JPH09246109A - Method for manufacturing solid electrolytic capacitor - Google Patents

Method for manufacturing solid electrolytic capacitor

Info

Publication number
JPH09246109A
JPH09246109A JP4575096A JP4575096A JPH09246109A JP H09246109 A JPH09246109 A JP H09246109A JP 4575096 A JP4575096 A JP 4575096A JP 4575096 A JP4575096 A JP 4575096A JP H09246109 A JPH09246109 A JP H09246109A
Authority
JP
Japan
Prior art keywords
oxide film
sintered body
porous sintered
electrolytic capacitor
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4575096A
Other languages
Japanese (ja)
Inventor
Takashi Ida
隆 伊田
Fuyuki Abe
冬希 阿部
Yoshihiro Higuchi
吉浩 樋口
Yoshiki Hashimoto
芳樹 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4575096A priority Critical patent/JPH09246109A/en
Publication of JPH09246109A publication Critical patent/JPH09246109A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a solid electrolytic capacitor small in a leakage current and a breakdown strength by a method wherein, on a face of a porous sintered body composed of a metal having a valve reaction, an oxide film is formed by anodigation by a compound liquid to which hydrogen peroxide water being oxidizing agent is added. SOLUTION: On a face of a porous sintered body composed of a metal having a valve reaction, an oxide film is formed by anodigation by a compound liquid to which peroxide water being oxidizing agent is added. As described above, since the compound liquid to which hydrogen peroxide water being oxidizing agent is added is used, not only hydroxyl ions but also hydrogen peroxide water become a supply source of oxygen required for a formation on of the oxide film. As the result, movement of hydroxyl ions to an anode interface is not rate-determining for forming the oxide film. For this reason, it is also possible to uniformly form the oxide film in a recess of a face of the porous sintered body or a pore inside the porous sintered body.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は各種電子機器に利用
される固体電解コンデンサの製造方法に関し、特に、酸
化皮膜形成方法の改善に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solid electrolytic capacitor used in various electronic devices, and more particularly to an improvement in an oxide film forming method.

【0002】[0002]

【従来の技術】一般にこの種の固体電解コンデンサを製
造する場合、弁作用を有する金属からなる多孔質焼結体
の表面に陽極酸化によって酸化皮膜を形成し、そしてこ
の多孔質焼結体の酸化皮膜上に半導体層としての二酸化
マンガン層を形成し、さらにこの二酸化マンガン層の上
に、陰極層としてグラファイト層、銀の導電性物質層を
順次形成するようにしているが、前記酸化皮膜を形成す
る場合、従来は、多孔質焼結体を化成液であるリン酸水
溶液に浸漬し、そして多孔質焼結体を陽極とし、かつリ
ン酸水溶液を陰極として、この陽極、陰極間に定格使用
電圧に応じた所定の直流電圧を印加して長時間保持する
ようにしていた。
2. Description of the Related Art Generally, when manufacturing a solid electrolytic capacitor of this type, an oxide film is formed on the surface of a porous sintered body made of a metal having a valve action by anodic oxidation, and the porous sintered body is oxidized. A manganese dioxide layer as a semiconductor layer is formed on the film, and a graphite layer and a silver conductive material layer are sequentially formed on the manganese dioxide layer as a cathode layer. In the past, the porous sintered body was conventionally immersed in a phosphoric acid aqueous solution which is a chemical conversion solution, and the porous sintered body was used as an anode, and the phosphoric acid aqueous solution was used as a cathode. According to the above, a predetermined DC voltage is applied and the voltage is held for a long time.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の方法では酸化皮膜の生成に必要な酸素の供給
に主要な機能を呈する化成液中の水酸イオン(反応式
1)の陽極界面への移動がこの反応の律速段階であるた
め、図2(a),(b)に示すように、水酸イオンの欠
乏した拡散層の厚さが陽極表面の凹凸よりも厚く、その
ため、凸部へ水酸イオンの流れが集中してしまって均一
な酸化皮膜ができず、また、陽極酸化中に多孔質焼結体
から発生する気泡によって、化成液が多孔質焼結体の内
部の細孔まで浸透しにくく、その結果、内部での酸化皮
膜の形成が不十分となるため、漏れ電流や耐圧特性が劣
化するという問題点を有していた。
However, according to such a conventional method, the hydroxide ion (reaction formula 1) in the chemical conversion liquid, which has a main function of supplying oxygen necessary for forming an oxide film, reaches the anode interface. Is the rate-determining step of this reaction, the thickness of the hydroxide ion-deficient diffusion layer is thicker than the unevenness of the anode surface, as shown in FIGS. The flow of hydroxide ions is concentrated and a uniform oxide film cannot be formed, and due to the bubbles generated from the porous sintered body during anodic oxidation, the chemical conversion liquid has pores inside the porous sintered body. It is difficult to permeate even up to that point, and as a result, the formation of an oxide film inside becomes insufficient, resulting in the problem that the leakage current and the withstand voltage characteristics deteriorate.

【0004】 4OH- → 2H2O+O2+4e- (反応式1) 本発明は上記従来の問題点を解決するもので、弁作用を
有する金属からなる多孔質焼結体の表面に均一な酸化皮
膜を形成することができ、これにより、漏れ電流が小さ
く、かつ耐圧の高い固体電解コンデンサが得られる固体
電解コンデンサの製造方法を提供することを目的とする
ものである。
4OH → 2H 2 O + O 2 + 4e (Reaction Formula 1) The present invention solves the above-mentioned conventional problems, and a uniform oxide film is formed on the surface of a porous sintered body made of a metal having valve action. It is an object of the present invention to provide a method for manufacturing a solid electrolytic capacitor, which can form a solid electrolytic capacitor having a small leakage current and a high withstand voltage.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明の固体電解コンデンサの製造方法は、弁作用を
有する金属からなる多孔質焼結体の表面に、酸化剤であ
る過酸化水素水を添加した化成液による陽極酸化によっ
て酸化皮膜を形成するようにしたもので、この製造方法
によれば、弁作用を有する金属からなる多孔質焼結体の
表面に均一な酸化皮膜を形成することができ、これによ
り、漏れ電流が小さく、かつ耐圧の高い固体電解コンデ
ンサが得られるものである。
In order to achieve the above object, a method for producing a solid electrolytic capacitor according to the present invention comprises a porous sintered body made of a metal having a valve action and hydrogen peroxide as an oxidizing agent. An oxide film is formed by anodic oxidation with a chemical conversion liquid containing water. According to this manufacturing method, a uniform oxide film is formed on the surface of a porous sintered body made of a metal having valve action. As a result, a solid electrolytic capacitor having a small leakage current and a high withstand voltage can be obtained.

【0006】[0006]

【発明の実施の形態】本発明の請求項1に記載の発明
は、弁作用を有する金属からなる多孔質焼結体の表面
に、酸化剤である過酸化水を添加した化成液による陽極
酸化によって酸化皮膜を形成するようにしたもので、酸
化剤である過酸化水素水を添加した化成液を用いている
ため、水酸イオンだけでなく過酸化水素も酸化皮膜の生
成に必要な酸素の供給源となり(反応式2,3)、その
結果、水酸イオンの陽極界面への移動が酸化皮膜生成の
律速とはならないため、多孔質焼結体の表面の凹部や多
孔質焼結体の内部の細孔にまで均一に酸化皮膜を形成す
ることができ、これにより、漏れ電流が小さく、かつ耐
圧の高い固体電解コンデンサを得ることができるもので
ある。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention is anodization by a chemical conversion liquid in which peroxide water as an oxidant is added to the surface of a porous sintered body made of a metal having a valve action. It is designed to form an oxide film by means of a chemical conversion solution to which hydrogen peroxide, which is an oxidant, is added. It serves as a supply source (reaction formulas 2 and 3), and as a result, the migration of hydroxide ions to the anode interface does not become the rate-determining factor for the oxide film formation. An oxide film can be evenly formed even on the inner pores, whereby a solid electrolytic capacitor having a small leakage current and a high withstand voltage can be obtained.

【0007】 2H22 → 2H2O+O2 (反応式2) H22+2OH- → H2O+O2+2e- (反応式3) 以下、本発明の一実施の形態を従来例と比較しながら説
明する。
2H 2 O 2 → 2H 2 O + O 2 (Reaction Formula 2) H 2 O 2 + 2OH → H 2 O + O 2 + 2e (Reaction Formula 3) Hereinafter, one embodiment of the present invention will be compared with a conventional example. While explaining.

【0008】(従来例)弁作用を有する金属であるタン
タル粉末を周知の方法で形成し、かつ焼結することによ
りφ2.3mm×3.0mmの多孔質焼結体を構成し、そし
てこの多孔質焼結体を0.1モル/lのリン酸水溶液中
に浸漬し、120mA/gの一定電流で電圧を印加して
100Vまで昇圧させ、そしてこの昇圧状態を2時間保
持して陽極酸化を行うことにより、多孔質焼結体の表面
に酸化皮膜を形成する。次いで、この酸化皮膜の上に半
導体層である二酸化マンガン層、グラファイト層、銀ペ
ースト層および半田層の陰極導電体部を順次形成し、最
後に樹脂外装を施して固体電解コンデンサを構成した。
(Conventional example) A tantalum powder which is a metal having a valve action is formed by a known method and sintered to form a porous sintered body of φ2.3 mm × 3.0 mm, and this porous The sintered compact was immersed in a 0.1 mol / l phosphoric acid aqueous solution, a voltage was applied at a constant current of 120 mA / g to increase the voltage to 100 V, and this increased pressure was maintained for 2 hours to carry out anodization. By doing so, an oxide film is formed on the surface of the porous sintered body. Next, a manganese dioxide layer which is a semiconductor layer, a graphite layer, a silver paste layer and a cathode conductor portion of a solder layer were sequentially formed on the oxide film, and finally a resin coating was applied to form a solid electrolytic capacitor.

【0009】(本発明の一実施の形態)従来例と異なる
点は、0.1モル/lのリン酸水溶液に酸化剤である1
0vol%の過酸化水素水を添加したものを化成液とし
て用い、そしてこの化成液中で陽極酸化を行うことによ
って酸化皮膜を形成した点で、その他は従来例と同じ内
容で固体電解コンデンサを構成した。
(One embodiment of the present invention) The difference from the conventional example is that 0.1 mol / l phosphoric acid aqueous solution is an oxidizing agent.
A solid electrolytic capacitor was constructed in the same manner as in the conventional example except that 0 vol% hydrogen peroxide solution was used as a chemical conversion solution, and an oxide film was formed by anodizing in this chemical conversion solution. did.

【0010】上記した本発明の一実施の形態における固
体電解コンデンサの各種電気特性と従来例における固体
電解コンデンサの各種電気特性とを比較した結果を(表
1)と図1(a),(b)に示す。
The results of comparison between various electric characteristics of the solid electrolytic capacitor according to the embodiment of the present invention described above and various electric characteristics of the conventional solid electrolytic capacitor are shown in Table 1 and FIGS. 1 (a) and 1 (b). ).

【0011】[0011]

【表1】 [Table 1]

【0012】(表1)と図1(a),(b)の結果から
明らかなように、本発明の一実施の形態における固体電
解コンデンサは、リン酸水溶液のみを用いて陽極酸化を
行っていた従来例における固体電解コンデンサに比べ
て、漏れ電流と耐圧特性を改善することができるもので
ある。
As is clear from the results shown in Table 1 and FIGS. 1A and 1B, the solid electrolytic capacitor according to the embodiment of the present invention is anodized by using only the phosphoric acid aqueous solution. Further, the leakage current and the withstand voltage characteristic can be improved as compared with the solid electrolytic capacitor in the conventional example.

【0013】なお、上記本発明の一実施の形態において
は、化成液としてリン酸水溶液に過酸化水素水を添加し
たものを用いたが、この化成液は水酸イオンを含み、か
つ過酸化水素水が溶解する溶液であればどのような液で
も良く、また、その時の最適な添加量は水酸イオンの量
によって決定されるものである。
In the embodiment of the present invention described above, a phosphoric acid aqueous solution to which hydrogen peroxide water is added is used as the chemical conversion liquid, but the chemical conversion liquid contains hydroxide ions and hydrogen peroxide. Any solution may be used as long as it dissolves water, and the optimum addition amount at that time is determined by the amount of hydroxide ion.

【0014】[0014]

【発明の効果】以上のように本発明の固体電解コンデン
サの製造方法は、弁作用を有する金属からなる多孔質焼
結体の表面に、酸化剤である過酸化水素水を添加した化
成液による陽極酸化によって酸化皮膜を形成するように
したもので、酸化剤である過酸化水素水を添加した化成
液を用いているため、水酸イオンだけでなく過酸化水素
も酸化皮膜の生成に必要な酸素の供給源となり、その結
果、水酸イオンの陽極界面への移動が酸化皮膜生成の律
速とはならないため、多孔質焼結体の表面の凹部や多孔
質焼結体の内部の細孔にまで均一に酸化皮膜を形成する
ことができ、これにより、漏れ電流が小さく、かつ耐圧
の高い固体電解コンデンサを得ることができるものであ
る。
As described above, the method for producing a solid electrolytic capacitor of the present invention uses a chemical conversion solution in which hydrogen peroxide, which is an oxidizing agent, is added to the surface of a porous sintered body made of a metal having valve action. It is designed to form an oxide film by anodic oxidation.Because a chemical conversion solution containing hydrogen peroxide, which is an oxidant, is used, not only hydroxide ions but also hydrogen peroxide are necessary for forming the oxide film. It serves as a source of oxygen, and as a result, the migration of hydroxide ions to the anodic interface does not control the rate of oxide film formation.Therefore, in the recesses on the surface of the porous sintered body and pores inside the porous sintered body, It is possible to form an oxide film evenly up to this point, whereby a solid electrolytic capacitor having a small leakage current and a high withstand voltage can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)本発明の一実施の形態と従来例における
固体電解コンデンサの漏れ電流の比較を示す特性図 (b)本発明の一実施の形態と従来例における固体電解
コンデンサの耐圧の比較を示す特性図
FIG. 1 (a) is a characteristic diagram showing a comparison of leakage currents of a solid electrolytic capacitor according to one embodiment of the present invention and a conventional example. (B) Withstand voltage of a solid electrolytic capacitor according to one embodiment of the present invention and a conventional example. Characteristic diagram showing comparison

【図2】(a)陽極表面の模式図 (b)水酸イオン濃度と拡散層の関係を示す特性図FIG. 2A is a schematic diagram of the surface of an anode. FIG. 2B is a characteristic diagram showing the relationship between the hydroxide ion concentration and the diffusion layer.

フロントページの続き (72)発明者 橋本 芳樹 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Front page continuation (72) Inventor Yoshiki Hashimoto 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 弁作用を有する金属からなる多孔質焼結
体の表面に、酸化剤である過酸化水素水を添加した化成
液による陽極酸化によって酸化皮膜を形成することを特
徴とする固体電解コンデンサの製造方法。
1. A solid electrolysis, characterized in that an oxide film is formed on the surface of a porous sintered body made of a metal having a valve action by anodic oxidation by a chemical conversion solution to which hydrogen peroxide solution which is an oxidizer is added. Capacitor manufacturing method.
JP4575096A 1996-03-04 1996-03-04 Method for manufacturing solid electrolytic capacitor Pending JPH09246109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4575096A JPH09246109A (en) 1996-03-04 1996-03-04 Method for manufacturing solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4575096A JPH09246109A (en) 1996-03-04 1996-03-04 Method for manufacturing solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH09246109A true JPH09246109A (en) 1997-09-19

Family

ID=12727992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4575096A Pending JPH09246109A (en) 1996-03-04 1996-03-04 Method for manufacturing solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH09246109A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050558A1 (en) 2008-10-29 2010-05-06 昭和電工株式会社 Method for manufacturing capacitor element
CN103717329A (en) * 2011-08-09 2014-04-09 H.C.施塔克股份有限公司 Method for producing electrolytic capacitors from valve metal powders

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050558A1 (en) 2008-10-29 2010-05-06 昭和電工株式会社 Method for manufacturing capacitor element
CN103717329A (en) * 2011-08-09 2014-04-09 H.C.施塔克股份有限公司 Method for producing electrolytic capacitors from valve metal powders
JP2014522124A (en) * 2011-08-09 2014-08-28 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for manufacturing electrolytic capacitors from valve metal powder
US9378894B2 (en) 2011-08-09 2016-06-28 H.C. Starck Gmbh Method for producing electrolytic capacitors from valve metal powders

Similar Documents

Publication Publication Date Title
JP2019157273A (en) Titanium base material, manufacturing method thereof, electrode for water electrolysis, and water electrolysis device
JPH09306791A (en) Manufacture of solid electrolytic capacitor
JPH04112519A (en) Manufacture of solid electrolytic capacitor
JP2005294403A (en) Solid electrolytic capacitor and its manufacturing method
US3601665A (en) Capacitors having a self-depolarizing electrolyte
JPH09246109A (en) Method for manufacturing solid electrolytic capacitor
Hoare Oxygen overvoltage on bright palladium in acid solutions
JPH09306790A (en) Manufacture of solid electrolytic capacitor
JPH09306789A (en) Manufacture of solid electrolytic capacitor
JPH09306792A (en) Manufacture of solid electrolytic capacitor
US3801479A (en) Method of manufacturing solid electrolytic capacitors
JP3198518B2 (en) Method for manufacturing solid electrolytic capacitor
CN100380548C (en) Method of mfg. solid electrolytic condenser
JPH04119617A (en) Manufacture of solid electrolytic capacitor
JPH09246113A (en) Manufacture of solid electrolytic capacitor
JPH09306795A (en) Manufacture of solid-state electrolytic capacitor
JP2853438B2 (en) Method for manufacturing solid electrolytic capacitor
JP2002246271A (en) Method and system for producing electrolytic capacitor
JPH09306794A (en) Manufacture of solid-state electrolytic capacitor
JP2000077275A (en) Manufacturing electrode foil for aluminum electrolytic capacitors
US3296500A (en) Electrolytic capacitor with niobium anode and depolarizer in the electrolyte
JP3539057B2 (en) Method for forming anode electrode of tantalum solid electrolytic capacitor
JP7352322B1 (en) Surface treatment method for aluminum or aluminum alloy
JPH06168851A (en) Solid-state electrolytic capacitor and manufacture thereof
JPH0777180B2 (en) Method for manufacturing solid electrolytic capacitor