JPH09245988A - Secondary voltage fluctuation adjusting circuit of static eliminator - Google Patents

Secondary voltage fluctuation adjusting circuit of static eliminator

Info

Publication number
JPH09245988A
JPH09245988A JP4645196A JP4645196A JPH09245988A JP H09245988 A JPH09245988 A JP H09245988A JP 4645196 A JP4645196 A JP 4645196A JP 4645196 A JP4645196 A JP 4645196A JP H09245988 A JPH09245988 A JP H09245988A
Authority
JP
Japan
Prior art keywords
voltage
transformer
secondary voltage
cable
static eliminator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4645196A
Other languages
Japanese (ja)
Inventor
Yasuhiro Hijikata
康裕 土方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Denshikiki Co Ltd
Original Assignee
Yokogawa Denshikiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Denshikiki Co Ltd filed Critical Yokogawa Denshikiki Co Ltd
Priority to JP4645196A priority Critical patent/JPH09245988A/en
Publication of JPH09245988A publication Critical patent/JPH09245988A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To suppress the costs and provide controllability for a secondary voltage fluctuation within the allowable range even at the time of using with any desired length in the longest range of a high voltage cable by inserting a voltage compensation resistance having an appropriate value previously in the primary side of a transformer. SOLUTION: When the primary current increases and a secondary voltage is generated with increasing inter-wire capacitance of a high voltage cable, a voltage drop caused by a voltage compensation resistance 10 inserted in the primary winding cancels the rise of the secondary voltage, which causes a reduction of the secondary voltage fluctuation. If the resistance value is represented by Ra and the winding ratio of transformer 3 by (a), the equivalent resistance value viewed from the secondary side becomes a<2> Ra, and it is possible to determine Ra from the equivalent circuitry. Ra can be decided so that |V2 |=|aV1 | under the condition C=Cmax, where the change in the inter-wire capacitance Cc of the high voltage cable 4 ranges from zero to Cmax. The actual measurements of the peak of the error in the secondary voltage V2 ranged from -0.5% thru +2.5%, while corresponding calculations range from zero to +2.1%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、静電気を帯びた物
体の除電を行う除電器の2次側ケーブルの線間容量変動
に起因する2次電圧の変動調整回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary voltage fluctuation adjustment circuit caused by fluctuations in the line capacitance of the secondary side cable of a static eliminator for neutralizing statically charged objects.

【0002】[0002]

【従来の技術】半導体デバイスは静電気により破壊され
やすいため、その保管や製造工程において静電気を除去
する必要がある。このため、従来は半導体デバイスの製
造工程等において、図4に示される構成の除電器が使用
されていた。
2. Description of the Related Art Since semiconductor devices are easily destroyed by static electricity, it is necessary to remove static electricity during storage and manufacturing processes. Therefore, conventionally, the static eliminator having the configuration shown in FIG. 4 has been used in the semiconductor device manufacturing process and the like.

【0003】図4は従来の除電器の構成を示す回路構成
図である。図4において、1は商用交流電源(電圧値1
00[V])、2は商用交流電源1に直列に接続された
電源スイッチである。3は昇圧トランスであり、その1
次側に商用交流電源1及び電源スイッチ2が接続され
る。4はトランス3の2次側の一端に接続された高圧ケ
ーブルである。5は接地電極6及び放電電極7からなる
除電電極であり、放電電極7は上記高圧ケーブル4の導
体部分を介して昇圧トランス3の2次側コイルの一端に
接続されている。また、接地電極6は高圧ケーブル4の
接地線を介して昇圧トランス3の2次側コイルの他端に
接続され、かつ接地されている。また、8は、除電電極
5に対して非接触な状態に対向された半導体デバイス等
の帯電物体である。
FIG. 4 is a circuit diagram showing the structure of a conventional static eliminator. In FIG. 4, 1 is a commercial AC power supply (voltage value 1
00 [V]), 2 is a power switch connected in series to the commercial AC power supply 1. 3 is a step-up transformer, 1
A commercial AC power supply 1 and a power switch 2 are connected to the next side. Reference numeral 4 is a high-voltage cable connected to one end of the transformer 3 on the secondary side. Reference numeral 5 is a static elimination electrode composed of a ground electrode 6 and a discharge electrode 7. The discharge electrode 7 is connected to one end of the secondary coil of the step-up transformer 3 via the conductor portion of the high voltage cable 4. The ground electrode 6 is connected to the other end of the secondary coil of the step-up transformer 3 via the ground wire of the high-voltage cable 4 and grounded. Further, 8 is a charged object such as a semiconductor device which is opposed to the static elimination electrode 5 in a non-contact state.

【0004】上記構成において、電源スイッチ2がオン
状態にあるときは、商用交流電源1の出力電圧V1が昇
圧トランス3において昇圧され、放電電極7に正又は負
の2次電圧V2(例えば、その値は7[kV])が交互
に印加される。そして、放電電極7と接地電極6との間
にコロナ放電が発生し、除電電極5の周囲の空気が正及
び負のイオンに交互にイオン化される。その結果、帯電
物体8の帯電電荷の極性に応じて、いずれかの極性のイ
オンが帯電物体8に引き寄せられ、帯電物体8の帯電電
荷と再結合し、その結果、帯電電荷が中和される。
In the above structure, when the power switch 2 is in the ON state, the output voltage V 1 of the commercial AC power supply 1 is boosted by the boosting transformer 3 and the secondary voltage V 2 of positive or negative (for example, to the discharge electrode 7) (for example, , Its value is 7 [kV]) is applied alternately. Then, corona discharge occurs between the discharge electrode 7 and the ground electrode 6, and the air around the static elimination electrode 5 is alternately ionized into positive and negative ions. As a result, ions of either polarity are attracted to the charged object 8 and recombined with the charged charge of the charged object 8 depending on the polarity of the charged charge of the charged object 8, and as a result, the charged charge is neutralized. .

【0005】[0005]

【発明が解決しようとする課題】ところで、除電器から
2次電圧V2が漏電し、人体に対する感電の危険性を回
避するため、図4中の高圧ケーブル4として同軸ケーブ
ルが使用される場合がある。このような場合、昇圧トラ
ンス3の2次側の負荷が容量性となる。9は高圧ケーブ
ル4の線間容量を示す。
By the way, in order to avoid the risk of electric shock to the human body due to leakage of the secondary voltage V 2 from the static eliminator, a coaxial cable may be used as the high voltage cable 4 in FIG. is there. In such a case, the load on the secondary side of the step-up transformer 3 becomes capacitive. Reference numeral 9 indicates the line capacity of the high voltage cable 4.

【0006】図5は図4の構成における電気的な等価回
路を示す回路図であり、昇圧トランス3の等価直列抵抗
t、漏れインダクタンスLt、及び高圧ケーブル4の線
間容量9(容量Cc)からなる直列回路で表される。ま
た、aV1は昇圧トランス3の2次側からみた1次側の
電圧である。ここで、aは昇圧トランス3の巻線比であ
る。
FIG. 5 is a circuit diagram showing an electrical equivalent circuit in the configuration of FIG. 4, and includes an equivalent series resistance R t of the step-up transformer 3, a leakage inductance L t , and a line capacitance 9 (capacitance C of the high voltage cable 4). It is represented by a series circuit consisting of c ). Further, aV 1 is a voltage on the primary side of the step-up transformer 3 as viewed from the secondary side. Here, a is the winding ratio of the step-up transformer 3.

【0007】上記構成において、昇圧トランス3の2次
電圧V2は漏れインダクタンスLt及び線間容量9を含む
2次インピーダンスの分圧で決定されるため、高圧ケー
ブル4が延長され、線間容量9が増加した場合は、容量
分により漏れインダクタンスLtが見かけ上の打ち消さ
れるため、分圧電圧、即ち、2次電圧V2が急激に上昇
する。2次電圧V2の実用上の変動許容範囲は±3%以
内であるが、ケーブル長が約50メートルであり、線間
容量9が約8,000[pF]では10%以上の上昇と
なり、実用不可能である。従って、昇圧トランスはケー
ブル長に合わせて設計製作しなければならず、コストが
かかるという問題があった。
In the above structure, since the secondary voltage V 2 of the step-up transformer 3 is determined by the voltage division of the secondary impedance including the leakage inductance L t and the line capacitance 9, the high voltage cable 4 is extended and the line capacitance is increased. When 9 is increased, the leakage inductance L t is apparently canceled by the capacitance, so that the divided voltage, that is, the secondary voltage V 2 is rapidly increased. The practical allowable fluctuation range of the secondary voltage V 2 is within ± 3%, but when the cable length is about 50 meters and the line capacity 9 is about 8,000 [pF], the increase is 10% or more. Impractical. Therefore, the step-up transformer must be designed and manufactured in accordance with the cable length, and there is a problem in that the cost is high.

【0008】本発明は上記事情に鑑みてなされたもので
あり、簡単な付加要素を追加することにより、高圧ケー
ブルを延長した場合でも2次側電圧の変動を実用許容範
囲に維持することが可能であるとともに、汎用な昇圧ト
ランスを使用することができ、コストを削減することが
可能な除電器を提供することを目的とする。
The present invention has been made in view of the above circumstances, and by adding a simple additional element, it is possible to maintain the fluctuation of the secondary side voltage within a practical allowable range even when the high voltage cable is extended. It is also an object of the present invention to provide a static eliminator that can use a general-purpose step-up transformer and can reduce costs.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、1次側が交流電源に接続された昇圧トラ
ンスと、前記昇圧トランスの2次側の一端に結合された
放電電極と、前記放電電極と対向するよう配置されると
ともに、前記昇圧トランスの2次側の他端に接続された
接地電極とを有する除電器のイオンバランス調整回路に
おいて、前記昇圧トランスの1次側と前記交流電源との
間に介挿された電圧補償抵抗手段を具備することを特徴
とするものである。
In order to solve the above problems, the present invention provides a step-up transformer whose primary side is connected to an AC power source, and a discharge electrode connected to one end of the step-up transformer on the secondary side. An ion balance adjusting circuit for a static eliminator, the ion balance adjusting circuit being arranged so as to face the discharge electrode and having a ground electrode connected to the other end of the secondary side of the step-up transformer, It is characterized in that it comprises a voltage compensating resistance means interposed between the AC power source and the AC power source.

【0010】[0010]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(1) 作用 高圧ケーブルの線間容量の増加により、1次電流が増加
して2次電圧の上昇が生ずる場合、1次巻線に挿入され
た電圧補償抵抗手段による電圧降下が、2次電圧の上昇
傾向を打ち消し、2次電圧変動を低減させる。 (2) 実施形態 以下、図面を参照して、本発明の一実施形態による除電
器の2次電圧変動調整回路について説明する。図1は本
発明の一実施形態における2次電圧調整回路を有する除
電器の電気回路の構成を示す電気回路図であり、図4と
同一の部分には同一の符号を付し、その説明を省略す
る。図1において、10はトランス3の1次側回路に直
列に挿入接続された抵抗値Raの電圧補償抵抗手段であ
る。また、図中12は図4中の除電電極5と同様の除電
電極であり、14、15はそれぞれ、図4中の放電電極
7及び接地電極6と同様の放電電極及び接地電極であ
る。
(1) Action When the primary current increases and the secondary voltage rises due to the increase in the line capacity of the high-voltage cable, the voltage drop due to the voltage compensation resistance means inserted in the primary winding causes the secondary voltage to rise. And the secondary voltage fluctuation is reduced. (2) Embodiment Hereinafter, a secondary voltage fluctuation adjusting circuit for a static eliminator according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an electric circuit diagram showing a configuration of an electric circuit of a static eliminator having a secondary voltage adjusting circuit according to an embodiment of the present invention. The same parts as those in FIG. Omit it. In FIG. 1, reference numeral 10 is a voltage compensating resistance means having a resistance value R a , which is inserted and connected in series with the primary side circuit of the transformer 3. Further, in the figure, reference numeral 12 is a static elimination electrode similar to the static elimination electrode 5 in FIG. 4, and reference numerals 14 and 15 are discharge electrodes and ground electrodes similar to the discharge electrode 7 and the ground electrode 6 in FIG. 4, respectively.

【0011】図2は図1に示された回路の等価回路であ
り、図5に示された従来の等価回路と相違する点は、電
圧補償抵抗手段10が直列に追加挿入された点である。
この電圧補償抵抗手段10の抵抗値はRaであり、2次
側から見た等価抵抗値は昇圧トランス3の巻線比をaと
した場合、a2aとなる。
FIG. 2 is an equivalent circuit of the circuit shown in FIG. 1, and is different from the conventional equivalent circuit shown in FIG. 5 in that the voltage compensation resistance means 10 is additionally inserted in series. .
Resistance value of the voltage compensating resistance means 10 is R a, the equivalent resistance seen from the secondary side if the winding ratio of the step-up transformer 3 is a, the a 2 R a.

【0012】高圧ケーブル4の線間容量9の容量Cc
変化を0〜Cmaxとすると、容量Cc=Cmaxのときに|
2|=|aV1|となるように抵抗値Raを定めるのが
最適である。以下、等価回路で計算する。全体のインピ
ーダンスZは、下式のように表される。 Z =a2a+Rt+jωLt−j/(ωCmax) i2=aV1/Z, V2=−i2j/(ωCmax) 但し、上式において、jは虚数単位を示す。これらの関
係から、|V2|=|aV1|となるのは、
[0012] The change in the capacitance C c of the line capacitance 9 of the high-voltage cable 4 When 0 to C max, when the capacitance C c = C max |
Optimally, the resistance value R a is determined so that V 2 | = | aV 1 |. Hereinafter, the equivalent circuit is used for the calculation. The overall impedance Z is expressed by the following equation. Z = a 2 R a + R t + jωL t -j / (ωC max) i 2 = aV 1 / Z, V 2 = -i 2 j / (ωC max) However, in the above equation, j denotes an imaginary unit. From these relationships, | V 2 | = | aV 1 |

【0013】[0013]

【数1】 [Equation 1]

【0014】となる場合である。例えば、昇圧トランス
3に関して、巻数aが72回,等価直列抵抗Rtの値が
14.3[kΩ],漏れインダクタンスLtの値が99
[H]であり、商用交流電源の周波数が50[Hz]で
ある場合、容量Cmaxが8250[pF](単位長当た
りの容量が150[pF/m]であり、長さが55
[m])であるとき、電圧補償抵抗手段10の抵抗値R
aの最適値は26.5[Ω]となる。図3は、高圧ケー
ブル4の線間容量9の変化に対する2次電圧V2の変化
を示す特性図であり、点線のカーブFが計算値、実線の
カーブF´が実測値を示している。2次電圧V2の誤差
のピークは計算値では0〜+2.1%であるが、実測値
では−0.5〜+2.5%となっている。
This is the case. For example, regarding the step-up transformer 3, the number of turns a is 72, the value of the equivalent series resistance R t is 14.3 [kΩ], and the value of the leakage inductance L t is 99.
[H] and the frequency of the commercial AC power supply is 50 [Hz], the capacity C max is 8250 [pF] (the capacity per unit length is 150 [pF / m], and the length is 55).
[M]), the resistance value R of the voltage compensation resistance means 10
the optimum value of a becomes 26.5 [Ω]. FIG. 3 is a characteristic diagram showing the change of the secondary voltage V 2 with respect to the change of the line capacity 9 of the high voltage cable 4, in which the dotted curve F shows the calculated value and the solid curve F ′ shows the measured value. The peak of the error of the secondary voltage V 2 is 0 to + 2.1% in the calculated value, but is −0.5 to + 2.5% in the measured value.

【0015】図3において、点線のカーブGは、抵抗値
aが、計算上の最適値26.5[Ω]よりやや大きい
29.5[Ω]である場合の計算値、G´はその実測値
カーブである。この場合の誤差のピークは計算値では−
1.9〜+1.7%であるが、実測値では−0.6〜+
1.9%となり、誤差特性としては優れている。即ち理
想計算値よりやや大きい抵抗値の採用が効果的であるこ
とがわかる。いずれの場合でも電圧変動は±3%以内と
なり、十分に実用に供することが可能である。
In FIG. 3, a dotted curve G is a calculated value when the resistance value R a is 29.5 [Ω], which is slightly larger than the calculated optimum value 26.5 [Ω], and G ′ is the calculated value. It is a measured value curve. The peak of the error in this case is −
1.9 to + 1.7%, but measured value is -0.6 to +
It is 1.9%, which is excellent as an error characteristic. That is, it is effective to adopt a resistance value slightly larger than the ideal calculated value. In any case, the voltage fluctuation is within ± 3%, and it can be sufficiently put to practical use.

【0016】更に、図3において点線のカーブHは電圧
補償抵抗手段10が設けられてない従来構成の場合の計
算値であり、2次電圧V2の誤差が最大8.4%とな
る。この場合の実測値は実線のカーブH´に示すように
計算値を大きく上回り危険な電圧上昇を来すので、ケー
ブルの延長はきわめて短く制限される。上述の計算値及
び実測値における変動誤差をまとめたものを下表に示
す。
Further, the dotted curve H in FIG. 3 is a calculated value in the case of the conventional configuration in which the voltage compensating resistance means 10 is not provided, and the error of the secondary voltage V 2 is 8.4% at maximum. In this case, the actually measured value greatly exceeds the calculated value as shown by the solid curve H ', and a dangerous voltage rise occurs. Therefore, the extension of the cable is limited to be extremely short. The table below shows a summary of fluctuation errors in the above calculated and measured values.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【発明の効果】以上説明したように、本発明によれば、
トランスの1次側に適当な値の電圧補償抵抗手段をあら
かじめ挿入することにより、高圧ケーブルの最大長範囲
において任意長で使用しても2次電圧変動を許容変動範
囲内に制御することができるので、ケーブル長に合わせ
たトランスの設計製作が不要となり、部品の共通化によ
るコストダウンに貢献できる。
As described above, according to the present invention,
By inserting voltage compensation resistance means of an appropriate value in the primary side of the transformer in advance, the secondary voltage fluctuation can be controlled within the allowable fluctuation range even if the high voltage cable is used in an arbitrary length in the maximum length range. Therefore, it is not necessary to design and manufacture a transformer according to the cable length, and it is possible to contribute to cost reduction by sharing parts.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態における2次電圧調整回路
を有する除電器の電気回路の構成を示す電気回路図であ
る。
FIG. 1 is an electric circuit diagram showing a configuration of an electric circuit of a static eliminator having a secondary voltage adjusting circuit according to an embodiment of the present invention.

【図2】図1に示された回路の等価回路である。FIG. 2 is an equivalent circuit of the circuit shown in FIG.

【図3】高圧ケーブル4の線間容量9の変化に対する2
次電圧V2の変化を示す特性図である。
FIG. 3 shows a change in the line capacity 9 of the high-voltage cable 4 with respect to 2
It is a characteristic diagram showing the change of the next voltage V 2.

【図4】従来の除電器の構成を示す回路構成図である。FIG. 4 is a circuit configuration diagram showing a configuration of a conventional static eliminator.

【図5】図4の構成における電気的な等価回路を示す回
路図である。
5 is a circuit diagram showing an electrically equivalent circuit in the configuration of FIG.

【符号の説明】[Explanation of symbols]

1 商用交流電源 3 昇圧トランス 4 高圧ケーブル 6 接地電極 7 放電電極 10 電圧補償抵抗手段 1 Commercial AC power supply 3 Step-up transformer 4 High-voltage cable 6 Ground electrode 7 Discharge electrode 10 Voltage compensation resistance means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 1次側が交流電源に接続された昇圧トラ
ンスと、前記昇圧トランスの2次側の一端に結合された
放電電極と、前記放電電極と対向するよう配置されると
ともに、前記昇圧トランスの2次側の他端に接続された
接地電極とを有する除電器のイオンバランス調整回路に
おいて、 前記昇圧トランスの1次側と前記交流電源との間に介挿
された電圧補償抵抗手段を具備することを特徴とする除
電器の2次電圧変動調整回路。
1. A step-up transformer having a primary side connected to an AC power source, a discharge electrode coupled to one end of a secondary side of the step-up transformer, a discharge electrode arranged to face the discharge electrode, and the step-up transformer. An ion balance adjusting circuit for a static eliminator having a ground electrode connected to the other end of the secondary side of the step-up transformer, the voltage-compensating resistance means interposed between the primary side of the step-up transformer and the AC power supply. A secondary voltage fluctuation adjusting circuit for a static eliminator, characterized by:
JP4645196A 1996-03-04 1996-03-04 Secondary voltage fluctuation adjusting circuit of static eliminator Pending JPH09245988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4645196A JPH09245988A (en) 1996-03-04 1996-03-04 Secondary voltage fluctuation adjusting circuit of static eliminator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4645196A JPH09245988A (en) 1996-03-04 1996-03-04 Secondary voltage fluctuation adjusting circuit of static eliminator

Publications (1)

Publication Number Publication Date
JPH09245988A true JPH09245988A (en) 1997-09-19

Family

ID=12747534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4645196A Pending JPH09245988A (en) 1996-03-04 1996-03-04 Secondary voltage fluctuation adjusting circuit of static eliminator

Country Status (1)

Country Link
JP (1) JPH09245988A (en)

Similar Documents

Publication Publication Date Title
US9281719B2 (en) High-frequency power device, power transmission device, and power transfer system
US11756773B2 (en) Plasma processing apparatus
CA1139366A (en) Direct current power supply
US5008913A (en) Measuring and damping resistor arrangement for a high-voltage apparatus
JP3450048B2 (en) Static eliminator balance adjustment circuit
JPH09245988A (en) Secondary voltage fluctuation adjusting circuit of static eliminator
JP2725166B2 (en) Static electricity removal method and device
JP2789187B2 (en) Mobile object static elimination method
JP5910894B2 (en) AC potential treatment device
JP3471511B2 (en) Ion balance adjustment circuit for static eliminator
JPH0231885Y2 (en)
CN207638568U (en) The high voltage power supply of double-dielectric barrier discharge
CN216491164U (en) Device for improving ion balance stability of electricity eliminator
RU195860U1 (en) TWO-CHAMBER ELECTRIC SWITCH
JPH0727097U (en) Static eliminator
JP4508497B2 (en) Electrostatic coating equipment
JPH0245907A (en) High tension capacitor
RU2102834C1 (en) Generator of high-voltage rectangular pulses
CN115001404A (en) Shielding capacitance type LC oscillator
JP2552163B2 (en) DC high voltage generator with high voltage floating charging circuit
JPH07220892A (en) Static eliminator
CN2170619Y (en) Diversion type dc electrostatic eliminator
JP3027335U (en) Potential therapy device with a constant positive / negative ratio of therapeutic potential
JPH01278230A (en) Ac-superposed dc applying circuit
JP2631165B2 (en) X-ray power supply

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051216

A131 Notification of reasons for refusal

Effective date: 20060104

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060509