JPH09250824A - Heat source apparatus - Google Patents
Heat source apparatusInfo
- Publication number
- JPH09250824A JPH09250824A JP4184297A JP4184297A JPH09250824A JP H09250824 A JPH09250824 A JP H09250824A JP 4184297 A JP4184297 A JP 4184297A JP 4184297 A JP4184297 A JP 4184297A JP H09250824 A JPH09250824 A JP H09250824A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- refrigerant
- liquid refrigerant
- air conditioner
- heat exchanger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】冷凍サイクルを利用した空気
調和機の能力向上に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improving the capacity of an air conditioner using a refrigeration cycle.
【0002】[0002]
【従来の技術】空気調和機の能力向上や夏期の電力ピー
クカットの方法として、液冷媒を冷却する方法がある。
例えば、特開平1−174866 号公報では空気調和機に蓄熱
槽を設け、蓄熱槽内の蓄熱媒体に冷熱を付与する冷凍サ
イクル回路と、液冷媒を冷却するための熱交換器を設
け、空調していない時に、蓄熱槽の蓄熱媒体に蓄冷して
おき、空調するときに液冷媒を蓄熱槽を通して冷却し、
能力向上や電力ピークカットしている。また、他の例
は、特開昭63−204076号公報では、ある室外機から冷却
回路を分岐し、その冷却回路を他の室外機の液冷媒側に
設けて熱交換器に導き、他の室外機の液冷媒を冷却でき
るようにし、最大能力以上の能力を要求されている室外
機の液冷媒を供給能力が余っている他の室外機で冷却
し、能力補償できるようにしている。2. Description of the Related Art As a method for improving the capacity of an air conditioner and cutting power peaks in summer, there is a method of cooling a liquid refrigerant.
For example, in JP-A-1-174866, a heat storage tank is provided in an air conditioner, a refrigeration cycle circuit for applying cold heat to a heat storage medium in the heat storage tank, and a heat exchanger for cooling a liquid refrigerant are provided for air conditioning. When not in use, the heat is stored in the heat storage medium of the heat storage tank, and when air conditioning is performed, the liquid refrigerant is cooled through the heat storage tank,
It has improved capacity and cuts power peaks. Further, as another example, in JP-A-63-204076, a cooling circuit is branched from a certain outdoor unit, and the cooling circuit is provided on the liquid refrigerant side of another outdoor unit to guide it to a heat exchanger, and The liquid refrigerant of the outdoor unit can be cooled, and the liquid refrigerant of the outdoor unit, which is required to have a capacity higher than the maximum capacity, can be cooled by another outdoor unit having a surplus supply capacity so that the capacity can be compensated.
【0003】[0003]
【発明が解決しようとする課題】上記のような、ある室
外機の能力を他の室外機で補償する場合、他の室外機の
供給能力が余っていないときは補償できない欠点があ
る。When the capacity of a certain outdoor unit is compensated by another outdoor unit as described above, there is a drawback that it cannot be compensated when the supply capacity of another outdoor unit is not sufficient.
【0004】本発明の目的は、複数の空調機の一部だけ
が最大能力以上の能力が要求されている場合でも、ま
た、全ての空調機が最大能力以上の能力が要求されてい
る場合でも能力補償できる冷熱源装置を提供することに
ある。It is an object of the present invention, even when only a part of a plurality of air conditioners is required to have a capacity higher than the maximum capacity, or when all air conditioners are required to have a capacity higher than the maximum capacity. It is to provide a cold heat source device capable of compensating for capacity.
【0005】また、空調機に蓄熱槽を備えたものでは、
蓄熱を空調機が稼働していないときに行うため、その蓄
熱がなくなったとき能力向上の効果が得られなくなる。
さらに、室外機の数が多い場合、蓄熱槽の数も多くな
り、広いスペースが必要となる。 本発明の他の目的は
空調機稼働中でも蓄熱できる空気調和機を提供すること
と、蓄熱槽の数を減少し省スペースを図ることにある。In the air conditioner equipped with a heat storage tank,
Since the heat storage is performed when the air conditioner is not operating, the effect of improving the capacity cannot be obtained when the heat storage is lost.
Furthermore, when the number of outdoor units is large, the number of heat storage tanks is also large, and a large space is required. Another object of the present invention is to provide an air conditioner capable of storing heat even when the air conditioner is operating, and to reduce the number of heat storage tanks to save space.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
に、本発明による冷熱源装置は、室外機と複数の室内機
が結合された空気調和機とは独立した冷凍サイクルと、
冷凍サイクルに設けられた熱交換器とを備え、室外機か
ら室内機へ送られる液冷媒を熱交換器で冷却するもので
ある。In order to achieve the above object, a cold heat source device according to the present invention comprises a refrigeration cycle independent of an air conditioner in which an outdoor unit and a plurality of indoor units are combined,
A heat exchanger provided in the refrigeration cycle is provided, and the liquid refrigerant sent from the outdoor unit to the indoor unit is cooled by the heat exchanger.
【0007】また、本発明による冷熱源装置は、空気調
和機とは独立した熱交換器及び蓄熱槽を有し、空気調和
機の液冷媒を熱交換器で熱交換するものである。Further, the cold heat source device according to the present invention has a heat exchanger and a heat storage tank independent of the air conditioner, and heats the liquid refrigerant of the air conditioner by the heat exchanger.
【0008】さらに、複数の空調機の一部を能力補償し
たり、全てを能力補償するために、冷熱源装置を空調機
とは別に設け、空調機の液配管に熱交換器を設置し、熱
交換器で空調機の液冷媒と冷熱源装置からの冷熱媒体と
を熱交換できるようにする。Further, in order to compensate the capacity of a part of the plurality of air conditioners or to compensate the capacity of all the air conditioners, a cold heat source device is provided separately from the air conditioner, and a heat exchanger is installed in the liquid pipe of the air conditioner. The heat exchanger enables heat exchange between the liquid refrigerant of the air conditioner and the cold heat medium from the cold heat source device.
【0009】さらに、蓄熱槽を冷熱源装置に備え、蓄熱
槽内の蓄熱媒体で各空調機の液冷媒とを液配管に設けた
熱交換器で冷却もしくは加熱する。蓄熱槽内の蓄熱媒体
の蓄冷又は蓄熱は冷熱源装置内の冷却加熱手段で行う。Further, the heat storage tank is provided in the cold heat source device, and the heat storage medium in the heat storage tank cools or heats the liquid refrigerant of each air conditioner with the heat exchanger provided in the liquid pipe. Cold storage or heat storage of the heat storage medium in the heat storage tank is performed by the cooling and heating means in the cold heat source device.
【0010】さらに、蓄熱槽の蓄熱媒体の冷却加熱手段
を、空調機の冷媒回路を分岐し、蓄熱槽内に熱交換器を
設け、分岐した冷媒回路と熱交換器とを結合し冷凍サイ
クルを構成して、蓄熱媒体の冷却加熱を行うようにす
る。Further, a cooling and heating means for cooling the heat storage medium in the heat storage tank branches the refrigerant circuit of the air conditioner, a heat exchanger is provided in the heat storage tank, and the branched refrigerant circuit and the heat exchanger are connected to form a refrigeration cycle. The heat storage medium is configured to be cooled and heated.
【0011】空調機の液配管内の液冷媒と冷熱源装置か
らの冷熱源とを液配管に設置した熱交換器で熱交換する
ことにより、次のような働きをする。空調機が冷房運転
のとき、冷熱源装置から液冷媒を冷却するような冷熱源
を供給することにより、液冷媒の過冷却度が増え、冷媒
の膨張弁前の比エンタルピが小さくなり、冷媒の蒸発潜
熱が増え、空調機の冷房能力が増す。また、暖房運転の
ときは、冷熱源装置から液冷媒を加熱するような冷熱源
を供給することにより、液冷媒の過冷却度が減少、又
は、かわき度が増加し冷媒の膨張弁前の比エンタルピが
大きくなり、蒸発器出口の冷媒過熱度が増加する。ここ
で、膨張弁は蒸発器出口の冷媒過熱度が所定値となるよ
うに開くため蒸発圧力が増加する。これによって、圧縮
機吸入冷媒の比容積が小さくなり、冷媒循環量が増加す
る。さらに、吸入圧力が上昇することによって、吐出圧
力,凝縮圧力も上昇し、暖房能力が増加する。The following operations are performed by exchanging heat between the liquid refrigerant in the liquid pipe of the air conditioner and the cold heat source from the cold heat source device by the heat exchanger installed in the liquid pipe. When the air conditioner is in cooling operation, by supplying a cold heat source that cools the liquid refrigerant from the cold heat source device, the degree of supercooling of the liquid refrigerant increases, the specific enthalpy of the refrigerant in front of the expansion valve decreases, and The latent heat of vaporization increases and the cooling capacity of the air conditioner increases. Further, during heating operation, by supplying a cold heat source that heats the liquid refrigerant from the cold heat source device, the degree of supercooling of the liquid refrigerant is decreased, or the degree of dryness is increased and the ratio of the refrigerant before the expansion valve is increased. The enthalpy increases, and the refrigerant superheat degree at the evaporator outlet increases. Here, since the expansion valve opens so that the refrigerant superheat degree at the evaporator outlet becomes a predetermined value, the evaporation pressure increases. As a result, the specific volume of the compressor suction refrigerant is reduced, and the refrigerant circulation amount is increased. Further, as the suction pressure rises, the discharge pressure and the condensing pressure also rise, and the heating capacity increases.
【0012】蓄熱槽を冷熱源装置に備え、蓄冷又は蓄熱
した蓄熱媒体を各空調機の液配管に設けた熱交換器に供
給することによって、上記に示した空調機の能力の向上
が実現できるとともに、各空調機に蓄熱槽を備えなくて
よいので、蓄熱槽の数が減り省スペースとなる。また、
蓄熱槽の蓄冷熱を冷熱源装置内の冷却加熱手段、又は、
空調機から分岐した冷凍サイクルによって行え、空調機
が稼働中でも蓄冷熱が可能となる。By providing the heat storage tank in the cold heat source device and supplying the heat storage medium that stores or stores the heat to the heat exchanger provided in the liquid pipe of each air conditioner, the above-mentioned improvement of the capacity of the air conditioner can be realized. At the same time, since it is not necessary to provide a heat storage tank in each air conditioner, the number of heat storage tanks is reduced and space is saved. Also,
Cooling / heating means in the cold heat source device for storing the cold heat of the heat storage tank, or
This can be done by the refrigeration cycle branched from the air conditioner, and cool heat can be stored even when the air conditioner is operating.
【0013】[0013]
【発明の実施の形態】本発明の一実施例を図1ないし図
3に示す。図1では、室外機1と室内機3とが液管7と
ガス管9で結合された空調機と、室外機2と三台の室内
機4,5,6とが液管8とガス管10で結合された空調
機の二つの空調機が示されている。室外機1は圧縮機1
1,四方弁12,室外熱交換器13,制御弁14,室外
ファン15で構成されている。室内機3は制御弁16,
室内熱交換器17,室内ファン18で構成されている。
室外機2及び室内機4,5,6は前記室外機1及び室内
機3と同様の構成である。二つの空調機のそれぞれの液
管には熱交換器21,22が取りつけられている。熱交
換器21,22には、液管7,9の他にそれぞれ制御弁
23,24を介した配管26と配管25が接続されてい
る。配管25と配管26は冷熱源装置20に接続されて
いる。BEST MODE FOR CARRYING OUT THE INVENTION One embodiment of the present invention is shown in FIGS. In FIG. 1, an air conditioner in which an outdoor unit 1 and an indoor unit 3 are connected by a liquid pipe 7 and a gas pipe 9, and an outdoor unit 2 and three indoor units 4, 5, 6 are a liquid pipe 8 and a gas pipe. Two air conditioners are shown, combined at 10. The outdoor unit 1 is the compressor 1
1, a four-way valve 12, an outdoor heat exchanger 13, a control valve 14, and an outdoor fan 15. The indoor unit 3 has a control valve 16,
It is composed of an indoor heat exchanger 17 and an indoor fan 18.
The outdoor unit 2 and the indoor units 4, 5, 6 have the same configurations as the outdoor unit 1 and the indoor unit 3. Heat exchangers 21 and 22 are attached to the respective liquid pipes of the two air conditioners. In addition to the liquid pipes 7 and 9, pipes 26 and 25 are connected to the heat exchangers 21 and 22 via control valves 23 and 24, respectively. The pipe 25 and the pipe 26 are connected to the cold heat source device 20.
【0014】次に、動作について説明する。空調機の冷
房運転時、冷媒は実線矢印の向きに流れる。圧縮機11
から吐出された高圧ガス冷媒は四方弁12を通って室外
熱交換器13へ流れ、室外ファン15によって室外空気
と熱交換され凝縮し液冷媒となる。液冷媒は開度を大き
くした制御弁14を通って液管7を流れ室内機3へ送ら
れる。室内機3では、液冷媒は開度を小さくした制御弁
16で減圧され、室内熱交換器17に入り、室内ファン
18によって室内空気と熱交換される。このとき、室内
空気は冷却され、冷媒は蒸発し低圧ガス冷媒となってガ
ス管9を通って室外機1へ戻る。室外機1へ戻った低圧
ガス冷媒は四方弁12を通って圧縮機11へ吸入され
る。この冷媒状態をモリエル線図上に示すと図2の実線
のようになる。なお、室外機2と3台の室内機4,5,
6の空調機の冷房運転の動作も前記と同様である。この
ような冷房運転のとき、冷熱源装置20から空調機の液
冷媒を冷却するような冷熱源を熱交換21,22へ供給
すると、冷熱源と液冷媒が熱交換し、液冷媒の過冷却度
が増加し、図2のモリエル線図上の破線のようになる。
すなわち、空調機の液冷媒の過冷却度が増加することに
よって、液冷媒の比エンタルピが小さくなり、冷媒蒸発
潜熱が増加し、冷房能力も増加する。暖房運転時、冷媒
は破線矢印のように流れる。圧縮機11から吐出された
高圧ガス冷媒は四方弁12を通ってガス管9へ流れ室内
機3へ入る。室内機3では室内熱交換器17で室内ファ
ン18によって室内空気と熱交換され、室内空気は暖め
られ、冷媒は凝縮して液冷媒となる。液冷媒は開度を大
きくした制御弁16を通って、液管7へ流れ室外機1へ
送られる。室外機1では、液冷媒は開度を小さくした制
御弁14で減圧され、室外熱交換器13へ入り、室外フ
ァン15によって、室外空気と熱交換され、冷媒は蒸発
して低圧ガス冷媒となって、四方弁12を通って圧縮機
11へ吸入される。室外機2と三台の室内機4,5,6
の空調機の暖房運転の動作も前述同様である。暖房運転
時の冷媒状態をモリエル線図上に示すと図3の実線のよ
うになる。このような暖房運転のとき、冷熱源装置20
から空調機の液冷媒を加熱するような冷熱源を熱交換器
21,22へ供給すると、冷熱源と液冷媒が熱交換し、
液冷媒の過冷却度が減少、又は、かわき度が増加し、図
3のモリエル線図上の破線のようになる。すなわち、空
調機の液冷媒の過冷却度が減少、又は、かわき度が増加
することによって、液冷媒の比エンタルピが小さくな
り、冷媒蒸発潜熱が減少し、室外熱交換器13出口の過
熱度、又は、圧縮機吐出ガス過熱度が大きくなるため、
制御弁14の開度を大きくして過熱度が元の値になるよ
うにする。これによって、蒸発圧力が上昇し、圧縮機吸
入冷媒の比容積が小さくなり、冷媒循環量が増加する。
これに伴って、吐出圧力が上昇する。これによって、暖
房能力が増加する。Next, the operation will be described. During the cooling operation of the air conditioner, the refrigerant flows in the direction of the solid arrow. Compressor 11
The high-pressure gas refrigerant discharged from the refrigerant flows through the four-way valve 12 to the outdoor heat exchanger 13 and is heat-exchanged with the outdoor air by the outdoor fan 15 to be condensed and become a liquid refrigerant. The liquid refrigerant flows through the liquid pipe 7 through the control valve 14 having a large opening degree and is sent to the indoor unit 3. In the indoor unit 3, the liquid refrigerant is decompressed by the control valve 16 having a small opening degree, enters the indoor heat exchanger 17, and is heat-exchanged with the indoor air by the indoor fan 18. At this time, the indoor air is cooled, the refrigerant evaporates and becomes a low-pressure gas refrigerant, and returns to the outdoor unit 1 through the gas pipe 9. The low-pressure gas refrigerant returned to the outdoor unit 1 is sucked into the compressor 11 through the four-way valve 12. This refrigerant state is shown on the Mollier diagram as shown by the solid line in FIG. The outdoor unit 2 and the three indoor units 4, 5,
The air-conditioning operation of the air conditioner 6 is the same as above. In such a cooling operation, when a cold heat source that cools the liquid refrigerant of the air conditioner is supplied from the cold heat source device 20 to the heat exchange units 21 and 22, the cold heat source and the liquid refrigerant exchange heat and the liquid refrigerant is supercooled. As the degree increases, it becomes like the broken line on the Mollier diagram of FIG.
That is, as the degree of supercooling of the liquid refrigerant in the air conditioner increases, the specific enthalpy of the liquid refrigerant decreases, the latent heat of vaporization of the refrigerant increases, and the cooling capacity also increases. During heating operation, the refrigerant flows as indicated by the broken line arrow. The high-pressure gas refrigerant discharged from the compressor 11 flows into the gas pipe 9 through the four-way valve 12 and enters the indoor unit 3. In the indoor unit 3, the indoor heat exchanger 17 exchanges heat with the indoor air by the indoor fan 18, the indoor air is warmed, and the refrigerant is condensed into a liquid refrigerant. The liquid refrigerant flows through the control valve 16 having a large opening to the liquid pipe 7 and is sent to the outdoor unit 1. In the outdoor unit 1, the liquid refrigerant is decompressed by the control valve 14 having a small opening degree, enters the outdoor heat exchanger 13, is heat-exchanged with the outdoor air by the outdoor fan 15, and the refrigerant evaporates to become a low-pressure gas refrigerant. And is sucked into the compressor 11 through the four-way valve 12. Outdoor unit 2 and three indoor units 4, 5, 6
The heating operation of the air conditioner is also the same as described above. The refrigerant state during heating operation is shown on the Mollier diagram as shown by the solid line in FIG. During such heating operation, the cold heat source device 20
When a cold heat source that heats the liquid refrigerant of the air conditioner is supplied to the heat exchangers 21 and 22, the cold heat source and the liquid refrigerant exchange heat,
The degree of supercooling of the liquid refrigerant decreases or the degree of dryness increases, which is indicated by the broken line on the Mollier diagram of FIG. That is, the supercooling degree of the liquid refrigerant of the air conditioner decreases, or the dryness increases, the specific enthalpy of the liquid refrigerant decreases, the latent heat of vaporization of the refrigerant decreases, and the superheat degree of the outdoor heat exchanger 13 outlet, Or, since the compressor discharge gas superheat becomes large,
The opening degree of the control valve 14 is increased so that the superheat degree becomes the original value. As a result, the evaporation pressure rises, the specific volume of the compressor suction refrigerant decreases, and the refrigerant circulation amount increases.
Along with this, the discharge pressure increases. This increases the heating capacity.
【0015】次に、冷熱源装置20の一実施例を図4に
示す。図4において、冷熱源装置20は圧縮機30,四
方弁31,熱交換器32,制御弁33,ファン34で構
成されている。空調機の液冷媒を冷却する場合は、四方
弁31を実線のようにしておく。圧縮機30から吐出さ
れた高圧ガス冷媒は四方弁31を通って、熱交換器32
へ入り、ファン34によって室外空気と熱交換され、冷
媒は凝縮して液冷媒となり、開度を大きくした制御弁3
3を通って配管26へ流れる。液冷媒は配管26から開
度を小さくした制御弁23,24を通って減圧され、熱
交換器21,22へ入り、空調機の液冷媒と熱交換され
る。このとき、空調機の液冷媒は冷却され過冷却度が大
きくなる。冷熱源装置20から送られた冷媒は蒸発して
低圧ガス冷媒となり、配管25を通って冷熱源装置20
へ戻り、四方弁31を通って圧縮機30へ吸入される。
空調機の液冷媒を過熱する場合は四方弁31を破線のよ
うに切換えておく。圧縮機30から吐出された高圧ガス
冷媒は四方弁31を通って配管25へ流れ、熱交換器2
1,22へ入り空調機の液冷媒と熱交換される。このと
き空調機の液冷媒は加熱され過冷却度が小さくなる。又
は、かわき度が大きくなる。冷熱源装置20から送られ
た冷媒は凝縮し液冷媒となる。液冷媒は開度を大きくし
た制御弁23,24を通って配管26へ流れ冷熱源装置
20へ戻る。冷熱源装置20へ入った液冷媒は開度を小
さくした制御弁33で減圧されて、熱交換器32へ入
り、ファン34によって室外空気と熱交換され、蒸発し
て低圧ガス冷媒となり四方弁31を通って圧縮機30へ
吸入される。ここで、制御弁23,24の開度を調整す
ることによって、熱交換器21,22へ流れる冷熱源の
流量を調整することができる。Next, an embodiment of the cold heat source device 20 is shown in FIG. In FIG. 4, the cold heat source device 20 includes a compressor 30, a four-way valve 31, a heat exchanger 32, a control valve 33, and a fan 34. When cooling the liquid refrigerant of the air conditioner, the four-way valve 31 is set as indicated by the solid line. The high-pressure gas refrigerant discharged from the compressor 30 passes through the four-way valve 31 and is passed through the heat exchanger 32.
And the heat is exchanged with the outdoor air by the fan 34, the refrigerant condenses into a liquid refrigerant, and the control valve 3 having a large opening
3 to the pipe 26. The liquid refrigerant is decompressed from the pipe 26 through the control valves 23 and 24 having a small opening degree, enters the heat exchangers 21 and 22, and exchanges heat with the liquid refrigerant of the air conditioner. At this time, the liquid refrigerant of the air conditioner is cooled and the degree of supercooling is increased. The refrigerant sent from the cold heat source device 20 evaporates to become a low-pressure gas refrigerant, passes through the pipe 25, and is cooled by the cold heat source device 20.
And is sucked into the compressor 30 through the four-way valve 31.
When the liquid refrigerant of the air conditioner is overheated, the four-way valve 31 is switched as shown by the broken line. The high-pressure gas refrigerant discharged from the compressor 30 flows into the pipe 25 through the four-way valve 31, and the heat exchanger 2
It enters into 1 and 22 and is heat-exchanged with the liquid refrigerant of an air conditioner. At this time, the liquid refrigerant of the air conditioner is heated and the degree of supercooling is reduced. Or, the dryness increases. The refrigerant sent from the cold heat source device 20 is condensed to become a liquid refrigerant. The liquid refrigerant flows into the pipe 26 through the control valves 23 and 24 having a large opening degree and returns to the cold heat source device 20. The liquid refrigerant that has entered the cold heat source device 20 is decompressed by the control valve 33 having a small opening degree, enters the heat exchanger 32, is heat-exchanged with the outdoor air by the fan 34, evaporates, and becomes a low-pressure gas refrigerant and becomes the four-way valve 31. And is sucked into the compressor 30. Here, the flow rate of the cold heat source flowing to the heat exchangers 21 and 22 can be adjusted by adjusting the opening degrees of the control valves 23 and 24.
【0016】冷熱源装置20の他の実施例を図5に示
す。図5において、冷熱源装置20は圧縮機30,四方
弁31,熱交換器32,制御弁33,ファン34,蓄熱
用熱交換器35,蓄熱槽40,ポンプ41で構成されてい
る。空調機の液冷媒を冷却、又は、過熱する場合は、蓄
熱槽40内の蓄熱媒体を冷却、又は、過熱しておく。蓄
熱媒体はポンプ41で配管26へ送り出され、制御弁2
3を通って熱交換器21で空調機の液冷媒と熱交換され
てから、配管25を通って蓄熱槽へ戻る。次に、蓄熱媒
体の冷却過熱手段について説明する。蓄熱媒体を冷却す
る場合は四方弁31を実線のように切換えておく。圧縮
機30から吐出された高圧ガス冷媒は四方弁31を通っ
て熱交換器32で室外空気と熱交換され凝縮して液冷媒
となる。液冷媒は開度を小さくした制御弁33で減圧さ
れて、蓄熱用熱交換器35へ入り、蓄熱媒体と熱交換さ
れる。このとき、蓄熱媒体は冷却され、冷媒は蒸発して
低圧ガス冷媒となり、四方弁31を通って圧縮機30へ
吸入される。蓄熱媒体を過熱する場合は四方弁31を破
線のように切換えておく。圧縮機30から吐出された高
圧ガス冷媒は四方弁31を通って、蓄熱用熱交換器35
へ入り、蓄熱媒体を熱交換される。このとき、蓄熱媒体
は加熱され、冷媒は凝縮して液冷媒となる。液冷媒は開
度を小さくした制御弁33で減圧されて熱交換器32へ
入り、室外空気と熱交換され低圧ガス冷媒となって、四
方弁31を通って圧縮機30へ吸入される。本実施例に
よれば、空調負荷が最大容量以下の場合、空調機の能力
向上分だけ空調機の圧縮機の容量を減少することができ
るので、蓄熱媒体への蓄冷熱を夜間などの空調機が稼働
していないときに行うことにより、夏期の電力ピークカ
ットの効果が得られる。Another embodiment of the cold heat source device 20 is shown in FIG. In FIG. 5, the cold heat source device 20 includes a compressor 30, a four-way valve 31, a heat exchanger 32, a control valve 33, a fan 34, a heat storage heat exchanger 35, a heat storage tank 40, and a pump 41. When the liquid refrigerant of the air conditioner is cooled or overheated, the heat storage medium in the heat storage tank 40 is cooled or overheated. The heat storage medium is sent to the pipe 26 by the pump 41, and the control valve 2
After passing through 3, heat is exchanged with the liquid refrigerant of the air conditioner in the heat exchanger 21, and then returns to the heat storage tank through the pipe 25. Next, the means for cooling and heating the heat storage medium will be described. When cooling the heat storage medium, the four-way valve 31 is switched as shown by the solid line. The high-pressure gas refrigerant discharged from the compressor 30 passes through the four-way valve 31 to exchange heat with the outdoor air in the heat exchanger 32 and is condensed to become a liquid refrigerant. The liquid refrigerant is decompressed by the control valve 33 having a small opening, enters the heat storage heat exchanger 35, and exchanges heat with the heat storage medium. At this time, the heat storage medium is cooled, the refrigerant is evaporated to become a low-pressure gas refrigerant, and is sucked into the compressor 30 through the four-way valve 31. When the heat storage medium is overheated, the four-way valve 31 is switched as shown by the broken line. The high-pressure gas refrigerant discharged from the compressor 30 passes through the four-way valve 31, and the heat storage heat exchanger 35
And the heat storage medium is heat-exchanged. At this time, the heat storage medium is heated and the refrigerant is condensed to become a liquid refrigerant. The liquid refrigerant is decompressed by the control valve 33 having a small opening degree, enters the heat exchanger 32, exchanges heat with the outdoor air, becomes a low-pressure gas refrigerant, and is sucked into the compressor 30 through the four-way valve 31. According to the present embodiment, when the air conditioning load is less than or equal to the maximum capacity, the capacity of the compressor of the air conditioner can be reduced by the amount of improvement in the capacity of the air conditioner. The effect of peak power cut in summer can be obtained by performing it when the power plant is not operating.
【0017】なお、図4及び図5の実施例の冷熱源装置
20の冷媒は空調機の冷媒と同一のものであっても、異
なる種類のものでも良い。The refrigerant of the cold heat source device 20 of the embodiment shown in FIGS. 4 and 5 may be the same as or different from the refrigerant of the air conditioner.
【0018】次に、本発明のさらに他の実施例を図6に
示す。図6では、蓄熱媒体の冷却過熱手段を空調機の冷
媒回路を分岐し、利用している。すなわち、空調機のガ
ス管9,液管7は分岐され、開閉弁52,53を介して
ガス管9′,液管7′へ接続され、また、空調機のガス
管10,液管8も分岐され、開閉弁54,55を介して
ガス管9′,液管7′へ接続される。液管7′の他端は
制御弁51を介して蓄熱用熱交換器35へ接続される。
ガス管9′の他端は蓄熱用熱交換器35の他端に接続さ
れる。室外機1を利用して蓄熱媒体を冷却、又は、加熱
する場合、開閉弁52,53を開き、開閉弁54,55
を閉じておく。蓄熱媒体を冷却する場合は、室外機1を
冷房運転状態にすることによって、液冷媒が液管7,開
閉弁53,液管7′を通って制御弁51へ送られる。制
御弁51の開度は小さくなっており、液冷媒は減圧さ
れ、蓄熱用熱交換器35へ入り、蓄熱媒体と熱交換され
る。このとき、蓄熱媒体は冷却され、冷媒は低圧ガス冷
媒となって、ガス管9′、開閉弁52を通ってガス管9
へ入り室外機1へ戻る。蓄熱媒体を加熱する場合は、室
外機2を暖房運転状態にすることによって、高圧ガス冷
媒がガス管9,開閉弁52,ガス管9′を通って蓄熱用
熱交換器35へ入り、蓄熱媒体と熱交換される。このと
き、蓄熱媒体は加熱され、冷媒は凝縮し液冷媒となる。
液冷媒は開度を大きくした制御弁51を通り、さらに、
液管7′,開閉弁53,液配管7を通って室外機1へ戻
る。室外機2を利用して、蓄熱媒体を冷却、又は、加熱
する場合は、開閉弁52,53を閉じ、開閉弁54,5
5を開き、室外機1と同様の動作をすれば良い。Next, another embodiment of the present invention is shown in FIG. In FIG. 6, the cooling and heating means for the heat storage medium is used by branching the refrigerant circuit of the air conditioner. That is, the gas pipe 9 and the liquid pipe 7 of the air conditioner are branched and connected to the gas pipe 9'and the liquid pipe 7'through the on-off valves 52 and 53, and the gas pipe 10 and the liquid pipe 8 of the air conditioner are also connected. It is branched and connected to the gas pipe 9'and the liquid pipe 7'through the on-off valves 54 and 55. The other end of the liquid pipe 7 ′ is connected to the heat storage heat exchanger 35 via the control valve 51.
The other end of the gas pipe 9'is connected to the other end of the heat storage heat exchanger 35. When the outdoor unit 1 is used to cool or heat the heat storage medium, the on-off valves 52 and 53 are opened and the on-off valves 54 and 55 are opened.
Keep closed. When cooling the heat storage medium, the outdoor unit 1 is brought into the cooling operation state, whereby the liquid refrigerant is sent to the control valve 51 through the liquid pipe 7, the on-off valve 53, and the liquid pipe 7 '. The opening degree of the control valve 51 is small, the liquid refrigerant is decompressed, enters the heat storage heat exchanger 35, and exchanges heat with the heat storage medium. At this time, the heat storage medium is cooled, and the refrigerant becomes a low-pressure gas refrigerant, and passes through the gas pipe 9 ′ and the opening / closing valve 52, and the gas pipe 9
Enter and return to outdoor unit 1. When heating the heat storage medium, the outdoor unit 2 is brought into the heating operation state, whereby the high-pressure gas refrigerant enters the heat storage heat exchanger 35 through the gas pipe 9, the on-off valve 52, and the gas pipe 9 ', and the heat storage medium is heated. Is heat exchanged with. At this time, the heat storage medium is heated, and the refrigerant condenses into a liquid refrigerant.
The liquid refrigerant passes through the control valve 51 whose opening is increased, and further,
It returns to the outdoor unit 1 through the liquid pipe 7 ′, the on-off valve 53, and the liquid pipe 7. When the outdoor unit 2 is used to cool or heat the heat storage medium, the on-off valves 52 and 53 are closed and the on-off valves 54 and 5 are closed.
5 may be opened and the same operation as the outdoor unit 1 may be performed.
【0019】[0019]
【発明の効果】本発明によれば、空調機の液冷媒と冷熱
源装置から供給される冷熱源で冷却、又は、加熱するこ
とによって、能力を増加させることができる。また、冷
熱源装置は空調機とは別に設けられているので、空調機
の稼働状況に影響されることなく能力向上が図れる。According to the present invention, the capacity can be increased by cooling or heating with the liquid refrigerant of the air conditioner and the cold heat source supplied from the cold heat source device. Further, since the cold heat source device is provided separately from the air conditioner, the capacity can be improved without being affected by the operating condition of the air conditioner.
【0020】また、冷熱源装置に蓄熱槽を備えた場合
は、蓄冷熱を冷熱源装置で行うため、空調機が稼働中で
も蓄冷熱ができ、蓄冷熱量が減少して、能力向上効果が
低下することがない。また、蓄熱槽を各室内機毎に設置
する必要がないので省スペースの効果もある。When the cold heat source device is provided with a heat storage tank, the cold heat source device stores the cold heat, so that the cold heat can be stored even when the air conditioner is in operation, and the amount of cold heat stored is reduced, so that the capacity improving effect is lowered. Never. In addition, it is not necessary to install a heat storage tank for each indoor unit, so there is an effect of space saving.
【0021】さらに、蓄熱槽の蓄冷熱を空調機の冷媒回
路を利用することによって、冷熱源装置内の冷凍サイク
ルを省略できコストの効果がある。Further, by utilizing the cold storage heat of the heat storage tank in the refrigerant circuit of the air conditioner, the refrigeration cycle in the cold heat source device can be omitted, which is cost effective.
【図1】本発明の一実施例を示すエアコンシステムの系
統図。FIG. 1 is a system diagram of an air conditioner system showing an embodiment of the present invention.
【図2】冷房運転時の効果を示すモリエル線図。FIG. 2 is a Mollier diagram showing the effect during cooling operation.
【図3】暖房運転時の効果を示すモリエル線図。FIG. 3 is a Mollier diagram showing effects during heating operation.
【図4】冷熱源装置の一実施例を示す系統図。FIG. 4 is a system diagram showing an embodiment of a cold heat source device.
【図5】冷熱源装置の他の実施例を示す系統図。FIG. 5 is a system diagram showing another embodiment of the cold heat source device.
【図6】本発明の他の実施例を示すエアコンシステムの
系統図。FIG. 6 is a system diagram of an air conditioner system showing another embodiment of the present invention.
1,2…室外機、3,4,5…室内機、7,8…液管、
11,30…圧縮機、14,16,23,24,33,
51…制御弁、20…冷熱源装置、21,22…熱交換
器、35…蓄熱用熱交換器、40…蓄熱槽、41…ポン
プ。1, 2 ... Outdoor unit, 3, 4, 5 ... Indoor unit, 7, 8 ... Liquid pipe,
11,30 ... Compressor, 14, 16, 23, 24, 33,
51 ... Control valve, 20 ... Cold heat source device, 21, 22 ... Heat exchanger, 35 ... Heat storage heat exchanger, 40 ... Heat storage tank, 41 ... Pump.
Claims (2)
調和機とは独立した冷凍サイクルを備え、この冷凍サイ
クルは熱源側熱交換器と、空気調和機の室外機から室内
機へ送られる液冷媒と熱交換させるための利用側熱交換
器とを備えたことを特徴とする熱源装置。1. A refrigeration cycle independent of an air conditioner in which an outdoor unit and a plurality of indoor units are combined is provided, and the refrigeration cycle is fed from a heat source side heat exchanger and an outdoor unit of the air conditioner to the indoor unit. A heat source device, comprising: a use-side heat exchanger for exchanging heat with the liquid refrigerant to be used.
熱槽を有し、 前記空気調和機の液冷媒を外部熱源と熱交換するための
前記熱交換器とを備えたことを特徴とする熱源装置。2. A heat exchanger and a heat storage tank which are independent of the air conditioner, and the heat exchanger for exchanging heat between the liquid refrigerant of the air conditioner and an external heat source. A heat source device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04184297A JP3216560B2 (en) | 1997-02-26 | 1997-02-26 | Heat source device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04184297A JP3216560B2 (en) | 1997-02-26 | 1997-02-26 | Heat source device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28754691A Division JP3213992B2 (en) | 1991-11-01 | 1991-11-01 | Air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09250824A true JPH09250824A (en) | 1997-09-22 |
JP3216560B2 JP3216560B2 (en) | 2001-10-09 |
Family
ID=12619521
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04184297A Expired - Fee Related JP3216560B2 (en) | 1997-02-26 | 1997-02-26 | Heat source device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3216560B2 (en) |
-
1997
- 1997-02-26 JP JP04184297A patent/JP3216560B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP3216560B2 (en) | 2001-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH04263758A (en) | Heat pump hot-water supplier | |
JP2006258343A (en) | Air conditioning system | |
JP3882056B2 (en) | Refrigeration air conditioner | |
CN101365917A (en) | Defrost system | |
KR100822432B1 (en) | Air conditioner having auxiliary exchanger | |
JPH116665A (en) | Heat-storing-type air-conditioner | |
JP3138154B2 (en) | Air conditioner | |
CN113883599A (en) | Air conditioner | |
JP2981559B2 (en) | Air conditioner | |
JP3213992B2 (en) | Air conditioner | |
JP2000121108A (en) | Air-conditioner | |
JPH09250824A (en) | Heat source apparatus | |
JP3058153B2 (en) | Air conditioner | |
JP3511161B2 (en) | Air conditioner | |
JP2698735B2 (en) | Engine heat pump system | |
KR20210077358A (en) | Cooling and heating apparatus | |
JP3307532B2 (en) | Cold / hot water supply device | |
JPH07151413A (en) | Separate type air conditioner | |
KR102718100B1 (en) | Automotive air conditioning system | |
JP5993673B2 (en) | Double bundle type refrigerator | |
JPH1194395A (en) | Multi-room air conditioner | |
JP2007147133A (en) | Air conditioner | |
JP2006162086A (en) | Heat pump water heater | |
JP3253276B2 (en) | Thermal storage type air conditioner and operation method thereof | |
KR20060065874A (en) | Heat pump type air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070803 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070803 Year of fee payment: 6 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070803 Year of fee payment: 6 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20080803 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20080803 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20090803 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100803 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 10 Free format text: PAYMENT UNTIL: 20110803 |
|
LAPS | Cancellation because of no payment of annual fees |