JPH09250709A - Burner for solid fuel and combustion device - Google Patents

Burner for solid fuel and combustion device

Info

Publication number
JPH09250709A
JPH09250709A JP5736496A JP5736496A JPH09250709A JP H09250709 A JPH09250709 A JP H09250709A JP 5736496 A JP5736496 A JP 5736496A JP 5736496 A JP5736496 A JP 5736496A JP H09250709 A JPH09250709 A JP H09250709A
Authority
JP
Japan
Prior art keywords
burner
solid
gas
fuel
inner cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5736496A
Other languages
Japanese (ja)
Inventor
Miki Mori
三紀 森
Shinichiro Nomura
伸一郎 野村
Akira Baba
彰 馬場
Noriyuki Oyatsu
紀之 大谷津
Nobuyasu Meguri
信康 廻
Shunichi Tsumura
俊一 津村
Yoshinobu Kobayashi
啓信 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP5736496A priority Critical patent/JPH09250709A/en
Publication of JPH09250709A publication Critical patent/JPH09250709A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To remarkably reduce an amount of NOX generated by a single burner by a method wherein ignition in the vicinity of a burner outlet and especially at the central part of a burner is accelerated, consumption of oxygen is expedited, and a reduction region produced by a single burner is enlarged. SOLUTION: An inner cylinder 10 is inserted in a pulverized coal feed pipe and an external flame stabilizing ring 35 is arranged at the peripheral part of the outlet tip of the inner cylinder 10. Further, an internal flame stabilizer 34 to accelerate ignition is attached to the outlet of a flow passage in the inner cylinder and the planes, crossing in the direction of a fuel flow at right angles, of the flame stabilizer 34 and the flame stabilizing ring 35 are attached from a position where the planes are on the same surface to a position where the planes are deviated from each other. Fine grain powder out of pulverized coal previously divided into fine grain powder and coarse grain powder is fed to the inner side of the inserted inner cylinder 10, and the coarse grain powder is fed into the outer cylinder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明に属する技術分野】本発明は燃焼装置に関わり、
特に窒素酸化物(NOx)の生成を大幅に低減でき、広
範囲な性状の石炭を広い負荷範囲において安定に、か
つ、低NOxで燃焼させることのできる固体燃料用バー
ナと燃焼装置に関するものである。
TECHNICAL FIELD The present invention relates to a combustion device,
In particular, the present invention relates to a solid fuel burner and a combustion device capable of significantly reducing the production of nitrogen oxides (NOx) and stably burning coal having a wide range of properties in a wide load range with low NOx.

【0002】[0002]

【従来技術】近年、大気汚染問題はますます深刻化して
おり、特に石炭を燃料としたボイラではNOx発生量を
極力低減する必要がある。燃焼システムとして既に確立
された低NOx化技術に炉内脱硝法がある。この方法は
図6に示すように燃焼炉50のバーナ部51での空気比
(バーナ部51からの投入空気量/理論空気量)を1以
下の燃料リッチな条件に保ち、NOx還元領域を形成す
ることによって生成NOxを還元し、排出NOx量を低
減するものである。この際、未燃焼燃料については、バ
ーナ部51上段に設置されたAAP(アフターエアポー
ト)52から空気を投入して形成される完全燃焼領域で
完全に燃焼させる。
2. Description of the Related Art In recent years, the problem of air pollution has become more and more serious, and it is necessary to reduce the amount of NOx generated as much as possible in a coal-fired boiler. A NOx reduction method that has already been established as a combustion system is in-furnace denitration. According to this method, as shown in FIG. 6, the NOx reduction region is formed by maintaining the air ratio (the amount of air supplied from the burner unit 51 / theoretical air amount) in the burner unit 51 of the combustion furnace 50 at a fuel rich condition of 1 or less. By doing so, the generated NOx is reduced and the exhausted NOx amount is reduced. At this time, unburned fuel is completely combusted in a complete combustion region formed by introducing air from an AAP (after air port) 52 installed in the upper stage of the burner section 51.

【0003】上記の炉内脱硝法はシステムとして確立さ
れた低NOx技術であるが、バーナ単体でNOx還元領
域を形成し、NOxを低減させる技術も確立されてい
る。図7に低NOx燃焼の概念を示す。
The above-mentioned in-furnace denitration method is a low NOx technology established as a system, but a technology of forming a NOx reduction region by a burner alone to reduce NOx is also established. FIG. 7 shows the concept of low NOx combustion.

【0004】図7に示すように、バーナの微粉炭と一次
空気の混合流からなる一次流路内部の出口部に内部保炎
器を設け、また該一次流路を形成する配管の出口部に保
炎リングを設け、前記混合流、二次空気流及び三次空気
流を迂回させるなどして燃焼炉内に主燃焼領域と還元領
域、二次空気及び三次空気の旋回流等を形成する。こう
して、揮発分の燃焼域と一部揮発分の燃焼を含むチャー
の燃焼域で燃焼が行われ、さらに完全燃焼域において、
AAP52(図6)からの二段燃焼用空気により完全に
燃焼が行われる。
As shown in FIG. 7, an internal flame stabilizer is provided at the outlet of the primary flow passage formed by the mixed flow of pulverized coal and primary air of the burner, and the outlet of the pipe forming the primary flow passage is provided. A flame holding ring is provided to bypass the mixed flow, the secondary air flow and the tertiary air flow to form a main combustion region and a reduction region, a swirling flow of secondary air and tertiary air, etc. in the combustion furnace. In this way, combustion is performed in the combustion area of char including the combustion area of volatile matter and the combustion of a part of volatile matter, and further in the complete combustion area,
Complete combustion is performed by the two-stage combustion air from the AAP 52 (FIG. 6).

【0005】また、従来技術に代表される低NOxバー
ナの断面図を図8に示す。従来の低NOxバーナでは、
微粉炭と一次空気の混合流61が流れる供給管62出口
部周辺に外部保炎リング63を取り付けることにより、
微粉炭の着火を良くする。さらに供給管62の周囲に二
次空気64の流路65、三次空気67の流路68という
順に環状の流路を有する。二次空気流路65と三次空気
流路68内での空気流の旋回は各々の流路65、68に
設けた旋回器としての機能を持つレジスタダンパ70、
71でそれぞれ行う。したがって、二次空気64と三次
空気67はレジスタダンパ(スワラー)70、71で旋
回がかけられて、燃焼炉72に送り込まれる。
A cross-sectional view of a low NOx burner represented by the prior art is shown in FIG. With conventional low NOx burners,
By attaching the external flame holding ring 63 around the outlet of the supply pipe 62 through which the mixed flow 61 of pulverized coal and primary air flows,
Improve the ignition of pulverized coal. Further, an annular flow path is provided around the supply pipe 62 in the order of a flow path 65 for the secondary air 64 and a flow path 68 for the tertiary air 67. The swirling of the air flow in the secondary air flow path 65 and the tertiary air flow path 68 is performed by a register damper 70 provided in each of the flow paths 65 and 68 and having a function as a swirler.
71 respectively. Therefore, the secondary air 64 and the tertiary air 67 are swirled by the register dampers (swirlers) 70 and 71 and sent to the combustion furnace 72.

【0006】また、二次空気流路65の燃焼炉内出口部
には旋回力強化用の二次空気旋回ベーン74を設けてい
る。またバーナ中心部分には、重油を燃料とする起動用
バーナ75が設置してある。
A secondary air swirl vane 74 for enhancing swirl force is provided at the outlet of the secondary air passage 65 in the combustion furnace. In addition, a startup burner 75 that uses heavy oil as fuel is installed in the central portion of the burner.

【0007】二次空気、三次空気にスワラー70、71
や旋回ベーン74で旋回をかけることによって、着火燃
焼している微粉炭と一次空気の混合流61との混合を遅
らせ、バーナ単体で作られるNOx還元領域を拡大す
る。これらの技術により排出NOx量は130ppm
(燃料比=固定炭素/揮発分が2、石炭中窒素分1.5
%、灰中末燃分5%以下)まで低減できるようになっ
た。
Swirlers 70, 71 for secondary air and tertiary air
By swirling with the swirling vane 74 or the swirling vane 74, the mixing of the pulverized coal that is ignited and burned with the mixed flow 61 of the primary air is delayed, and the NOx reduction region formed by the burner alone is expanded. With these technologies, the emission NOx amount is 130 ppm
(Fuel ratio = fixed carbon / volatile content is 2, nitrogen content in coal is 1.5)
%, And the final combustion content in ash is 5% or less).

【0008】しかし、NOx規制値は年々厳しくなる傾
向にあり、今後要求される排出NOx規制値は100p
pm以下である。
However, the NOx regulation value tends to become stricter year by year, and the emission NOx regulation value required in the future is 100 p.
pm or less.

【0009】[0009]

【発明が解決しようとする課題】前述の従来の低NOx
技術はNOx規制値100ppm以下を達成するには十
分ではない。本発明の課題はバーナ単体でのNOxの生
成量を大幅に低減させることである。また、本発明の課
題はバーナ出口近傍、特にバーナ中心部での着火を促進
し、酸素の消費を早め、バーナ単体で作られる還元領域
を拡大することである。
DISCLOSURE OF THE INVENTION The conventional low NOx described above
The technology is not sufficient to reach the NOx regulation value of 100 ppm or less. An object of the present invention is to significantly reduce the amount of NOx produced by the burner alone. Another object of the present invention is to promote ignition in the vicinity of the burner outlet, particularly in the center of the burner, accelerate oxygen consumption, and expand the reduction region made by the burner alone.

【0010】[0010]

【課題を解決するための手段】本発明の上記課題は、次
の構成によって達成される。すなわち、固体燃料と該燃
料の搬送用気体からなる固気二相流が流れる固気二相流
流路を二つに分けた内筒と外筒からなる二重管として設
け、該二重管の外周部に燃焼用空気が流れる少なくとも
1つの空気流路を有し、バーナ出口部分に流れに直交す
る平面を有する保炎器を設置した固体燃料用バーナにお
いて、保炎器を固気二相流流路の内筒内の流路出口部と
固気二相流流路の外筒内の流路出口部とにそれぞれ設
け、前記内筒内の流路出口部の保炎器と前記外筒内の流
路出口部の保炎器の燃料流の方向に直交する方向に設け
た平面が同一面上の位置から互いにずれた位置に設置さ
れた固体燃料用バーナである。
The above object of the present invention can be achieved by the following constitution. That is, a solid-gas two-phase flow passage through which a solid-gas two-phase flow composed of a solid fuel and a gas for carrying the fuel flows is provided as a double pipe composed of an inner cylinder and an outer cylinder which are divided into two parts. In the burner for solid fuel, which has at least one air flow path through which combustion air flows and has a flame stabilizer having a plane orthogonal to the flow at the burner outlet, the flame stabilizer is solid-gas two-phase The flame stabilizer and the outside of the flow passage outlet in the inner cylinder are respectively provided at the flow passage outlet in the inner cylinder of the flow passage and the flow passage outlet in the outer cylinder of the solid-gas two-phase flow passage. It is a burner for solid fuels installed in positions where planes provided in a direction orthogonal to a fuel flow direction of a flame stabilizer at a flow path outlet in a cylinder are displaced from positions on the same plane.

【0011】前記本発明の固体燃料用バーナは、内筒内
の固気二相流流路にあらかじめ微粒粉と粗粒粉とに分け
られた固体燃料のうちの微粒粉を供給するように構成し
ても良く、また、内筒内の固気二相流流路内部に設けら
れた保炎器の燃料流の方向に直交する方向に設けた平面
が外筒内の固気二相流流路に設けられた保炎器の燃料流
の方向に直交する方向に設けた平面より前流側に設置さ
れていることがバーナ中心部での着火保炎を良くし、酸
素の消費を早め、還元領域を拡大する上で好都合であ
る。
The solid fuel burner of the present invention is configured to supply the fine powder of the solid fuel previously divided into the fine powder and the coarse powder to the solid-gas two-phase flow passage in the inner cylinder. Alternatively, the plane provided in the direction orthogonal to the fuel flow direction of the flame stabilizer provided inside the solid-gas two-phase flow passage inside the inner cylinder is the solid-gas two-phase flow inside the outer cylinder. Being installed on the upstream side of the plane provided in the direction orthogonal to the fuel flow direction of the flame stabilizer provided in the passage improves the ignition flame holding in the center of the burner and accelerates oxygen consumption, It is convenient for expanding the reduction region.

【0012】また、内筒内の固気二相流流路内を流れる
微粒粉搬送用気体として空気と排ガスの混合流体を用い
ることもできる。その場合、内筒内の固気二相流流路内
を流れる微粒粉搬送用気体として空気中に酸素分圧が5
容量%以下の排ガスを混入した混合流体を用い、また、
排ガス混入後の微粒粉搬送用空気の酸素分圧が16容量
%以下にならないようにすることが望ましい。
Further, a mixed fluid of air and exhaust gas may be used as the fine powder carrying gas flowing in the solid-gas two-phase flow passage in the inner cylinder. In that case, the oxygen partial pressure in the air is 5 as the fine powder carrying gas flowing in the solid-gas two-phase flow channel in the inner cylinder.
Using a mixed fluid mixed with exhaust gas of less than volume%,
It is desirable that the oxygen partial pressure of the air for conveying fine particles after mixing with the exhaust gas does not fall below 16% by volume.

【0013】また、本発明には前記固体燃料用バーナを
設けた燃焼装置も含まれる。上述のように、本発明にお
ける固体燃料用バーナは微粉炭供給管内部に挿入した内
筒の出口先端周辺部に外部保炎リングと同一面上よりず
らして内部保炎器を設置することにより、バーナ中心部
での着火保炎を良くし、酸素の消費を早め、還元領域を
拡大することによりNOxを大幅に低減するものであ
る。また、着火保炎性が非常に優れているため、広負荷
範囲、広範囲性状の石炭にも適しており、通常燃焼が困
難とされる高燃料比炭や粗粉炭の燃焼にも適している。
The present invention also includes a combustion device provided with the solid fuel burner. As described above, the solid fuel burner according to the present invention is provided with the internal flame stabilizer which is offset from the same plane as the external flame holding ring in the peripheral portion of the outlet tip of the inner cylinder inserted into the pulverized coal supply pipe, NOx is greatly reduced by improving the ignition and flame maintenance in the central part of the burner, accelerating the consumption of oxygen, and expanding the reduction region. Further, since the ignition and flame holding property is very excellent, it is suitable for coal having a wide load range and a wide range of properties, and is also suitable for combustion of high fuel ratio coal and coarse coal which are usually difficult to combust.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。図5は本発明のバーナを使用する際のボイラ燃焼
系統図の1例である。火炉1内の燃焼装置の負荷に応じ
て、バンカ2に貯蔵されている石炭は石炭フィーダ3か
らミル4に供給される。ミル4で粉砕された微粉炭は、
PAF(Primary Air Fan)5で加圧さ
れ、熱交換器6を通過した微粉炭搬送用空気で分級器8
に搬送され、粗粒粉と微粒粉に分けられる。粗粒粉はそ
のまま粗粒粉供給管9を通り、バーナ部11に供給され
るが、微粒粉はいったんバグフィルタ12で捕集された
後、ビン13に貯蔵され、フィーダ15で微粉同伴装置
16に送り込まれた後、ここで排ガス混合ダンパ17か
らの排ガスと混合され、搬送用空気で微粒粉供給管10
を通り、バーナ部11に供給される。
Embodiments of the present invention will be described below. FIG. 5 is an example of a boiler combustion system diagram when the burner of the present invention is used. The coal stored in the bunker 2 is supplied from the coal feeder 3 to the mill 4 according to the load of the combustion device in the furnace 1. The pulverized coal crushed by the mill 4 is
A pulverized coal conveying air pressurized by a PAF (Primary Air Fan) 5 and passed through a heat exchanger 6 to classify the pulverized coal 8
It is transported to and divided into coarse powder and fine powder. The coarse powder is supplied to the burner unit 11 through the coarse powder supply pipe 9 as it is, but the fine powder is once collected by the bag filter 12 and then stored in the bin 13 and fed by the feeder 15 to the fine powder entraining device 16 And then mixed with the exhaust gas from the exhaust gas mixing damper 17 and fed with the carrier air to the fine powder supply pipe 10.
And is supplied to the burner unit 11.

【0015】また、FDF(Force Draft
Fan)19からは燃焼用空気が加圧されバーナ部11
に送られ、バーナ部11で、二次空気と三次空気とに分
けられてそれぞれ供給される。
In addition, FDF (Force Draft)
The combustion air is pressurized from the fan 19 and the burner 11
And is divided into secondary air and tertiary air by the burner unit 11 and supplied respectively.

【0016】図5には1台のミル4を用いて石炭を粉砕
し、微粒粉と粗粒粉とを分けた後、微粒粉を排ガスと混
合して搬送用空気でバーナ部11に供給する際の例を示
したが、その他に新たに補助ミル(図示していない)を
設置し、複数のミルで別々に微粒粉と粗粒粉を粉砕し、
微粒粉をビン13に捕集した後、搬送用空気でバーナ部
11に供給しても良い。この場合にも、微粒粉搬送ガス
は排ガス混合ダンパ17で排ガスをGRF(Gas R
ecirculation Fan)20により取り出
した排ガスと混合したものを用いる。
In FIG. 5, the coal is crushed by using one mill 4 to separate fine powder and coarse powder, and then the fine powder is mixed with the exhaust gas and supplied to the burner section 11 by the conveying air. Although an example was shown, an auxiliary mill (not shown) was newly installed, and fine powder and coarse powder were crushed separately by multiple mills,
After the fine powder is collected in the bottle 13, it may be supplied to the burner unit 11 by air for transportation. Also in this case, the fine powder carrier gas is discharged by the exhaust gas mixing damper 17 into the GRF (Gas R gas).
The mixture with the exhaust gas taken out by the EC 20 is used.

【0017】次にこれらの燃焼システムにおいて本発明
のバーナを使用した際の作用を詳しく述べる。図1は本
発明の一実施例であるバーナの断面図である。バーナ中
心部分には、重油を燃料とする起動用バーナ21が設置
してあり、その周囲に微粒粉炭と空気と排ガスからなる
混合流(希薄流)22aを搬送する微粒粉供給配管10
が設置されている。その配管10の周りには粗粒粉炭と
空気からなる混合流(濃縮流)22bが通る粗粒粉供給
管9が設けられている。さらに粗粒粉供給管9の周囲に
二次空気25の流路26、三次空気28の流路29とい
う順に環状の流路を有する。二次空気流路26と三次空
気流路29内での空気流の旋回は各々の流路26、29
に設けた旋回器としての機能を持つレジスタダンパ3
0、31でそれぞれ行う。したがって、二次空気25と
三次空気28はレジスタダンパ30、31で旋回がかけ
られて、ボイラ火炉1の壁面32内に送り込まれる。
Next, the operation of the burner of the present invention in these combustion systems will be described in detail. FIG. 1 is a sectional view of a burner which is an embodiment of the present invention. A starter burner 21 using heavy oil as fuel is installed in the central portion of the burner, and a fine powder supply pipe 10 for conveying a mixed flow (lean flow) 22a composed of fine coal powder, air and exhaust gas around the burner 21.
Is installed. Around the pipe 10, a coarse-grain powder supply pipe 9 through which a mixed flow (concentrated flow) 22b of coarse-grain powder coal and air passes is provided. Around the coarse-grained powder supply pipe 9, a flow path 26 for the secondary air 25 and a flow path 29 for the tertiary air 28 have an annular flow path in this order. The swirling of the air flow in the secondary air flow path 26 and the tertiary air flow path 29 is determined by the respective flow paths 26, 29.
Register damper 3 with a function as a swivel installed in
0 and 31 respectively. Therefore, the secondary air 25 and the tertiary air 28 are swirled by the register dampers 30 and 31 and fed into the wall surface 32 of the boiler furnace 1.

【0018】また、混合流22a、22bの間の微粒粉
供給配管10の先端には保炎器34(ブラフボディ型保
炎器)を設置し、粗粒粉供給管9の火炉内出口部外壁に
は外部保炎リング35を有している。
Further, a flame stabilizer 34 (bluff body type flame stabilizer) is installed at the tip of the fine grain powder supply pipe 10 between the mixed streams 22a and 22b, and the outer wall of the outlet of the coarse grain powder supply pipe 9 inside the furnace. Has an external flame holding ring 35.

【0019】このバーナの特徴は、混合流22a、22
bに対して垂直な方向に平面板を有する内部保炎器34
によって、保炎器34自体の冷却効果を高めると同時に
粉炭流の巻き込み及び流れの乱れを増大させ、着火・保
炎性を強化させて燃焼ガスの低NOx化を図るものであ
る。
The feature of this burner is that the mixed streams 22a, 22
Internal flame stabilizer 34 having a plane plate in a direction perpendicular to b
This enhances the cooling effect of the flame stabilizer 34 itself, and at the same time increases the entrainment and turbulence of the pulverized coal flow, enhances the ignition / flame holding property, and lowers the NOx of the combustion gas.

【0020】本実施例の最も大きな特徴は内部保炎器3
4の設置位置である。内部保炎器34の設置位置が重要
である理由を次に述べる。すなわち、バーナ単体でNO
xを低減するにはバーナ中心部での酸素の消費を促進
し、還元領域を大きくすることが非常に重要である。一
般的な低NOxバーナでは粗粒粉供給管9出口先端の外
部保炎リング35により大きな火種ができているため、
バーナ中心部への火炎の伝播性が燃焼を支配する。この
際バーナ中心部への火炎の伝播は粒径の細かい石炭ほど
速くなる。
The greatest feature of this embodiment is that the internal flame stabilizer 3 is used.
4 is the installation position. The reason why the installation position of the internal flame stabilizer 34 is important will be described below. That is, the burner alone is NO
In order to reduce x, it is very important to promote the consumption of oxygen in the center of the burner and increase the reduction region. In a general low NOx burner, since a large flame is generated by the external flame holding ring 35 at the outlet end of the coarse-grained powder supply pipe 9,
Propagation of the flame to the center of the burner governs combustion. At this time, the flame spread to the center of the burner becomes faster as the grain size of coal becomes smaller.

【0021】しかし本実施例の特徴は微粒粉供給管10
出口先端に内部保炎器34を設置する際、内部保炎器3
4の設置位置を外部保炎リング35が形成する燃料流に
対して直交する平面と同一面上に設置されないようにず
らしているため、内部保炎器34を外部保炎リング35
が形成する前記平面と同一面上に設置した場合に比べ、
内部保炎器34により作られる火種付近を通る石炭粒子
の速度を遅くすることができる。このことが、バーナ出
口近傍での着火促進性や火炎伝播性・安定性を大きく向
上させる。特に、内部保炎器34を外部保炎リング35
が形成する燃料流に対して直交する平面と同一面上より
前流側に設置すると、この効果は著しい。
However, the feature of this embodiment is that the fine powder supply pipe 10 is provided.
When installing the internal flame stabilizer 34 at the tip of the outlet, the internal flame stabilizer 3
Since the installation position of No. 4 is shifted so as not to be installed on the same plane as the plane orthogonal to the fuel flow formed by the outer flame holding ring 35, the inner flame stabilizer 34 is not attached
Compared to when installed on the same plane as the plane formed by
The velocity of the coal particles passing near the flame created by the internal flame stabilizer 34 can be slowed. This greatly improves the ignition promotion property, flame propagation property, and stability near the burner outlet. In particular, the inner flame stabilizer 34 is connected to the outer flame stabilizer ring 35.
This effect is remarkable when installed on the upstream side of the same plane as the plane orthogonal to the fuel flow formed by.

【0022】しかし、内部保炎器34の設置により着火
が促進され、内部保炎器34近傍に形成させる火炎によ
って外部保炎リング35が燃損するおそれがある。そこ
で外部保炎リング35の燃損を防ぐために設置箇所に対
して条件を設定する必要がある。
However, the installation of the internal flame stabilizer 34 accelerates ignition, and the flame formed near the internal flame stabilizer 34 may burn the external flame stabilizer ring 35. Therefore, it is necessary to set conditions for the installation location in order to prevent the external flame holding ring 35 from burning.

【0023】この場合、内部保炎器34を外部保炎リン
グ35が形成する燃料流に対して直交する平面と同一面
上より前流側にずらす場合、その距離をL(図2参照)
とすると内部保炎器34の設置箇所としては距離Lが次
の条件を満たす箇所が望ましい。
In this case, when the inner flame stabilizer 34 is displaced forward from the same plane as the plane orthogonal to the fuel flow formed by the outer flame stabilizing ring 35, the distance is L (see FIG. 2).
Then, as the installation location of the internal flame stabilizer 34, a location where the distance L satisfies the following condition is desirable.

【0024】図2に内部保炎器34を外部保炎リング3
5の設置位置関係を示す。バーナ中心軸37から内部保
炎器34まで垂直方向の距離r、バーナ中心軸37から
外部保炎リング35までの垂直方向の距離ro、混合流
22aの流速v、内部保炎器34からバーナ中心軸37
に対して垂直方向で、外部保炎リング35の方向に火炎
が伝播する速度v’、内部保炎器34から外部保炎リン
グ35の方向に垂直に火炎が伝播するに要する時間t、
内部保炎器34からバーナ出口までバーナ軸37の軸線
方向に火炎が伝播するに要する時間t’の間には次のよ
うな関係式が成立する。
The internal flame stabilizer 34 is shown in FIG.
5 shows the installation positional relationship of No. 5. Vertical distance r from burner central axis 37 to internal flame stabilizer 34, vertical distance ro from burner central axis 37 to external flame stabilizer ring 35, flow velocity v of mixed flow 22a, internal flame stabilizer 34 to burner center Axis 37
A velocity v ′ at which the flame propagates in the direction perpendicular to the outer flame holding ring 35, and a time t required for the flame to propagate vertically from the inner flame stabilizer 34 to the outer flame holding ring 35,
The following relational expression holds during the time t ′ required for the flame to propagate in the axial direction of the burner shaft 37 from the internal flame stabilizer 34 to the burner outlet.

【0025】t=(r−ro)/v’ t’=L/v である。従って、外部保炎リング35の焼損を防ぐため
の距離Lを決定する際には次の関係を満たすことが望ま
しい。 (r−ro)/v’>L/v 図3は本発明の他の実施例である内部保炎器34を外部
保炎リング35が形成する燃料流に対して直交する平面
と同一面上より後流側に設置されたバーナの断面図であ
る。
T = (r-ro) / v 't' = L / v. Therefore, when determining the distance L for preventing the external flame holding ring 35 from burning, it is desirable to satisfy the following relationship. (R-ro) / v '> L / v FIG. 3 shows another embodiment of the present invention in which the internal flame stabilizer 34 is flush with the plane orthogonal to the fuel flow formed by the external flame stabilizing ring 35. It is sectional drawing of the burner installed in the more downstream side.

【0026】また、本発明によるバーナでは微粒粉供給
管10の内側にあらかじめ微粒粉と粗粒粉に分けた微粉
炭のうち微粒粉を供給するため、バーナ中心部への火炎
の伝播が促進される。この際、微粒粉搬送用空気に酸素
分圧5vol%以下の排ガスを混入すると、バーナ中心
部での酸素濃度の絶対値が下がり、酸素の消費時間をさ
らに短縮できる。ただし、この際、燃焼中の火炎の安定
性を考慮し、排ガスを混入した後の搬送用空気中の酸素
濃度が16%以下にならないようにするのが好ましい。
Further, in the burner according to the present invention, since the fine powder is supplied to the inside of the fine powder supply pipe 10 from the fine coal which has been divided into the fine powder and the coarse powder in advance, the propagation of the flame to the central portion of the burner is promoted. It At this time, if the exhaust gas having an oxygen partial pressure of 5 vol% or less is mixed into the air for conveying fine particles, the absolute value of the oxygen concentration in the central portion of the burner decreases, and the oxygen consumption time can be further shortened. However, at this time, in consideration of the stability of the flame during combustion, it is preferable that the oxygen concentration in the transport air after mixing the exhaust gas does not fall below 16%.

【0027】図4に本発明の分離供給型バーナによるN
Ox低減効果を示す。これによると従来の低NOxバー
ナに対する本発明によるバーナのNOx低減効果は約2
5%である。
FIG. 4 shows the N by the separate supply type burner of the present invention.
The Ox reduction effect is shown. According to this, the NOx reduction effect of the burner according to the present invention is about 2 as compared with the conventional low NOx burner.
5%.

【0028】また、微粒粉搬送用空気に、酸素濃度5v
ol%以下の排ガスを混入すると、NOxの還元物質で
あるHCN、NH3を多く含む揮発分が生成するため、
さらなるNOx低減効果がある。
Further, the air for conveying fine particles has an oxygen concentration of 5 v.
When exhaust gas of less than ol% is mixed, volatile matter containing a large amount of HCN and NH 3 which are reducing substances of NOx is generated.
There is a further NOx reduction effect.

【0029】このように、本発明では、微粒粉供給管の
出口先端に、内部保炎器34の燃料流に垂直な平面を外
部保炎リングの燃料流に垂直な平面と同一面上でない位
置、特に外部保炎リングより前流側の位置に設置すると
ともに、微粒粉供給管内側に微粒粉を排ガスを混入した
搬送用空気で搬送することにより、従来の低NOxバー
ナの着火性、及び火炎伝播性を大幅に促進し、安定した
大きな還元領域を形成することによってNOx生成量の
大幅な低減を可能にするものである。
As described above, in the present invention, the plane perpendicular to the fuel flow of the internal flame stabilizer 34 is not flush with the plane perpendicular to the fuel flow of the external flame holding ring at the outlet end of the fine powder feed pipe. In particular, the ignitability of the conventional low NOx burner and the flame can be improved by installing it in the position on the upstream side of the external flame holding ring and by conveying the fine powder to the inside of the fine powder supply pipe with the transport air mixed with the exhaust gas. By greatly promoting the propagating property and forming a stable and large reduction region, it is possible to significantly reduce the amount of NOx produced.

【0030】以上、低NOxに対する効果を主に述べた
が、本発明によるバーナはその優れた着火保炎性から、
広負荷範囲、広範囲性状の石炭にも適しており、通常燃
焼が困難とされる高燃料比炭や粗粉炭の燃焼にも十分対
応できる。
The effect on low NOx has been mainly described above, but the burner according to the present invention is excellent in ignition flame holding property.
It is also suitable for coal with a wide load range and a wide range of properties, and can sufficiently handle combustion of high fuel ratio coal and coarse coal, which are usually difficult to burn.

【0031】[0031]

【発明の効果】本発明による効果を以下に示す。 (1)安定した大きな還元領域を作るため、超低NOx
化を達成することができる。 (2)着火保炎が優れているため、広負荷範囲・広範囲
性状の石炭の燃焼にも適しており、燃焼の困難な高燃料
比炭、粗粉炭にも十分対応できる。 (3)バーナは単体で優れた脱硝効果を得ることがで
き、低NOx燃焼システムとして複数のバーナを設ける
必要がなく、装置のコンパク化や操作性の向上が可能で
ある。
The effects of the present invention are shown below. (1) Ultra-low NOx to create a stable large reduction region
Can be achieved. (2) Since it has excellent ignition and flame protection, it is also suitable for the combustion of coal with a wide load range and wide range of properties, and it can sufficiently handle high fuel ratio coal and coarse coal that are difficult to burn. (3) The burner can obtain an excellent denitration effect by itself, it is not necessary to provide a plurality of burners as a low NOx combustion system, and the compactness of the device and improvement of operability are possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例で内部保炎器が外部保炎リ
ングと同一面上より前流側に設置されている微粉炭燃焼
装置のバーナの断面図である。
FIG. 1 is a cross-sectional view of a burner of a pulverized coal combustion apparatus in which an internal flame stabilizer is installed on the front side of the same plane as an external flame holding ring in one embodiment of the present invention.

【図2】 本発明の一実施例のバーナの内部保炎器と外
部保炎リングとの位置関係を説明する図である。
FIG. 2 is a diagram illustrating the positional relationship between an internal flame stabilizer and an external flame stabilizer ring of a burner according to an embodiment of the present invention.

【図3】 本発明の一実施例の内部保炎器が外部保炎リ
ングと同一面上より後流側に設置されている微粉炭燃焼
装置のバーナの断面図である。
FIG. 3 is a cross-sectional view of a burner of a pulverized coal combustion apparatus in which an internal flame stabilizer according to an embodiment of the present invention is installed on the wake side from the same plane as the external flame holding ring.

【図4】 本発明の一実施例の微粉炭燃焼装置によるN
Ox低減効果を説明する図である。
FIG. 4 is an N diagram of a pulverized coal combustion apparatus according to an embodiment of the present invention
It is a figure explaining the Ox reduction effect.

【図5】 微粒粉を排ガスを混入した搬送用空気で搬送
する際のボイラ燃焼系統図である。
FIG. 5 is a boiler combustion system diagram when the fine powder is conveyed by the conveying air mixed with exhaust gas.

【図6】 火炉内での低NOx燃焼の概念を示す図であ
る。
FIG. 6 is a diagram showing the concept of low NOx combustion in a furnace.

【図7】 低NOx燃焼の燃焼域の概念を説明する図で
ある。
FIG. 7 is a diagram illustrating a concept of a combustion region of low NOx combustion.

【図8】 従来の低NOxバーナの代表であるNRバー
ナの断面図である。
FIG. 8 is a cross-sectional view of an NR burner that is typical of conventional low NOx burners.

【符号の説明】 1 火炉 2 バンカ 3 石炭フィーダ 4 ミル 5 PAF 6 熱交換器 8 分級器 9 粗粒粉供給管 10 微粒粉供給管 11 バーナ部 12 バグフィルタ 13 ビン 15 フィーダ 16 微粉同伴装置 17 排ガス混合ダンパ 21 起動用バーナ 22a 混合流(希薄流) 22b 混合流(濃縮
流) 25 二次空気 26 二次空気流路 28 三次空気 29 三次空気流路 30、31 レジスタダンパ 32 火炉壁面 34 内部保炎器 35 保炎リング 37 バーナ中心軸
[Explanation of symbols] 1 furnace 2 bunker 3 coal feeder 4 mill 5 PAF 6 heat exchanger 8 classifier 9 coarse powder supply pipe 10 fine powder supply pipe 11 burner part 12 bag filter 13 bin 15 feeder 16 fine powder entrainer 17 exhaust gas Mixed damper 21 Startup burner 22a Mixed flow (diluted flow) 22b Mixed flow (concentrated flow) 25 Secondary air 26 Secondary air flow path 28 Tertiary air 29 Tertiary air flow path 30, 31 Register damper 32 Fire wall surface 34 Internal flame holding Instrument 35 Flame retaining ring 37 Burner central axis

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大谷津 紀之 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 (72)発明者 廻 信康 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 (72)発明者 津村 俊一 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 (72)発明者 小林 啓信 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Noriyuki Oyatsu 3 36 Takaracho, Kure City, Hiroshima Prefecture Babcock Hitachi Co., Ltd. Kure Research Institute (72) Nobuyasu Makai 3 36 Takaracho, Kure City, Hiroshima Prefecture Babcock Hitachi Ltd. Kure Research Institute (72) Inventor Shunichi Tsumura 6-9 Takaracho, Kure City, Hiroshima Prefecture Babcock Hitachi Kure Factory (72) Inventor Keinobu Kobayashi 4026 Kujicho, Hitachi City, Ibaraki Hitachi Research Laboratory, Hitachi Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 固体燃料と該燃料の搬送用気体からなる
固気二相流が流れる固気二相流流路を二つに分けた内筒
と外筒からなる二重管として設け、該二重管の外周部に
燃焼用空気が流れる少なくとも1つの空気流路を有し、
バーナ出口部分に流れに直交する平面を有する保炎器を
設置した固体燃料用バーナにおいて、 保炎器を固気二相流流路の内筒内の流路出口部と固気二
相流流路の外筒内の流路出口部とにそれぞれ設け、 前記内筒内の流路出口部の保炎器と前記外筒内の流路出
口部の保炎器の燃料流の方向に直交する方向に設けた平
面が同一面上の位置から互いにずれた位置に設置された
ことを特徴とした固体燃料用バーナ。
1. A solid-gas two-phase flow channel through which a solid-gas two-phase flow composed of a solid fuel and a carrier gas for the fuel flows is provided as a double pipe composed of an inner cylinder and an outer cylinder divided into two parts. Having at least one air flow path through which combustion air flows in the outer periphery of the double pipe,
In a burner for solid fuel in which a flame stabilizer having a plane orthogonal to the flow is installed at the burner outlet, the flame stabilizer is used as a solid gas two-phase flow The flow path outlet in the outer cylinder of the passage and the flame stabilizer at the flow path outlet in the inner cylinder and the fuel flow direction of the flame stabilizer at the flow path outlet in the outer cylinder are orthogonal to each other. A burner for a solid fuel, characterized in that planes provided in a direction are installed at positions displaced from each other on the same plane.
【請求項2】 内筒内の固気二相流流路にあらかじめ微
粒粉と粗粒粉とに分けられた固体燃料のうちの微粒粉を
供給することを特徴とする請求項1記載の特固体燃料用
バーナ。
2. The fine powder of the solid fuel divided into fine powder and coarse powder in advance is supplied to the solid-gas two-phase flow passage in the inner cylinder. Burner for solid fuel.
【請求項3】 内筒内の固気二相流流路内部に設けられ
た保炎器の燃料流の方向に直交する方向に設けた平面が
外筒内の固気二相流流路に設けられた保炎器の燃料流の
方向に直交する方向に設けた平面より前流側に設置され
ていることを特徴とする請求項1または2記載の固体燃
料用バーナ。
3. A solid-gas two-phase flow passage in the outer cylinder is provided with a plane provided in a direction orthogonal to the fuel flow direction of the flame stabilizer provided inside the solid-gas two-phase flow passage in the inner cylinder. The burner for solid fuel according to claim 1 or 2, wherein the burner for solid fuel is installed on a front flow side of a plane provided in a direction orthogonal to a fuel flow direction of the provided flame stabilizer.
【請求項4】 内筒内の固気二相流流路内を流れる微粒
粉搬送用気体として空気と排ガスの混合流体を用いるこ
とを特徴とする請求項1ないし3のいずれかに記載の固
体燃料用バーナ。
4. The solid according to claim 1, wherein a mixed fluid of air and exhaust gas is used as a fine particle powder-carrying gas flowing in the solid-gas two-phase flow passage in the inner cylinder. Burner for fuel.
【請求項5】 内筒内の固気二相流流路内を流れる微粒
粉搬送用気体として空気中に酸素分圧が5容量%以下の
排ガスを混入した混合流体を用いることを特徴とする請
求項4記載の固体燃料用バーナ。
5. A mixed fluid in which an exhaust gas having an oxygen partial pressure of 5% by volume or less is mixed in air is used as a gas for conveying fine particles in the solid-gas two-phase flow passage in the inner cylinder. The solid fuel burner according to claim 4.
【請求項6】 排ガス混入後の微粒粉搬送用空気の酸素
分圧が16容量%以下にならないようにすることを特徴
とする請求項4または5記載の固体燃料用バーナ。
6. The burner for solid fuel according to claim 4 or 5, wherein the oxygen partial pressure of the air for conveying the fine powder after mixing the exhaust gas is set to 16% by volume or less.
【請求項7】 請求項1ないし6のいずれかに記載の固
体燃料用バーナを設けた燃焼装置。
7. A combustion apparatus provided with the burner for solid fuel according to claim 1. Description:
JP5736496A 1996-03-14 1996-03-14 Burner for solid fuel and combustion device Pending JPH09250709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5736496A JPH09250709A (en) 1996-03-14 1996-03-14 Burner for solid fuel and combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5736496A JPH09250709A (en) 1996-03-14 1996-03-14 Burner for solid fuel and combustion device

Publications (1)

Publication Number Publication Date
JPH09250709A true JPH09250709A (en) 1997-09-22

Family

ID=13053537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5736496A Pending JPH09250709A (en) 1996-03-14 1996-03-14 Burner for solid fuel and combustion device

Country Status (1)

Country Link
JP (1) JPH09250709A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309607A (en) * 2006-05-19 2007-11-29 Ihi Corp Burner device for burning pulverized coal
JP2017003216A (en) * 2015-06-12 2017-01-05 三菱日立パワーシステムズ株式会社 Burner, combustion apparatus, and control method of boiler and the burner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309607A (en) * 2006-05-19 2007-11-29 Ihi Corp Burner device for burning pulverized coal
JP2017003216A (en) * 2015-06-12 2017-01-05 三菱日立パワーシステムズ株式会社 Burner, combustion apparatus, and control method of boiler and the burner
US10591156B2 (en) 2015-06-12 2020-03-17 Mitsubishi Hitachi Power Systems, Ltd. Burner, combustion device, boiler, and burner control method

Similar Documents

Publication Publication Date Title
US9822967B2 (en) Apparatus for burning pulverized solid fuels with oxygen
KR100709849B1 (en) Nox-reduced combustion of concentrated coal streams
EP2829796B1 (en) Pulverized coal/biomass mixed-combustion burner and fuel combustion method
DK2829800T3 (en) Coal dust / biomass mixed-incinerator and fuel combustion process
US20220003408A1 (en) Reverse-jet swirl pulverized coal burner with multi-stage recirculations
JPH0439564B2 (en)
US6298796B1 (en) Fine coal powder combustion method for a fine coal powder combustion burner
JPH0926112A (en) Pulverized coal burner
JPH10220707A (en) Burner for powdery solid fuel and combustion apparatus therewith
JPH08135919A (en) Combustion device
JPH09170714A (en) Fine coal powder burning burner
JP2005024136A (en) Combustion apparatus
JP3830582B2 (en) Pulverized coal combustion burner
JPH10274405A (en) Pulverized coal combustion burner and combustion method thereof
JPH09250709A (en) Burner for solid fuel and combustion device
JPH08219415A (en) Burner for solid fuel and pulverized coal firing equipment
CN108413388B (en) Low-nitrogen cyclone burner with circumferentially offset wind powder
JPH09112820A (en) Pulverized coal burner
JPH0555763B2 (en)
JP2006162208A (en) Burner, and its operating method
JP3784587B2 (en) Solid fuel combustion burner with low NOx and combustion accelerator
JPH0921506A (en) Pulverized coal firing equipment and its method
JPH0268405A (en) Pulverized coal burner
JPH08312917A (en) Low-nox combustion method of pulverized coal and device therefor
JPS6246109A (en) Low nox burner for solid fuel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060314

A131 Notification of reasons for refusal

Effective date: 20060328

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20060815

Free format text: JAPANESE INTERMEDIATE CODE: A02