JPH09246979A - Modulation method, modulation device, demodulation method and demodulation means for digital data - Google Patents

Modulation method, modulation device, demodulation method and demodulation means for digital data

Info

Publication number
JPH09246979A
JPH09246979A JP4580096A JP4580096A JPH09246979A JP H09246979 A JPH09246979 A JP H09246979A JP 4580096 A JP4580096 A JP 4580096A JP 4580096 A JP4580096 A JP 4580096A JP H09246979 A JPH09246979 A JP H09246979A
Authority
JP
Japan
Prior art keywords
data
cumulative addition
addition value
bit data
synchronization signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4580096A
Other languages
Japanese (ja)
Inventor
Yutaka Nagai
裕 永井
Toshifumi Takeuchi
敏文 竹内
Takao Arai
孝雄 荒井
Satoru Nishimoto
覚 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4580096A priority Critical patent/JPH09246979A/en
Publication of JPH09246979A publication Critical patent/JPH09246979A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To suppress the absolute value of a cumulative added value and to prevent increase over the long period of time by adjusting the cumulative added value for respective synchronizing signals inserted to modulation signals in a fixed cycle. SOLUTION: A data conversion means 1 inputs the digital data of 8 bits, converts them to 16-bit digital data along 8-16 modulation specifications and inputs them to a serializing means 2. For the conversion data serialized in the means 2, in a cumulative added value measuring means 3 and a time division multiplex means 6, the serialized conversion data and the synchronizing signals outputted from a synchronizing signal switching means 5 in the fixed cycle are time division multiplexed and outputted as the modulation signals. In the meantime, by the cumulative added value of the serialized conversion data measured in the means 3, a conversion data code in the means 1 and the changeover of the plural kinds of the synchronizing signals in the means 5 are controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、帯域制限された伝
送路においてもエラーレートを小さくできるディジタル
データ変復調装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a digital data modulator / demodulator capable of reducing an error rate even in a band-limited transmission line.

【0002】[0002]

【従来の技術】音楽用CD(コンパクト・ディスク)及
びCD−ROM(リード・オンリー・メモリ)に採用さ
れている、CD−オーディオからパソコンへ−(コロナ
社版,真利監修,P13〜P15)に示されるようなE
FM(エイト・トゥ・フォーティーン・モデュレーショ
ン)変調方式等があるが、動画像のような大容量を必要
とするアプリケーションを考えた場合、蓄積媒体(ディ
スク等)の高密度化が必要であり、それを支える従来以
上に高い変調効率が求められている。
2. Description of the Related Art From a CD-audio to a personal computer, which is used in a music CD (compact disc) and a CD-ROM (read only memory)-(Corona Publishing, edited by Mauri, P13-P15) E as shown in
Although there are FM (eight to four modulation) modulation systems and the like, considering an application that requires a large capacity such as a moving image, it is necessary to increase the density of a storage medium (disk or the like). There is a demand for higher modulation efficiency to support this.

【0003】EFM変調方式の主な仕様は、 (1)入力:8ビット (2)出力:17ビット(NRZI形式) 17ビット内訳…データ14ビット+マージン3ビット (3)ランレングス制限 min:2ビット max:10ビット (4)同期パターン:11T−11Tの固定パターンを
含む27ビット である。マージン3ビットで、ランレングス制限と累積
加算値の抑圧を行っている。
The main specifications of the EFM modulation method are: (1) Input: 8 bits (2) Output: 17 bits (NRZI format) 17 bits breakdown ... Data 14 bits + margin 3 bits (3) Run length limit min: 2 Bit max: 10 bits (4) Synchronization pattern: 27 bits including a fixed pattern of 11T-11T. The run length is limited and the cumulative addition value is suppressed by a margin of 3 bits.

【0004】EFM変調方式の例を図2を用いて説明す
る。11はデータ変換手段、12は直列化手段、13は
ビット加算手段、14は累積加算値計測手段、15は同
期信号発生手段、16は時分割多重手段である。以上か
らなるディジタルデータ変調処理について、以下その動
作を説明する。データ変換手段11は8ビットデータを
入力してEFM変調仕様に沿った14ビットデータに変
換し、直列化手段12に入力する。直列化手段12で
は、直列化した変換データをビット加算手段13に出力
する。ビット加算手段13では、ランレングスおよび累
積加算値計測手段14で計測した累積加算値をもとにマ
ージンビット3ビットを付加し時分割多重手段16に出
力する。時分割多重手段16では、ビット加算後の変換
データと同期信号発生手段15から一定周期で出力され
る同期信号とを時分割多重し、変調信号として出力す
る。
An example of the EFM modulation method will be described with reference to FIG. Reference numeral 11 is a data converting means, 12 is a serializing means, 13 is a bit adding means, 14 is a cumulative addition value measuring means, 15 is a synchronizing signal generating means, and 16 is a time division multiplexing means. The operation of the above digital data modulation processing will be described below. The data conversion means 11 inputs 8-bit data, converts it into 14-bit data according to the EFM modulation specification, and inputs it to the serialization means 12. The serializing means 12 outputs the serialized converted data to the bit adding means 13. The bit addition means 13 adds 3 bits of the margin bit based on the run length and the cumulative addition value measured by the cumulative addition value measuring means 14 and outputs it to the time division multiplexing means 16. The time-division multiplexing means 16 time-division-multiplexes the converted data after bit addition and the synchronization signal output from the synchronization signal generating means 15 in a constant cycle, and outputs the modulated signal.

【0005】このように、直列化後の累積加算値に基づ
き、ビット加算手段13でマージンビットを制御するこ
とにより、変調信号の累積加算値の絶対値を抑圧してい
る。
As described above, the absolute value of the cumulative addition value of the modulated signal is suppressed by controlling the margin bit by the bit adding means 13 based on the cumulative addition value after serialization.

【0006】尚、この累積加算値の絶対値の抑圧が十分
でないと再生時のエラーレートが劣化し、再生速度低下
および再生不能等の障害として現れる。
If the absolute value of the cumulative addition value is not sufficiently suppressed, the error rate at the time of reproduction is deteriorated, which appears as obstacles such as a reduction in reproduction speed and inability to reproduce.

【0007】これに対し、EFMPlus:The C
oding Format ofthe High−D
ensity Compact Disc(IEEE,
WPM6.1,0−7803−2140−5/95,K
ees A.Schouhamer Immink著)
に示されるようなEFMPlus変調方式のように、デ
ータの変換を8ビット→14ビットを8ビット→16ビ
ットとしマージンビットなくすことで変調効率を高める
ことが考えられる。
On the other hand, EFMPlus: The C
oding format of the High-D
energy Compact Disc (IEEE,
WPM 6.1, 0-7803-2140-5 / 95, K
ees A. (Schoolhammer Imink)
As in the EFM Plus modulation method as shown in (1), it is possible to improve the modulation efficiency by converting data from 8 bits → 14 bits to 8 bits → 16 bits and eliminating margin bits.

【0008】例えば、 (1)入力:8ビット (2)出力:16ビット(NRZI形式) 16ビット内訳…データ16ビット(マージンビットな
し) (3)ランレングス制限 min:2ビット max:10ビット (4)同期パターン:11T−11Tの固定パターンを
含む32ビット である。この方式(以下8−16変調方式)は、EFM
変調方式に比べ、変換後の出力ビット数が少ない分、高
い変調効率を実現できる。ただし、マージンビットがな
いため、データ自体でランレングス制限と累積加算値の
抑圧を行う必要がある。具体的な手法としては、各入力
データに対しランレングスおよび極性および累積加算値
の異なる複数種類の変換データを用意し、ランレングス
および累積加算値に応じて逐次選択するのが一般的であ
る。
For example, (1) Input: 8 bits (2) Output: 16 bits (NRZI format) 16-bit breakdown ... 16 bits of data (no margin bit) (3) Run length limit min: 2 bits max: 10 bits ( 4) Synchronization pattern: 32 bits including a fixed pattern of 11T-11T. This method (hereinafter referred to as 8-16 modulation method) is based on EFM.
As compared with the modulation method, the number of output bits after conversion is small, and thus high modulation efficiency can be realized. However, since there is no margin bit, it is necessary to limit the run length and suppress the cumulative addition value by the data itself. As a specific method, it is general to prepare a plurality of types of conversion data having different run lengths, polarities, and cumulative addition values for each input data, and sequentially select the conversion data according to the run lengths and cumulative addition values.

【0009】8−16変調方式に関する従来技術の例を
図3を用いて説明する。21はデータ変換手段、22は
直列化手段、23は累積加算値計測手段、24は同期信
号発生手段、25は時分割多重手段である。以上からな
るディジタルデータ変調処理について、以下その動作を
説明する。データ変換手段21は8ビットデータを入力
して8−16変調仕様に沿った16ビットデータに変換
し、直列化手段22に入力する。直列化手段22では、
直列化した変換データを累積加算値計測手段23および
時分割多重手段25に出力する。時分割多重手段25で
は、直列化した変換データと同期信号発生手段24から
一定周期で出力される同期信号とを時分割多重し、変調
信号として出力する。一方、累積加算値計測手段23で
計測した直列化した変換データの累積加算値で、データ
変換手段21での変換データコードを制御する。
An example of the prior art relating to the 8-16 modulation system will be described with reference to FIG. Reference numeral 21 is a data converting means, 22 is a serializing means, 23 is a cumulative addition value measuring means, 24 is a synchronizing signal generating means, and 25 is a time division multiplexing means. The operation of the above digital data modulation processing will be described below. The data conversion means 21 inputs 8-bit data, converts it into 16-bit data according to the 8-16 modulation specification, and inputs it to the serialization means 22. In the serialization means 22,
The serialized conversion data is output to the cumulative addition value measuring means 23 and the time division multiplexing means 25. The time-division multiplexing means 25 time-division-multiplexes the serialized converted data and the synchronization signal output from the synchronization signal generating means 24 at a constant cycle, and outputs the modulated signal. On the other hand, the conversion data code in the data conversion unit 21 is controlled by the cumulative addition value of the serialized conversion data measured by the cumulative addition value measuring unit 23.

【0010】このように、直列化後の累積加算値に基づ
き、データ変換手段21で変換データコードのみを制御
することにより、変調信号の累積加算値の絶対値を抑圧
している。データ変換手段21だけで変調信号の累積加
算値の絶対値の抑圧能力を向上させるには、選択できる
変換データの種類を増加させるしかなく回路規模の増大
を招く。また、一連のデータ列を考えた場合データの組
み合わせから発生するデータ列の種類は膨大となり、全
てのデータ列に関して考慮するのは事実上不可能であ
る。そのため、特定の入力コードに対してしか累積加算
値の抑圧はおこなえず累積加算値の絶対値が長時間増大
し続ける可能性が常にあるといえる。
As described above, the absolute value of the cumulative addition value of the modulated signal is suppressed by controlling only the converted data code by the data converting means 21 based on the cumulative addition value after serialization. In order to improve the ability to suppress the absolute value of the cumulative addition value of the modulated signal only by the data conversion means 21, the number of types of conversion data that can be selected must be increased, which causes an increase in the circuit scale. Further, when considering a series of data strings, the types of data strings generated from the combination of data become enormous, and it is virtually impossible to consider all the data strings. Therefore, it can be said that there is always a possibility that the cumulative addition value can be suppressed only for a specific input code and the absolute value of the cumulative addition value continues to increase for a long time.

【0011】累積加算値の絶対値が長時間増大し続ける
場合について、図面を用いて説明する。図4はセクタ単
位のフォーマットの例である。nバイト(1バイト=8
ビット)のデータと11T−11Tの同期パターンを含
む同期信号でフレームを構成し、2フレームで1行を構
成し、m行で1セクタを構成している。同期信号として
Sy1,Sy2,Sy3の3種類を用意し、それぞれセ
クタの先頭、行の先頭、行の中間のタイミングに割り当
てている。図5は同期信号形式の例である。32ビット
のうち先頭9ビットを同期信号種類の区別に使用し残り
23ビットを11T−11Tの同期パターンに使用して
いる。以後、図4および図5の形式をもとに説明を進め
る。図6に累積加算値の絶対値が長時間増大し続ける例
を示す。「データAの連続→同期信号→データBの連続
→同期信号→データAの連続」を繰り返す変化におい
て、データAは累積加算値極性が+のとき累積加算値は
変換量4で増加し続ける。同期信号は累積加算値0で極
性は反転のため、同期タイミングでは累積加算値の変化
はないが、同期信号前後で信号極性が反転する。次にデ
ータBでは、同期信号にて極性が反転したため累積加算
値極性は+になり、累積加算値は変化量4で増加し続け
ることになる。このようにデータおよび同期信号の組み
合わせ次第で、累積加算値の絶対値が長時間増大し続け
る可能性がある。
A case where the absolute value of the cumulative addition value continues to increase for a long time will be described with reference to the drawings. FIG. 4 shows an example of a sector unit format. n bytes (1 byte = 8
(Bit) data and a sync signal including a sync pattern of 11T-11T form a frame, two frames form one row, and m rows form one sector. Three types of synchronization signals, Sy1, Sy2, and Sy3, are prepared and assigned to the beginning of a sector, the beginning of a row, and the timing of the middle of a row. FIG. 5 shows an example of the sync signal format. Of the 32 bits, the first 9 bits are used for distinguishing the sync signal type, and the remaining 23 bits are used for the 11T-11T sync pattern. Hereinafter, the description will proceed based on the formats shown in FIGS. 4 and 5. FIG. 6 shows an example in which the absolute value of the cumulative addition value continues to increase for a long time. In the change of repeating “continuous data A → synchronous signal → continuous data B → synchronous signal → continuous data A”, when the polarity of the cumulative addition value of the data A is +, the cumulative addition value continues to increase by the conversion amount 4. Since the sync signal has the cumulative addition value of 0 and the polarity is inverted, the cumulative addition value does not change at the synchronization timing, but the signal polarity is inverted before and after the synchronization signal. Next, in the data B, since the polarity is inverted by the synchronization signal, the cumulative addition value polarity becomes +, and the cumulative addition value continues to increase with the change amount 4. As described above, the absolute value of the cumulative addition value may continue to increase for a long time depending on the combination of the data and the synchronization signal.

【0012】次に、復調の例を図9を用いて説明する。
31は同期検出手段、32は並列化手段、33はデータ
変換手段である。以上からなるディジタルデータ復調処
理について、以下その動作を説明する。変調信号(16
ビット直列)は、同期検出手段31で同期信号を検出し
出力する。一方、並列化手段32で16ビット並列デー
タに変換し出力する。データ変換手段33で8−16変
調のデータ変換の逆の変換を行い、8ビット並列の復調
データを出力する。
Next, an example of demodulation will be described with reference to FIG.
Reference numeral 31 is a synchronization detecting means, 32 is a parallelizing means, and 33 is a data converting means. The operation of the digital data demodulation process described above will be described below. Modulation signal (16
(Bit serial), the synchronization detection means 31 detects and outputs a synchronization signal. On the other hand, the parallelization means 32 converts the data into 16-bit parallel data and outputs it. The data converting means 33 performs the reverse conversion of the 8-16 modulation data conversion, and outputs 8-bit parallel demodulated data.

【0013】[0013]

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

(1)累積加算値の絶対値の抑圧を強化する。 (1) Strengthen the suppression of the absolute value of the cumulative addition value.

【0014】(2)従来技術では、特定条件で累積加算
値の絶対値が長時間増大し続ける可能性があり、対策す
る。
(2) In the prior art, there is a possibility that the absolute value of the cumulative addition value may continue to increase for a long time under a specific condition, and a countermeasure is taken.

【0015】[0015]

【課題を解決するための手段】同期信号で累積加算値の
調整(値および極性(反転/非反転)の選択)を行う。
A cumulative addition value is adjusted (selection of a value and a polarity (inversion / non-inversion)) by a synchronization signal.

【0016】累積加算値の調整を、変調信号に一定周期
で挿入される同期信号毎に行うことで、累積加算値の絶
対値の抑圧および累積加算値の絶対値が長時間増大し続
けることを防止する。
By adjusting the cumulative addition value for each synchronization signal inserted into the modulation signal at a constant cycle, it is possible to suppress the absolute value of the cumulative addition value and keep the absolute value of the cumulative addition value continuously increasing for a long time. To prevent.

【0017】[0017]

【発明の実施の形態】本発明の変調の実施例を図面を用
いて説明する。図1は本発明におけるディジタルデータ
変調の実施例のブロック図である。図1で1はデータ変
換手段、2は直列化手段、3は累積加算値計測手段、4
は同期信号発生手段、5は同期信号切り替え手段、6は
時分割多重手段である。以上からなるディジタルデータ
変調処理について、以下その動作を説明する。データ変
換手段1は8ビットディジタルデータを入力して8−1
6変調仕様に沿った16ビットディジタルデータに変換
し、直列化手段2に入力する。直列化手段2では、直列
化した変換データを累積加算値計測手段3および時分割
多重手段6に出力する。時分割多重手段6では、直列化
した変換データと同期信号切り替え手段5から一定周期
で出力される同期信号とを時分割多重し、変調信号とし
て出力する。一方、累積加算値計測手段3で計測した直
列化した変換データの累積加算値で、データ変換手段1
での変換データコードおよび同期切り替え手段5での複
数種類の同期信号の切り替えを制御する。尚、累積加算
値はデータ入力前中後に関わらず1ビット単位で計測可
能である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of modulation according to the present invention will be described with reference to the drawings. FIG. 1 is a block diagram of an embodiment of digital data modulation in the present invention. In FIG. 1, 1 is data conversion means, 2 is serialization means, 3 is cumulative addition value measurement means, 4
Is a synchronizing signal generating means, 5 is a synchronizing signal switching means, and 6 is a time division multiplexing means. The operation of the above digital data modulation processing will be described below. The data converting means 1 receives 8-bit digital data and inputs 8-1.
It is converted into 16-bit digital data according to the 6-modulation specifications and input to the serializing means 2. The serializing means 2 outputs the serialized converted data to the cumulative addition value measuring means 3 and the time division multiplexing means 6. The time-division multiplexing means 6 time-division-multiplexes the serialized converted data and the synchronization signal output from the synchronization signal switching means 5 at a constant cycle, and outputs the result as a modulation signal. On the other hand, the cumulative addition value of the serialized conversion data measured by the cumulative addition value measurement means 3 is used as the data conversion means 1
The switching of the conversion data code and the switching of the plurality of types of synchronization signals by the synchronization switching means 5 are controlled. The cumulative addition value can be measured in 1-bit units regardless of before, after, and after data input.

【0018】このように、直列化後の累積加算値に基づ
き、データ変換手段での変換データコードだけでなく、
同期信号の累積加算値および極性をも制御することによ
り、調整機会が増加するため、変調信号の累積加算値の
絶対値を従来以上に抑圧できる。
As described above, based on the cumulative addition value after serialization, not only the conversion data code in the data conversion means but also
By controlling the cumulative addition value and the polarity of the synchronization signal as well, the number of adjustment opportunities increases, so that the absolute value of the cumulative addition value of the modulation signal can be suppressed more than before.

【0019】特に、図6に示すような特定条件で累積加
算値の絶対値が長時間増大し続ける現象も、本発明で
は、同期信号周期で調整が入るため防止できる。これを
図7を用いて説明する。図6と同じ「データAの連続→
同期信号→データBの連続→同期信号→データAの連
続」を繰り返す変化において、データAは累積加算値極
性が+のとき累積加算値は変化量4で増加し続ける。同
期信号は図5の同期信号に相当する同期信号Aでなく累
積加算値0で極性が非反転の同期信号Bを選択する。こ
れにより、次にデータBでは、同期信号にて極性が非反
転のため累積加算値極性は−になり、累積加算値は変化
量4で減少に転じる。このように累積加算値の絶対値が
長時間増大し続けるのを防止できる。
In particular, the phenomenon that the absolute value of the cumulative addition value continues to increase for a long time under the specific condition as shown in FIG. 6 can be prevented because the adjustment is made in the synchronizing signal period in the present invention. This will be described with reference to FIG. Same as Fig. 6 "Continuation of data A →
In the change of repeating “synchronization signal → continuous data B → synchronization signal → continuous data A”, when the polarity of the cumulative addition value of the data A is +, the cumulative addition value continues to increase by the change amount 4. The sync signal is not the sync signal A corresponding to the sync signal in FIG. 5, but the sync signal B having a cumulative addition value of 0 and a non-inverted polarity is selected. As a result, in the data B, the polarity of the sync signal is non-inverted, so that the polarity of the cumulative addition value becomes − and the cumulative addition value starts to decrease at the change amount 4. In this way, it is possible to prevent the absolute value of the cumulative addition value from continuing to increase for a long time.

【0020】本発明に使用可能な複数種類の同期信号の
例を図8に示す。本発明の前提としている8−16変調
仕様を満足し、累積加算値または極性の異なる複数種類
の同期信号が実在する。この中で、ケース1のパターン
はランレングスのminを、ケース2のパターンはラン
レングスのmaxを制御する役割がある。これら12種
類の同期信号により、図4のフォーマットにおいて同期
信号で累積加算値の調整が実現できる。
FIG. 8 shows an example of a plurality of types of sync signals that can be used in the present invention. The 8-16 modulation specification which is the premise of the present invention is satisfied, and a plurality of types of synchronization signals having different cumulative addition values or different polarities actually exist. Among them, the case 1 pattern has a role of controlling the run length min and the case 2 pattern has a role of controlling the run length max. With these 12 kinds of synchronization signals, the cumulative addition value can be adjusted with the synchronization signals in the format of FIG.

【0021】次に、本発明の復調の実施例を説明する。
図9において、同期検出手段31で同期信号と判断する
信号パターンを複数種類(図1の同期発生手段4で発生
する同期信号に対応)持たせる以外は、従来技術と同じ
処理で実現できる。
Next, a demodulation embodiment of the present invention will be described.
In FIG. 9, it can be realized by the same processing as the conventional technique except that a plurality of kinds of signal patterns (corresponding to the synchronization signal generated by the synchronization generating means 4 in FIG. 1) for determining the synchronization signal by the synchronization detecting means 31 are provided.

【0022】[0022]

【発明の効果】本発明によれば、変調信号の累積加算値
の絶対値を抑圧し、かつ累積加算値の絶対値が長時間増
大し続ける現象を防止する効果がある。
According to the present invention, it is possible to suppress the absolute value of the cumulative addition value of the modulated signal and prevent the phenomenon that the absolute value of the cumulative addition value keeps increasing for a long time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による8−16変調実施例のブロック
図。
FIG. 1 is a block diagram of an 8-16 modulation embodiment according to the present invention.

【図2】EFM変調方式実施例のブロック図。FIG. 2 is a block diagram of an embodiment of an EFM modulation method.

【図3】従来技術による8−16変調方式実施例のブロ
ック図。
FIG. 3 is a block diagram of an example of an 8-16 modulation method according to the related art.

【図4】8−16変調信号のセクタフォーマットの説明
図。
FIG. 4 is an explanatory diagram of a sector format of an 8-16 modulated signal.

【図5】8−16変調信号の同期信号形式の説明図。FIG. 5 is an explanatory diagram of a sync signal format of an 8-16 modulated signal.

【図6】従来技術による累積加算値変化の説明図。FIG. 6 is an explanatory view of a cumulative addition value change according to a conventional technique.

【図7】本発明による累積加算値変化の説明図。FIG. 7 is an explanatory diagram of a cumulative addition value change according to the present invention.

【図8】8−16変調信号の同期信号パターンの説明
図。
FIG. 8 is an explanatory diagram of a sync signal pattern of an 8-16 modulation signal.

【図9】8−16変調信号の復調実施例のブロック図。FIG. 9 is a block diagram of a demodulation example of an 8-16 modulated signal.

【符号の説明】[Explanation of symbols]

1…データ変換、2…直列化、3…累積加算値計測、4
…同期信号発生、5…同期信号切り替え、6…時分割多
重。
1 ... Data conversion, 2 ... Serialization, 3 ... Cumulative addition value measurement, 4
... Synchronization signal generation, 5 ... Synchronization signal switching, 6 ... Time division multiplexing.

フロントページの続き (72)発明者 荒井 孝雄 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所マルチメディアシステム開 発本部内 (72)発明者 西本 覚 東京都小平市上水本町五丁目20番1号株式 会社日立製作所半導体事業部内Front page continuation (72) Inventor Takao Arai 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Stock company, Hitachi Ltd. multimedia system development headquarters No. 1 stock company Hitachi Ltd. semiconductor division

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】nバイト(n:自然数)のデータで1フレ
ームを構成し、8ビットデータをランレングス2から1
0で制限した16ビットデータに変換するブロック変調
方法であって、 上記フレームは、最長パターンの繰り返しを含む同期信
号を含み、上記同期信号は、ディジタル累積加算値また
は反転回数の異なる複数種類のパターンを含み、変調さ
れたデータのディジタル累積加算値に従って、同期信号
の切り替えを制御することを特徴とするディジタルデー
タ変調方法。
1. A frame is composed of n-byte (n: natural number) data, and 8-bit data is composed of run lengths 2 to 1.
A block modulation method for converting to 16-bit data limited by 0, wherein the frame includes a synchronization signal including repetition of a longest pattern, and the synchronization signal includes a plurality of types of patterns having different digital cumulative addition values or inversion numbers. And a method of controlling the switching of the synchronization signal according to a digital cumulative addition value of the modulated data.
【請求項2】nバイト(n:自然数)のデータで1フレ
ームを構成し、2フレームで1行を構成し、m(m:自
然数)行で1セクタを構成し、8ビットデータをランレ
ングス2から10で制限した16ビットデータに変換す
るブロック変調方法において、 上記フレームは、最長パターンの繰り返しを含む同期信
号を含み、上記同期信号は、セクタの先頭および行の先
頭を識別可能とする複数のパターンを含み、 上記複数の同期信号は、それぞれディジタル累積加算値
(DSV)または反転回数の異なる複数種類のパターン
を含み、変調されたデータのディジタル累積加算値に従
って、同期信号の切り替えを制御することを特徴とする
ディジタルデータ変調方法。
2. An n-byte (n: natural number) data constitutes one frame, two frames constitute one row, m (m: natural number) rows constitute one sector, and 8-bit data is run-length. In the block modulation method for converting to 16-bit data limited by 2 to 10, the frame includes a synchronization signal including repetition of a longest pattern, and the synchronization signal includes a plurality of sectors that can identify a head of a sector and a head of a row. The plurality of sync signals each include a digital cumulative addition value (DSV) or a plurality of types of patterns having different numbers of inversions, and control switching of the sync signal according to the digital cumulative addition value of the modulated data. A digital data modulation method characterized by the above.
【請求項3】nバイト(n:自然数)のデータで1フレ
ームを構成し、8ビットデータをランレングス2から1
0で制限した16ビットデータに変換するブロック変調
装置において、 上記同期信号は、最長パターンの繰り返しを含み、ディ
ジタル累積加算値または反転回数の異なる複数種類のパ
ターンを生成する同期信号生成手段を具備し、変調され
た信号のディジタル累積加算値を計算する手段と、上記
ディジタル累積加算値計算手段の計算結果に従って、同
期信号生成手段の生成パターンの切り替えを制御する手
段を具備することを特徴とするディジタル変調装置。
3. One frame is composed of n-byte (n: natural number) data, and 8-bit data is composed of run lengths 2 to 1.
In a block modulation device for converting 16-bit data limited by 0, the synchronization signal includes a synchronization signal generation means for generating a plurality of types of patterns including repetition of the longest pattern and different digital cumulative addition values or inversion numbers. A digitally accumulating means for calculating the digital cumulative addition value of the modulated signal, and means for controlling the switching of the generation pattern of the synchronizing signal generating means according to the calculation result of the digital cumulative addition value calculating means. Modulator.
【請求項4】請求項1において、 ディジタル累積加算値によって切り替えられた複数種類
の同期信号を検出する手段と、 ランレングス2から10で制限された16ビットデータ
を8ビットデータに変換する手段を有するディジタルデ
ータ復調方法。
4. A means for detecting a plurality of types of synchronizing signals switched by digital cumulative addition values, and a means for converting 16-bit data limited by run lengths 2 to 10 into 8-bit data. Digital data demodulating method having.
【請求項5】請求項1において、 最長パターンの繰り返しを含む同期パターンを含む複数
種類の同期信号の検出手段とランレングス2から10で
制限された16ビットデータを8ビットデータに変換す
る手段を具備するディジタルデータ復調装置。
5. A method according to claim 1, further comprising means for detecting a plurality of types of sync signals including a sync pattern including repetition of a longest pattern, and means for converting 16-bit data limited by run lengths 2 to 10 into 8-bit data. A digital data demodulator provided.
JP4580096A 1996-03-04 1996-03-04 Modulation method, modulation device, demodulation method and demodulation means for digital data Pending JPH09246979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4580096A JPH09246979A (en) 1996-03-04 1996-03-04 Modulation method, modulation device, demodulation method and demodulation means for digital data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4580096A JPH09246979A (en) 1996-03-04 1996-03-04 Modulation method, modulation device, demodulation method and demodulation means for digital data

Publications (1)

Publication Number Publication Date
JPH09246979A true JPH09246979A (en) 1997-09-19

Family

ID=12729355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4580096A Pending JPH09246979A (en) 1996-03-04 1996-03-04 Modulation method, modulation device, demodulation method and demodulation means for digital data

Country Status (1)

Country Link
JP (1) JPH09246979A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7355942B2 (en) 2003-11-17 2008-04-08 Nec Corporation Optical disk and optical disk drive for suppressing a digital sum value and low-frequency components
US7596075B2 (en) 2003-01-06 2009-09-29 Sony Corporation Mastering device, disc manufacturing method, disc-shaped recording medium, disc reproduction device, and disc reproduction method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7596075B2 (en) 2003-01-06 2009-09-29 Sony Corporation Mastering device, disc manufacturing method, disc-shaped recording medium, disc reproduction device, and disc reproduction method
US7903522B2 (en) 2003-01-06 2011-03-08 Sony Corporation Mastering device, disc manufacturing method, disc-shaped recording medium, disc reproduction device, and disc reproduction method
US7355942B2 (en) 2003-11-17 2008-04-08 Nec Corporation Optical disk and optical disk drive for suppressing a digital sum value and low-frequency components

Similar Documents

Publication Publication Date Title
EP0673028B1 (en) Recording medium, signal recording apparatus thereof, and signal reproducing apparatus thereof
KR100263689B1 (en) Modulating method, modulating device anddemodulating device
JP3946230B2 (en) Record carrier
EP0765544B1 (en) Recording medium, digital modulation/demodulation apparatus and digital modulation/demodulation method
JP3394127B2 (en) Digital data transmission method
MXPA96006099A (en) Method of digital data transmission
JP3722331B2 (en) Modulation apparatus and method, and recording medium
US6950042B2 (en) Modulating apparatus and method, and DSV control bit producing method
KR100350601B1 (en) Method of converting bits of optical disk, demodulating method and apparatus
JPH09246979A (en) Modulation method, modulation device, demodulation method and demodulation means for digital data
US5684784A (en) CAV recording/ reproducing apparatus for dividing input data in an amount proportional if the radial lengths of a plurality of recording areas
JP2778617B2 (en) Digital modulation / demodulation method, device, recording medium, and method of manufacturing
US6044053A (en) Dc-balance-value calculation circuit and recording signal generator using the same
JPH1049997A (en) Recording medium and recorder and reproducer therefor
JPS60106254A (en) 4-6 group modulation method
JPH09135172A (en) Code converting method
JP3004106U (en) Disk medium and recording / reproducing apparatus thereof
JP3714301B2 (en) Recording apparatus, recording method, reproducing apparatus, reproducing method, and recording medium
KR100191945B1 (en) Recording medium and signal recording method into recording medium
JPH10233690A (en) Code modulation circuit
JPH07211005A (en) Optical disc and optical disc-recording/reproducing apparatus
JPS60195783A (en) Digital demodulator
JPH0519783B2 (en)
KR0144965B1 (en) Error correction method of efm decoding
JP2830675B2 (en) Code conversion method