%を含有し、さらに、
必要に応じて、(a) 希土類元素:0.001〜0.
1%、Y:0.001〜0.1%、Zr:0.001〜
0.1%、Hf:0.001〜0.5%のうちの1種ま
たは2種以上、(b) Mn:0.01〜1.0%、C
a:0.001〜0.1%のうちの1種または2種、上
記(a)および/または(b)を含有し、残りがNiと
不可避不純物からなる組成を有するNi基合金で構成し
た外層と通常のボイラ用鋼からなる内層とで構成した高
温耐食性、特に高温耐粒界腐食性に優れたごみ焼却排ガ
ス利用廃熱ボイラの伝熱用複合管に特徴を有するもので
ある。
The present invention has been made based on the above-mentioned research results. Cr: 38-50%, C: 0.001-0.05%, S
i: 0.1% or less, Mg: 0.001 to 0.1%, B:
0.001-0.1, P: 0.03% or less, S: 0.0
3%, Mo and W: 0.1 to 2%, and
(A) Rare earth element: 0.001 to 0.
1%, Y: 0.001-0.1%, Zr: 0.001-
0.1%, Hf: 0.001 to 0.5%, one or more kinds thereof, (b) Mn: 0.01 to 1.0%, C
a: One or two of 0.001 to 0.1%, the above (a) and / or (b) are contained, and the balance is composed of a Ni-based alloy having a composition of Ni and inevitable impurities. It is characterized by a heat transfer composite pipe of a waste incineration exhaust gas waste heat boiler which is excellent in high temperature corrosion resistance, particularly high temperature intergranular corrosion resistance, which is composed of an outer layer and an inner layer made of ordinary boiler steel.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。本発明の高温耐食性に優れたごみ焼却排ガ
ス利用廃熱ボイラの伝熱用複合管は、通常の高周波溶解
炉を用いて、上述せる成分組成をもったNi基合金溶湯
を調製し、インゴットに鋳造し、このインゴットに10
00〜1250℃の範囲内の所定温度で熱間鍛造を施し
て丸棒材とし、ついでこの丸棒材から削り出すことによ
り、所定の直径、肉厚を有する外管を作製し、さらに内
管として所定の直径、肉厚を有する通常のボイラ用鋼を
作製し、これら外管および内管を脱スケ−ルした後、外
管の内側に内管を挿入し、所定の減面率で引き抜き加工
を行い、外管を塑性変形させて外管を内管に密着させる
ことにより複合素管を作製した。これら複合素管を加熱
炉に入れ、所定の温度、時間で熱処理した後、ヘリカル
ロ−ルミルにより、さらに圧延して作製される。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. The heat transfer composite pipe of the waste incinerator exhaust gas utilization waste heat boiler excellent in high temperature corrosion resistance of the present invention is prepared by using an ordinary high frequency melting furnace to prepare a Ni-based alloy molten metal having the above-described component composition and cast into an ingot. And then 10 for this ingot
Hot forging is performed at a predetermined temperature within the range of 0 to 1250 ° C. to obtain a round bar material, and then the round bar material is carved out to produce an outer tube having a predetermined diameter and wall thickness. As a normal boiler steel with a specified diameter and wall thickness, after descaling these outer and inner pipes, insert the inner pipe inside the outer pipe and pull it out at a predetermined surface reduction ratio. After processing, the outer tube was plastically deformed to bring the outer tube into close contact with the inner tube, thereby producing a composite shell. These composite shells are placed in a heating furnace, heat-treated at a predetermined temperature for a predetermined time, and then rolled by a helical roll mill.

【0008】本発明のNi基合金は、従来のNi基合金
の主成分に加え、Mg:0.001〜0.1%が含有さ
れているため、熱間加工性が優れると共に高温耐粒界腐
食性が向上したNi基合金となり、このNi基合金で構
成された外層は熱間加工性が優れるところから通常のボ
イラ用鋼からなる内層との間の密着性に優れた伝熱用複
合管が得られ、さらに高温耐粒界腐食性が優れるところ
から、結果として高温耐食性が一層向上し、腐食性の強
いHClやSO2 ガス、Na2 SO4 、K2 SO4 など
の溶融硫酸塩、さらにNaCl、KCl、PbCl2
ZnCl2 などの溶融塩化物などが表面に付着堆積した
状態で300〜1000℃の高温の排ガスにさらされる
環境下でも、従来では見られない長寿命を有する伝熱用
複合管が得られ、近年のエネルギ−事情下でも、ごみ焼
却による廃熱を最大限に利用出来る優れたごみ焼却排ガ
ス利用廃熱ボイラの伝熱用複合管として十分に満足し得
るものである。この場合、Ni基合金で構成した外層が
高温耐食性、特に高温耐粒界腐食性を確保する作用をな
し、通常のボイラ用鋼からなる内層は強度および耐水蒸
気酸化性を持たせる作用をなすものである。
Since the Ni-based alloy of the present invention contains Mg: 0.001 to 0.1% in addition to the main component of the conventional Ni-based alloy, it has excellent hot workability and high temperature grain boundary resistance. It becomes a Ni-base alloy with improved corrosiveness, and the outer layer composed of this Ni-base alloy has excellent hot workability. Therefore, it is a composite tube for heat transfer with excellent adhesion to the inner layer made of ordinary boiler steel. In addition, since the high temperature intergranular corrosion resistance is excellent, the high temperature corrosion resistance is further improved as a result, and highly corrosive HCl, SO 2 gas, molten sulfate such as Na 2 SO 4 , K 2 SO 4 , Furthermore, NaCl, KCl, PbCl 2 ,
Even in an environment where molten chloride such as ZnCl 2 adheres to and deposits on the surface and is exposed to high temperature exhaust gas at 300 to 1000 ° C., a composite tube for heat transfer having a long life, which has not been seen in the past, can be obtained. Even under the above-mentioned energy circumstances, it is sufficiently satisfactory as a heat transfer composite pipe for an excellent waste incineration exhaust gas-use waste heat boiler capable of maximally utilizing waste heat from waste incineration. In this case, the outer layer composed of a Ni-based alloy has a function of ensuring high-temperature corrosion resistance, particularly high-temperature intergranular corrosion resistance, and the inner layer of ordinary boiler steel has a function of providing strength and steam oxidation resistance. Is.

【0009】この発明の高温耐食性に優れたごみ焼却排
ガス利用廃熱ボイラの伝熱用複合管で使用する「通常の
ボイラ用鋼」とは、具体的には、JIS3461〜34
64および3467で規定されるボイラ熱交換器炭素
鋼、低合金鋼、フェライト系ステンレス鋼、オ−ステナ
イト系ステンレス鋼などであるが、その使用条件によっ
てその鋼種は適宜選択し得るもので、特に限定されるも
のではない。
The "normal boiler steel" used in the heat transfer composite pipe of the waste incineration exhaust gas utilization waste heat boiler excellent in high temperature corrosion resistance of the present invention is specifically JIS 3461 to 34.
Boiler heat exchangers specified in 64 and 3467 are carbon steel, low alloy steel, ferritic stainless steel, austenitic stainless steel, etc., but the steel type can be appropriately selected depending on the use conditions, and is not particularly limited. It is not something that will be done.

【0010】また、この発明の高温耐食性に優れたごみ
焼却排ガス利用廃熱ボイラの伝熱用複合管は、Ni基合
金で構成された管の中に通常のボイラ用鋼管を挿入し、
通常の塑性加工による方法で作られるが、Ni基合金で
構成された外層をこの発明の新しいNi基合金を溶射ま
たは肉盛り溶接することによっても製造することが出来
る。
Further, the heat transfer composite pipe of the waste incineration exhaust gas utilization waste heat boiler excellent in high temperature corrosion resistance of the present invention, a normal boiler steel pipe is inserted into a pipe made of Ni-based alloy,
Although it is produced by a conventional plastic working method, the outer layer composed of the Ni-based alloy can also be produced by thermal spraying or overlay welding the new Ni-based alloy of the present invention.

【0011】次いで、この発明の伝熱用複合管の外層を
構成するNi基合金の成分組成を上記の通りに限定した
理由を説明する。 (a) Cr Cr成分には、共存した状態で高温のごみ焼却排ガスに
対する高温耐食性および高温耐酸化性を向上させると共
に、高温強度を向上させる作用があるが、その含有量が
38%未満になると前記作用に所望の効果が得られず、
一方その含有量50%を越えると脆化して、成形加工時
に割れが発生し易くなることから、その含有量を38〜
50%、望ましくは38〜47%、さらに望ましくは4
3〜47%に定めた。
Next, the reason why the composition of the Ni-base alloy forming the outer layer of the heat transfer composite tube of the present invention is limited as described above will be explained. (A) Cr The Cr component has a function of improving the high temperature corrosion resistance and the high temperature oxidation resistance to the high temperature waste incineration exhaust gas in the coexisting state, and also improving the high temperature strength, but when the content thereof is less than 38%. The desired effect is not obtained in the above action,
On the other hand, if its content exceeds 50%, it becomes brittle and cracks are likely to occur during the molding process.
50%, preferably 38-47%, more preferably 4
It was set to 3 to 47%.

【0012】(b) C C成分は高温強度を向上させる作用があるが、その含有
量が0.001%未満では所望の高温強度を確保するこ
とができず、一方、その含有量が0.05%を越える
と、粒界に存在する炭化物の量が増大するようになっ
て、特に高温排ガス中に含有する溶融塩化物による粒界
腐食の進行が促進されるようになることから、その含有
量を0.001〜0.05%と定めた。
(B) C C component has the effect of improving high temperature strength, but if its content is less than 0.001%, the desired high temperature strength cannot be ensured, while its content is less than 0.1%. If it exceeds 05%, the amount of carbides existing in the grain boundaries increases, and the progress of intergranular corrosion due to the molten chloride contained in the high-temperature exhaust gas is promoted. The amount was defined as 0.001-0.05%.

【0013】(c) Si Si成分には脱酸作用があるので、溶湯の脱酸に用いる
が、この場合その含有量が0.1%を越えると、靱性が
低下するようになることから、その含有量を0.1%以
下と定めた。
(C) Si Since the Si component has a deoxidizing action, it is used for deoxidizing the molten metal. In this case, if the content exceeds 0.1%, the toughness tends to decrease, The content was set to 0.1% or less.

【0014】(d) Mg Mg成分には耐粒界浸食性を向上させ、かつ熱間加工性
も向上させる作用があるが、その含有量が0.001%
未満では前記作用に所望の効果が得られず、一方その含
有量が0.1%を越えると粒界に金属化合物を生成し、
熱間加工性および耐食性を低下させるることから、その
含有量を0.001〜0.1%と定めた。
(D) Mg The Mg component has the effect of improving grain boundary erosion resistance and hot workability, but its content is 0.001%.
When the content is less than the above, the desired effect cannot be obtained, while when the content exceeds 0.1%, a metal compound is formed at the grain boundary,
Since the hot workability and the corrosion resistance are reduced, the content thereof is set to 0.001 to 0.1%.

【0015】(e) B B成分には、熱間加工性を向上させる作用があるが、そ
の含有量が0.001%未満では所望の効果が得られ
ず、一方その含有量が0.1%を越えると粒界に化物を
生成し、熱間加工性および高温耐粒界腐食性を低下する
ようになることから、その含有量を0.001〜0.1
%、望ましくは0.001〜0.01%と定めた。
(E) BB The component B has the effect of improving hot workability, but if its content is less than 0.001%, the desired effect cannot be obtained, while its content is 0.1. %, A compound is formed at the grain boundaries, and the hot workability and high temperature intergranular corrosion resistance are deteriorated. Therefore, the content is 0.001 to 0.1.
%, Desirably 0.001 to 0.01%.

【0016】(f) PおよびS これらの成分がそれぞれP:0.03%およびS:0.
03%をこえると、粒界に偏析するようになって熱間加
工性を低下させ、かつ高温耐食性も低下するようになる
ことから、その含有量をP:0.03%以下およびS:
0.03%以下と定めた。
(F) P and S These components are P: 0.03% and S: 0.
If it exceeds 03%, segregation occurs in the grain boundaries, which deteriorates hot workability and also decreases high-temperature corrosion resistance. Therefore, its content is P: 0.03% or less and S:
It was determined to be 0.03% or less.

【0017】(g) MoおよびW これらの成分には、共に素地に固溶し、Cr、Moおよ
びWが共存した状態で耐食性を一段と向上させる作用が
あるが、その含有量が0.1%未満では所望の優れた耐
食性を確保することが出来ず、一方その含有量が2%を
越えると成形加工性が著しく低下するようになることか
ら、その含有量を0.1〜2%、望ましくは0.5〜
1.5%と定めた。
(G) Mo and W These components both dissolve in the base material and have the effect of further improving the corrosion resistance in the coexistence of Cr, Mo and W, but their contents are 0.1%. If the content is less than the above, the desired excellent corrosion resistance cannot be ensured, while if the content exceeds 2%, the moldability becomes remarkably reduced, so the content is preferably 0.1 to 2%. Is from 0.5
It was set at 1.5%.

【0018】(h) 希土類元素、Y、ZrおよびHf これらの成分には、熱間加工性を向上させる作用がある
ので必要に応じて含有させるが、その含有量が、いずれ
かの成分も0.001%未満では所望の熱間加工性向上
効果が得られず、一方その含有量が、希土類元素、Yお
よびZrにあっは0.1%、Hfにあっては0.5%を
越えても熱間加工性により一層の向上効果が得られない
ことから、その含有量を、希土類元素:0.001〜
0.1%、Y:0.001〜0.1%、Zr:0.00
1〜0.1%、およびHf:0.001〜0.5%と定
めた。
(H) Rare earth element, Y, Zr, and Hf These components have an effect of improving hot workability, so they are contained as necessary. However, the content of any of the components is 0. If it is less than 0.001%, the desired hot workability-improving effect cannot be obtained. On the other hand, if the content is less than 0.1% for rare earth elements, Y and Zr, and more than 0.5% for Hf. Since the hot workability does not provide any further improvement effect, the content of the rare earth element: 0.001-
0.1%, Y: 0.001 to 0.1%, Zr: 0.00
1 to 0.1%, and Hf: 0.001 to 0.5%.

【0019】(i) MnおよびCa MnおよびCa成分には、脱酸作用があり耐食性を向上
させる効果があるので、必要に応じて含有されるが、そ
の含有量がMn成分で0.01%、Ca成分で0.00
1%未満では前記作用に所望の効果が得られず、一方そ
の含有量がMn成分で0.1%、Ca成分で0.1%越
えると、それらの析出相が生成し熱間加工性および耐食
性が低下することから、その含有量をMn成分で0.0
1〜1.0%、さらにCa成分で0.001〜0.1%
と定めた。
(I) Mn and Ca The Mn and Ca components have a deoxidizing effect and have an effect of improving the corrosion resistance, so they are contained if necessary, but the content is 0.01% of the Mn component. , Ca component 0.00
If it is less than 1%, the desired effect cannot be obtained. On the other hand, if its content exceeds 0.1% in the Mn component and 0.1% in the Ca component, precipitate phases thereof are formed and the hot workability and Since the corrosion resistance decreases, the content of Mn component is 0.0
1-1.0%, 0.001-0.1% with Ca component
It was decided.

【0020】(j) 不可避不純物 不可避不純物としてTiおよびAlを含有する場合があ
るが、これらの成分の含有量がそれぞれ0.4%を越え
ると熱間加工性が損なわれるようになることから、その
含有量をそれぞれ0.4%以下にとどめなければならな
い。
(J) Inevitable Impurities Ti and Al may be contained as unavoidable impurities, but if the content of each of these components exceeds 0.4%, the hot workability will be impaired. The content of each must be kept to 0.4% or less.

【0021】[0021]

【実施例】次いで、本発明の実施例について、具体的に
説明する。通常の高周波溶解炉を用いて、表1〜4に示
される成分組成をもったNi基合金溶湯を調製し、イン
ゴットに鋳造し、このインゴットに1150℃の範囲内
の所定温度で熱間鍛造を施して直径:55mmの丸棒材
とし、ついでこの丸棒材から直径:50mm×肉厚:6
mmの寸法に削り出すことにより表1〜3に示される成
分組成をもった外管を作製した。さらに内管として外
径:42mm×肉厚:6.0mmの寸法を有するSUS
304ステンレス鋼管を用意した。これら外管および内
管を脱スケ−ルしたのち、外管内側に内管を挿入し、所
定の減面率で引抜加工を行い、外管を塑性変形させて外
管を内管に密着させることにより複合素管を作製した。
これら複合素管を加熱炉にいれ、1180℃に1時間保
持したのち、ヘリカルロ−ルミルにより、さらに圧延
し、外層厚さ:3mm、直径:38.1mm寸法を有す
る本発明伝熱用複合管1〜35および比較伝熱用複合管
1〜2をそれぞれ製造した。また従来技術として特開平
1−132732号特許公報に見られる合金を用いて、
上記と同様の方法で従来伝熱用複合管を製造した。な
お、比較伝熱用複合管1〜2は、外層構成するNi基合
金の構成成分のうち、高温耐粒界腐食性に影響を及ぼす
Mgの含有量がこの発明の範囲から外れたものである。
EXAMPLES Next, examples of the present invention will be specifically described. Using a normal high-frequency melting furnace, a Ni-base alloy melt having the composition shown in Tables 1 to 4 was prepared, cast into an ingot, and hot forged at a predetermined temperature within the range of 1150 ° C. in the ingot. A round bar material with a diameter of 55 mm is applied, and then the diameter of this round bar material is 50 mm x wall thickness: 6
Outer pipes having the component compositions shown in Tables 1 to 3 were produced by cutting into a size of mm. Further, as an inner tube, SUS having dimensions of outer diameter: 42 mm x wall thickness: 6.0 mm
A 304 stainless steel pipe was prepared. After descaling these outer and inner pipes, insert the inner pipe inside the outer pipe and perform drawing at a predetermined surface reduction ratio to plastically deform the outer pipe and bring it into close contact with the inner pipe. Thus, a composite tube was produced.
These composite raw tubes were put in a heating furnace and kept at 1180 ° C. for 1 hour, and then further rolled by a helical roll mill to obtain a composite tube for heat transfer 1 of the present invention having outer layer thickness: 3 mm, diameter: 38.1 mm. .About.35 and comparative heat transfer composite pipes 1 and 2, respectively. Further, as a conventional technique, using the alloy found in JP-A-1-132732,
A conventional heat transfer composite tube was manufactured by the same method as described above. In the comparative heat transfer composite pipes 1 and 2, among the constituent components of the Ni-based alloy constituting the outer layer, the content of Mg that affects the high temperature intergranular corrosion resistance is outside the scope of the present invention. .

【0022】ついで、この結果得られた各種の伝熱用複
合管を廃熱ボイラに組み込み、この廃熱ボイラを処理能
力:250ton /日のごみ焼却施設に設置し、前記
伝熱用複合管の表面温度:550℃、排ガス温度:65
0℃の条件で2000時間の操業を行ない、操業終了後
伝熱用複合管を取り出し、表面に付着した灰分や生成ス
ケールを除去した状態で周方向における肉厚を測定し、
最大減肉量を求めると共に、表面部の断面ミクロ組織を
観察し、最大粒界腐食長さを測定した。これらの測定結
果を表5に示した。
Next, the various heat transfer composite pipes obtained as a result are incorporated into a waste heat boiler, and the waste heat boiler is installed in a refuse incineration facility with a processing capacity of 250 tons / day. Surface temperature: 550 ° C, exhaust gas temperature: 65
After operating for 2000 hours under the condition of 0 ° C., take out the heat transfer composite pipe after the operation, measure the wall thickness in the circumferential direction with the ash content and scale produced on the surface removed,
The maximum amount of wall thinning was determined, the cross-sectional microstructure of the surface was observed, and the maximum intergranular corrosion length was measured. Table 5 shows the results of these measurements.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【表3】 [Table 3]

【0026】[0026]

【表4】 [Table 4]

【0027】[0027]

【表5】 [Table 5]

【0028】[0028]

【発明の効果】表1〜5に示される結果から、本発明伝
熱用複合管1〜35は、従来伝熱用複合管に比べて、高
温のごみ焼却排ガス雰囲気にさらされた場合、最大減肉
量が少なくかつ最大粒界腐食長さも短いところから、優
れた高温耐食性を示すことが分かる。しかし、比較伝熱
用複合管1〜2に見られるように、これを構成するNi
基合金のMg含有量がこの発明の範囲から外れると高温
耐食性、特に高温耐粒界腐食性が劣り、結果として高温
耐食性が劣ったものになることが明らかである。上述の
ように、この発明の伝熱用複合管は、一段と優れた高温
耐食性を有するので、ごみ焼却による廃熱を有効に利用
するための廃熱ボイラの蒸気条件の高温・高圧化に対応
することができ、高価なNi基合金からなる外層の薄肉
化が可能となるとともに、伝熱用複合管の一層の長寿命
化が可能となり、ごみ焼却による廃熱を有効に利用する
ための廃熱ボイラの技術の向上に大いに貢献し得るもの
である。
From the results shown in Tables 1 to 5, the composite pipes 1 to 35 for heat transfer of the present invention show the maximum value when exposed to a high temperature refuse incineration exhaust gas atmosphere as compared with the conventional composite pipes for heat transfer. From the fact that the amount of thinning is small and the maximum intergranular corrosion length is short, it can be seen that excellent high temperature corrosion resistance is exhibited. However, as seen in the comparative heat transfer composite pipes 1-2, the Ni
It is clear that if the Mg content of the base alloy is out of the range of the present invention, the high-temperature corrosion resistance, particularly the high-temperature intergranular corrosion resistance, is inferior, and as a result, the high-temperature corrosion resistance is inferior. As described above, since the heat transfer composite pipe of the present invention has much higher high temperature corrosion resistance, it corresponds to the high temperature and high pressure steam conditions of the waste heat boiler for effectively utilizing the waste heat from waste incineration. It is possible to reduce the thickness of the outer layer made of an expensive Ni-based alloy, and to further extend the service life of the heat transfer composite pipe, thereby effectively utilizing the waste heat from waste incineration. It can greatly contribute to the improvement of boiler technology.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、Cr:38〜50%、C:
0.001〜0.05%、Si:0.1%以下、Mg:
0.001〜0.1%、B:0.001〜0.1、P:
0.03%以下、S:0.03%以下、MoおよびWの
うちの1種または2種:0.1〜2%を含有し、残りが
Niと不可避不純物からなる組成を有するNi基合金で
構成したことを特徴とする耐粒界腐食性に優れれたごみ
焼却排ガス利用廃熱ボイラの伝熱用複合管。
1. Cr: 38-50% by weight, C:
0.001-0.05%, Si: 0.1% or less, Mg:
0.001-0.1%, B: 0.001-0.1, P:
Ni-based alloy containing 0.03% or less, S: 0.03% or less, one or two kinds of Mo and W: 0.1 to 2%, and the balance of Ni and unavoidable impurities. A composite pipe for heat transfer in a waste heat boiler using waste incineration flue gas, which has excellent intergranular corrosion resistance.
【請求項2】 重量%で、Cr:38〜50%、C:
0.001〜0.05%、Si:0.1%以下、Mg:
0.001〜0.1%、B:0.001〜0.1、P:
0.03%以下、S:0.03%以下、MoおよびW:
0.1〜2%を含有し、さらに、希土類元素:0.00
1〜0.1%、Y:0.001〜0.1%、Zr:0.
001〜0.1%、Hf:0.001〜0.5%のうち
の1種または2種以上を含有し、残りがNiと不可避不
純物からなる組成を有するNi基合金で構成したことを
特徴とする耐粒界腐食性に優れたごみ焼却排ガス利用廃
熱ボイラの伝熱用複合管。
2. By weight%, Cr: 38-50%, C:
0.001-0.05%, Si: 0.1% or less, Mg:
0.001-0.1%, B: 0.001-0.1, P:
0.03% or less, S: 0.03% or less, Mo and W:
0.1 to 2%, and further rare earth element: 0.00
1 to 0.1%, Y: 0.001 to 0.1%, Zr: 0.
001 to 0.1%, Hf: 0.001 to 0.5%, and one or more of them, and the balance is composed of a Ni-based alloy having a composition of Ni and inevitable impurities. A composite pipe for heat transfer of a waste heat boiler using waste incineration exhaust gas, which has excellent intergranular corrosion resistance.
【請求項3】 重量%で、Mn:0.01〜1.0%、
Ca:0.01〜0.1%のうちの1種または2種を、
さらに含有する請求項1または2記載の耐粒界腐食性に
優れれたごみ焼却排ガス利用廃熱ボイラの伝熱用複合
管。
3. Mn: 0.01 to 1.0% by weight,
Ca: One or two of 0.01 to 0.1%,
A heat transfer composite pipe for a waste heat boiler using waste incineration exhaust gas, which further contains excellent intergranular corrosion resistance according to claim 1 or 2.
JP6128496A 1996-03-18 1996-03-18 Heat transfer complex pipe for waste heat boiler utilizing dust combustion discharged gas with superior anti-particle corrosion characteristic Pending JPH09250897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6128496A JPH09250897A (en) 1996-03-18 1996-03-18 Heat transfer complex pipe for waste heat boiler utilizing dust combustion discharged gas with superior anti-particle corrosion characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6128496A JPH09250897A (en) 1996-03-18 1996-03-18 Heat transfer complex pipe for waste heat boiler utilizing dust combustion discharged gas with superior anti-particle corrosion characteristic

Publications (1)

Publication Number Publication Date
JPH09250897A true JPH09250897A (en) 1997-09-22

Family

ID=13166758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6128496A Pending JPH09250897A (en) 1996-03-18 1996-03-18 Heat transfer complex pipe for waste heat boiler utilizing dust combustion discharged gas with superior anti-particle corrosion characteristic

Country Status (1)

Country Link
JP (1) JPH09250897A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001113389A (en) * 1999-04-09 2001-04-24 Daido Steel Co Ltd Heat resistant multilayer metallic tube excellent in coking resistance and producing method
WO2002034956A1 (en) * 2000-10-25 2002-05-02 Ebara Corporation Nickel-based heat-resistant alloy
JP2003001427A (en) * 2000-06-12 2003-01-08 Daido Steel Co Ltd Heat resistant multilayered metallic tube having excellent-coking resistance and production method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001113389A (en) * 1999-04-09 2001-04-24 Daido Steel Co Ltd Heat resistant multilayer metallic tube excellent in coking resistance and producing method
JP2003001427A (en) * 2000-06-12 2003-01-08 Daido Steel Co Ltd Heat resistant multilayered metallic tube having excellent-coking resistance and production method therefor
WO2002034956A1 (en) * 2000-10-25 2002-05-02 Ebara Corporation Nickel-based heat-resistant alloy
US6921442B2 (en) 2000-10-25 2005-07-26 Ebara Corporation Nickel-based heat-resistant alloy

Similar Documents

Publication Publication Date Title
EP0834580B1 (en) Alloy having high corrosion resistance in environment of high corrosiveness, steel pipe of the same alloy and method of manufacturing the same steel pipe
US5378427A (en) Corrosion-resistant alloy heat transfer tubes for heat-recovery boilers
JP3864437B2 (en) High Mo nickel base alloy and alloy tube
JPH09250897A (en) Heat transfer complex pipe for waste heat boiler utilizing dust combustion discharged gas with superior anti-particle corrosion characteristic
JPH07243007A (en) Alloy and double layer steel tube, having corrosion resistance under environment where fuel containing v, na, s, and cl is burnt
JPH10204563A (en) Composite heat exchanger tube for waste heat boiler using exhaust gas of refuse incinerator excellent in high temperature corrosion resistance
JP2561567B2 (en) Waste incinerator boiler alloy and multi-layer steel pipe
JPH09256090A (en) Laminated tube for heat transfer for waste heat boiler utilizing waste incineration exhaust gas, excellent in intergranular corrosion resistance
JPH09256089A (en) Laminated tube for heat transfer for waste heat boiler utilizing waste incineration exhaust gas, excellent in intergranular corrosion resistance
JP2643709B2 (en) High corrosion resistant alloy for boiler heat transfer tubes
JPH09256100A (en) Laminated tube for heat transfer for waste heat boiler utilizing waste incineration exhaust gas, excellent in intergranular corrosion resistance
JPH09256114A (en) Laminated tube for heat transfer for waste heat boiler utilizing waste incineration exhaust gas, excellent in intergranular corrosion resistance
JP3239678B2 (en) Composite tube for heat transfer of boiler using waste heat from waste incinerator
JP3319317B2 (en) Heat transfer tube of waste heat boiler utilizing waste incineration exhaust gas with excellent high temperature corrosion resistance
JPH09256088A (en) Laminated tube for heat transfer for waste heat boiler utilizing waste incineration exhaust gas, excellent in intergranular corrosion resistance
JP2007054887A (en) Heat resistant clad steel sheet
JP3300747B2 (en) Corrosion and heat resistant Ni-based alloy for waste incinerator
JPH09256091A (en) Heat transfer tube for waste heat boiler utilizing waste incineration exhaust gas, excellent in high temperature corrosion resistance
JPH02213449A (en) Highly corrosion resistant steel for waste incineration waste heat boiler tube
JPH09263899A (en) Heat transfer tube of waste heat boiler utilizing garbage burning exhaust gas excellent in high temperature corrosion resistance
JPH09256087A (en) Heat transfer tube for waste heat boiler utilizing waste incineration exhaust gas, excellent in high temperature corrosion resistance
JPH09217137A (en) Composite tube for heat transfer of waste heat boiler utilizing garbage burning exhaust gas excellent in high temperature corrosion resistance
JPH09263898A (en) Heat transfer tube of waste heat boiler utilizing garbage burning exhaust gas excellent in high temperature corrosion resistance
JP3284794B2 (en) Heat transfer tubing for waste heat boilers utilizing refuse incineration exhaust gas with excellent high temperature corrosion resistance
JPH09263865A (en) Heat transfer tube for waste heat boiler utilizing waste incineration exhaust gas, excellent in high temperature corrosion resistance