JPH04119617A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JPH04119617A
JPH04119617A JP24080790A JP24080790A JPH04119617A JP H04119617 A JPH04119617 A JP H04119617A JP 24080790 A JP24080790 A JP 24080790A JP 24080790 A JP24080790 A JP 24080790A JP H04119617 A JPH04119617 A JP H04119617A
Authority
JP
Japan
Prior art keywords
oxide film
voltage
solid electrolytic
sintered body
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24080790A
Other languages
Japanese (ja)
Inventor
Takashi Ida
隆 伊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24080790A priority Critical patent/JPH04119617A/en
Publication of JPH04119617A publication Critical patent/JPH04119617A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a solid electrolytic capacitor having a small leakage current and high withstand voltage by a method wherein, when an oxide film is formed by anode oxidation on the surface of a porous sintered body consisting of valve- action metal, the anode oxidation is conducted using a pulselike current. CONSTITUTION:As a pulse-like current is used for anode oxidation, a quiescent time is generated, the bubbles generated during anodic oxidation disappear in the above-mentioned quiescent time, and hydroxide ions are fully infiltrated into the recessed part of the surface of a porous sintered body and the fine holes in the inner part of the porous sintered body, and as a result, a uniform oxide film can be formed. At that point, voltage is boosted to 100V by applying pulselike voltage in such a manner that a pulse current of the conduction time of 1 second at 120mA/g and the quiescent time of 2 seconds, then anodic oxidation is conducted while pulselike voltage of 100V is being applied for two hours, and an oxide film is formed. As a result, a solid electrolytic capacitor, having small leakage current and high withstand voltage, can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、固体電解コンデンサの製造方法に関し、特に
弁作用金属によりなる多孔性焼結体の表面に形成される
酸化皮膜の形成方法の改善に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a solid electrolytic capacitor, and more particularly to an improvement in the method for forming an oxide film on the surface of a porous sintered body made of a valve metal. It is.

従来の技術 このような固体電解コンデンサの製造方法として、従来
は、弁作用金属よりなる多孔性焼結体の表面に陽極酸化
により酸化皮膜を形成し、かつこの多孔性焼結体の酸化
皮膜上に半導体層として二酸化マンガンを、陰極層とし
てグラファイト銀の導電性物質を順次形成していたが、
前記酸化皮膜の形成にあたっては、多孔性焼結体を化成
液であるリン酸水溶液に浸漬し、そして多孔性焼結体を
陽極とし、かつリン酸水溶液を陰極として、この陽極、
陰極間に定格使用電圧に応じた所定の直流電圧を印加し
て長時間保持するようにしていた。
BACKGROUND ART Conventionally, as a manufacturing method for such a solid electrolytic capacitor, an oxide film is formed on the surface of a porous sintered body made of a valve metal by anodic oxidation, and the oxide film on the porous sintered body is In this process, conductive materials such as manganese dioxide as a semiconductor layer and graphite silver as a cathode layer were sequentially formed.
In forming the oxide film, the porous sintered body is immersed in a phosphoric acid aqueous solution, which is a chemical conversion liquid, and the porous sintered body is used as an anode and the phosphoric acid aqueous solution is used as a cathode.
A predetermined DC voltage corresponding to the rated working voltage was applied between the cathodes and maintained for a long time.

発明が解決しようとする課題 しかしながら、このような従来の方法では、酸化皮膜の
生成に主要な機能を呈するリン酸水溶液中の水酸イオン
の陽極界面への移動がこの反応の律速段階であるため、
第2図(a)(b)に示すように、水酸イオンの欠乏し
た拡散層の厚さが陽極表面の凹凸よりも厚く、そのため
、凸部へ水酸イオンの流れが集中してしまって均一な酸
化皮膜ができず、また、陽極酸化中に多孔性焼結体から
発生する気泡によって、リン酸水溶液が多孔性焼結体の
内部の細孔まで浸透しにくく、その結果、内部での酸化
皮膜の形成が不十分となるため、漏れ電流や耐圧特性が
劣化するという問題点があった。
Problems to be Solved by the Invention However, in such conventional methods, the rate-limiting step in this reaction is the movement of hydroxide ions in the phosphoric acid aqueous solution to the anode interface, which plays a major role in the formation of an oxide film. ,
As shown in Figure 2 (a) and (b), the thickness of the diffusion layer deficient in hydroxide ions is thicker than the irregularities on the anode surface, and as a result, the flow of hydroxide ions concentrates on the convexities. A uniform oxide film cannot be formed, and the bubbles generated from the porous sintered body during anodization make it difficult for the phosphoric acid aqueous solution to penetrate into the pores inside the porous sintered body. Since the oxide film is insufficiently formed, there is a problem in that leakage current and breakdown voltage characteristics deteriorate.

本発明は、これらの問題点を解決するもので、弁作用金
属よりなる多孔性焼結体の表面に均一な酸化皮膜を形成
することができ、これにより、漏れ電流が小さく、かつ
耐圧の高い固体電解コンデンサが得られる固体電解コン
デンサの製造方法を提供することを目的とする。
The present invention solves these problems and makes it possible to form a uniform oxide film on the surface of a porous sintered body made of valve metal, thereby achieving low leakage current and high withstand voltage. It is an object of the present invention to provide a method for manufacturing a solid electrolytic capacitor that yields a solid electrolytic capacitor.

課題を解決するための手段 上記目的を達成するこめに本発明は、弁作用金属よりな
る多孔性焼結体の表面に陽極酸化により酸化皮膜を形成
する際において、前記陽極酸化をパルス状の電流を用い
て行なうようにしたものである。
Means for Solving the Problems In order to achieve the above objects, the present invention provides that when an oxide film is formed on the surface of a porous sintered body made of a valve metal by anodic oxidation, the anodic oxidation is performed using a pulsed electric current. This is done using the .

作用 上記した本発明の固体電解コンデンサの製造方法によれ
ば、陽極酸化を行なうのにパルス状の電流を用いている
ため、休止時間が生ずることになり、そしてこの休止時
間内に陽極酸化中に発生する気泡が消えて多孔性焼結体
の表面の凹部や多孔性焼結体の内部の細孔にまで水酸イ
オンが十分浸透するため、均一な酸化皮膜を形成するこ
とができ、これにより、漏れ電流が小さく、かつ耐圧の
高い固体電解コンデンサを得ることができる。
Effects According to the method for manufacturing a solid electrolytic capacitor of the present invention described above, since a pulsed current is used for anodizing, there is a downtime, and during this downtime, there is a The generated air bubbles disappear and the hydroxide ions fully penetrate into the recesses on the surface of the porous sintered body and the pores inside the porous sintered body, making it possible to form a uniform oxide film. , a solid electrolytic capacitor with low leakage current and high withstand voltage can be obtained.

実施例 以下、本発明の実施例を従来例と比較しながら説明する
EXAMPLES Hereinafter, examples of the present invention will be explained while comparing them with conventional examples.

(従来例) クンタル粉末を周知の方法で成形し、かつ焼結してφ2
.3ffa+ X 3.Ommの多孔性焼結体を作り、
そしてこの多孔性焼結体を0.1モル/1のリン酸水溶
液中で120a+A/gの一定電流で100 Vまで昇
圧し、その後ioo vの一定電圧で2時間保持して陽
極酸化を行ない、多孔性焼結体の表面に酸化皮膜を形成
する0次にこの酸化皮膜の上に半導体層、グラファイト
層、銀ペースト層および半田層の陰極導体部を順次形成
し、最後に樹脂外装を施して固体電解コンデンサを得た
(Conventional example) Kuntal powder is molded using a well-known method and sintered to form φ2
.. 3ffa+X 3. Make a porous sintered body of Omm,
Then, this porous sintered body was boosted to 100 V at a constant current of 120A+A/g in a 0.1 mol/1 phosphoric acid aqueous solution, and then held at a constant voltage of IOOV for 2 hours to perform anodic oxidation. An oxide film is formed on the surface of the porous sintered body.Next, a semiconductor layer, a graphite layer, a silver paste layer, and a solder layer are sequentially formed on the cathode conductor part on this oxide film, and finally a resin exterior is applied. A solid electrolytic capacitor was obtained.

(本実施例〉 上記従来例では、120a+A/gの一定電流で100
Vまで昇圧し、その後100■の一定電圧で2時間保持
して陽極酸化を行なうことにより、酸化皮膜を形成して
いたが、本実施例では、120mA/gで通電時間I秒
、休止時間2秒のパルス電流が流れるようにパルス状に
電圧を印加してioo vまで昇圧し、その後100■
のパルス状の電圧を印加しながら2時間保持して陽極酸
化を行なうことにより、酸化皮膜を形成した。
(Present Example) In the above conventional example, a constant current of 120a+A/g is used to
The oxide film was formed by boosting the voltage to V and then holding it at a constant voltage of 100 μ for 2 hours to perform anodic oxidation. Apply voltage in a pulsed manner so that a pulse current of seconds flows, increase the voltage to IOOV, and then increase the voltage to 100V.
An oxide film was formed by anodic oxidation by applying a pulsed voltage and holding it for 2 hours.

以上説明した本実施例における固体電解コンデンサの特
性と従来例における固体電解コンデンサの特性とを比較
した結果を表1と第1図(a)[有])に示す。
Table 1 and FIG. 1(a) show the results of a comparison between the characteristics of the solid electrolytic capacitor in this example described above and the characteristics of the solid electrolytic capacitor in the conventional example.

表1 表1と第1図(a)(b)の結果から明らかなように、
本実施例の固体電解コンデンサは、一定電流を用いて陽
極酸化を行なっていた従来例における、漏れ電流と耐圧
特性を改善することができた。
Table 1 As is clear from the results in Table 1 and Figures 1 (a) and (b),
The solid electrolytic capacitor of this example was able to improve the leakage current and withstand voltage characteristics of the conventional example in which anodic oxidation was performed using a constant current.

なお、本実施例では化成液としてリン酸水溶液を用いた
が、水酸イオンを含む溶液であればどの化成液でもよく
、また、その時の最適のパルス周期と電流値は水酸イオ
ンの量によって決定されるものである。
In this example, a phosphoric acid aqueous solution was used as the chemical conversion liquid, but any chemical conversion liquid may be used as long as it contains hydroxide ions, and the optimum pulse period and current value at that time will depend on the amount of hydroxide ions. It is to be determined.

発明の効果 上記実施例の説明から明らかなように、本発明の固体電
解コンデンサの製造方法によれば、パルス状の電流を用
いて陽極酸化を行なっている・ため、従来のように一定
電流を用いて陽極酸化を行なったものに比べて均一な酸
化皮膜を形成することができ、その結果、漏れ電流が小
さく、かつ耐圧の高い固体電解コンデンサを得ることが
できるものである。
Effects of the Invention As is clear from the description of the above embodiments, according to the method for manufacturing a solid electrolytic capacitor of the present invention, anodic oxidation is performed using a pulsed current. As a result, a solid electrolytic capacitor with low leakage current and high withstand voltage can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)(b)は従来例と本発明の実施例における
固体電解コンデンサの漏れ電流と耐圧の比較を示す特性
図、第2図(a)(b)は陽極表面の模式図および水酸
イオン濃度と拡散層の関係を示す図である。 代理人の氏名 弁理士 小鍜治 明 ほか2名箆 図 (Q) (b) 第 図 (a) 拡 隼 層
Figures 1 (a) and (b) are characteristic diagrams showing a comparison of leakage current and breakdown voltage of solid electrolytic capacitors in the conventional example and the embodiment of the present invention, and Figures 2 (a) and (b) are schematic diagrams of the anode surface and It is a figure showing the relationship between hydroxyl ion concentration and a diffusion layer. Name of agent: Patent attorney Akira Okaji and two others

Claims (1)

【特許請求の範囲】[Claims]  弁作用金属よりなる多孔性焼結体の表面に陽極酸化に
より酸化皮膜を形成する際において、前記陽極酸化をパ
ルス状の電流を用いて行なうことを特徴とする固体電解
コンデンサの製造方法。
1. A method for manufacturing a solid electrolytic capacitor, characterized in that when an oxide film is formed on the surface of a porous sintered body made of a valve metal by anodic oxidation, the anodic oxidation is performed using a pulsed current.
JP24080790A 1990-09-10 1990-09-10 Manufacture of solid electrolytic capacitor Pending JPH04119617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24080790A JPH04119617A (en) 1990-09-10 1990-09-10 Manufacture of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24080790A JPH04119617A (en) 1990-09-10 1990-09-10 Manufacture of solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH04119617A true JPH04119617A (en) 1992-04-21

Family

ID=17064981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24080790A Pending JPH04119617A (en) 1990-09-10 1990-09-10 Manufacture of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH04119617A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132141A1 (en) * 2005-06-09 2006-12-14 National University Corporation, Tokyo University Of Agriculture And Technology Electrolytic capacitor element and process for producing the same
WO2011105452A1 (en) * 2010-02-24 2011-09-01 株式会社神戸製鋼所 Method for formation of anode oxide film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132141A1 (en) * 2005-06-09 2006-12-14 National University Corporation, Tokyo University Of Agriculture And Technology Electrolytic capacitor element and process for producing the same
JP4787967B2 (en) * 2005-06-09 2011-10-05 国立大学法人東京農工大学 Electrolytic capacitor element and manufacturing method thereof
US8644003B2 (en) 2005-06-09 2014-02-04 National University Corporation, Tokyo University Of Agriculture And Technology Electrolytic capacitor element and process for producing the same
WO2011105452A1 (en) * 2010-02-24 2011-09-01 株式会社神戸製鋼所 Method for formation of anode oxide film
JP2011195952A (en) * 2010-02-24 2011-10-06 Kobe Steel Ltd Method of forming anodic oxidation film
KR101356230B1 (en) * 2010-02-24 2014-01-28 가부시키가이샤 고베 세이코쇼 Method for formation of anode oxide film
US9187840B2 (en) 2010-02-24 2015-11-17 Kobe Steel, Ltd. Method for formation of anode oxide film

Similar Documents

Publication Publication Date Title
US4131520A (en) Two-stage anodization of capacitor electrodes
JP4383228B2 (en) Solid electrolytic capacitor
JPH04119617A (en) Manufacture of solid electrolytic capacitor
JPH09306791A (en) Manufacture of solid electrolytic capacitor
JP4703444B2 (en) Manufacturing method of solid electrolytic capacitor
JP3198518B2 (en) Method for manufacturing solid electrolytic capacitor
JPH09306792A (en) Manufacture of solid electrolytic capacitor
JP2853438B2 (en) Method for manufacturing solid electrolytic capacitor
JPH03250723A (en) Manufacture of solid electrolytic capacitor
JP2003338432A (en) Capacitor element used for solid electrolytic capacitor and method for forming dielectric layer thereto
JPH09246109A (en) Method for manufacturing solid electrolytic capacitor
JPH09306790A (en) Manufacture of solid electrolytic capacitor
JP2014167985A (en) Solid electrolytic capacitor and manufacturing method therefor
JP2009182027A (en) Manufacturing method of solid electrolytic capacitor
JPH02277212A (en) Tantalum electrolytic capacitor and its manufacture
JPS62226619A (en) Manufacture of solid electrolytic capacitor
JPH04119618A (en) Manufacture of solid electrolytic capacitor
JPH09306789A (en) Manufacture of solid electrolytic capacitor
JP2007095801A (en) Manufacturing method of solid-state electrolytic capacitor
JP2001155965A (en) Manufacturing method of solid electrolytic capacitor
JP3163825B2 (en) Method for manufacturing solid electrolytic capacitor
JP3138639B2 (en) Method for manufacturing solid electrolytic capacitor
JPH033311A (en) Manufacture of solid electrolytic capacitor
JPH05182869A (en) Solid electrolytic capacitor and manufacture thereof
JPH07272985A (en) Manufacturing method for anode foil for aluminum electrolytic capacitor