JPH09243675A - Dc voltage detector - Google Patents

Dc voltage detector

Info

Publication number
JPH09243675A
JPH09243675A JP7832696A JP7832696A JPH09243675A JP H09243675 A JPH09243675 A JP H09243675A JP 7832696 A JP7832696 A JP 7832696A JP 7832696 A JP7832696 A JP 7832696A JP H09243675 A JPH09243675 A JP H09243675A
Authority
JP
Japan
Prior art keywords
voltage
transformer
current
switches
shunt resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7832696A
Other languages
Japanese (ja)
Other versions
JP3268725B2 (en
Inventor
Hajime Katsushima
肇 勝嶋
Shigeru Okamoto
茂 岡本
Hideki Imai
秀樹 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sansha Electric Manufacturing Co Ltd
Original Assignee
Sansha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sansha Electric Manufacturing Co Ltd filed Critical Sansha Electric Manufacturing Co Ltd
Priority to JP07832696A priority Critical patent/JP3268725B2/en
Publication of JPH09243675A publication Critical patent/JPH09243675A/en
Application granted granted Critical
Publication of JP3268725B2 publication Critical patent/JP3268725B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Control Of Voltage And Current In General (AREA)
  • Power Conversion In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To form a simply structured and inexpensive detection circuit by providing a diode bridge for switching DC voltage on a primary side and two switches on a secondary side and by switching at a high frequency by an oscillator. SOLUTION: Switches 11, 12 are alternately turned on/off by an oscillator 13, and consequently voltage V72 of one of secondary coils 7b of a transformer 1 and voltage V73 of the other coil 7c are switched, so that polarity of voltage V71 of a primary coil 7a of the transformer 7 is switched. When the voltage V71 is positive, diodes 4, 5 are conductive, while when it is negative diodes 3, 6 are conductive. The switching of the diodes causes current in proportion to DC input voltage Vin reduced by a shunt resistor 2 to flow to the primary coil 7a of the transformer 7, so that current in proportion to the input voltage Vin flows to the secondary coils 7b, 7c without magnetic saturation of the transformer 7. The secondary coil current is led by the switches 11, 12 to a shunt resistor 15, which converts it into DC output voltage Vout for outputting.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は電源装置、特に直流
電圧に比例した直流電圧信号を絶縁的に検出する必要が
ある電源装置に適用する有効な直流電圧検出器に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply device, and more particularly to an effective DC voltage detector applicable to a power supply device that needs to detect a DC voltage signal proportional to a DC voltage in an insulating manner.

【0002】[0002]

【従来の技術】従来、この種の検出手段は図4に示すよ
うな回路で実施される。すなわち、第1の検出器として
抵抗器30、31で直流電圧Vinを分圧し、非絶縁で
直流電圧Vinを検出してVoutを出力していた。又
は、図5に示すような回路で実施される、第2の検出器
として直流電圧Vinを分圧器32により分圧し、分圧
圧された信号を周波数に変換する手段(以下V/Fコン
バータ33)により電圧に比例した周波数を得て、この
周波数をフォトカプラ34による絶縁を施し、上記周波
数を周波数から直流電圧に変換する手段(以下F/Vコ
ンバータ35)により、周波数に比例した電圧を発生さ
せ、前記直流電圧Vinを検出して直流出力Voutを
出力していた。
2. Description of the Related Art Conventionally, this type of detecting means is implemented by a circuit as shown in FIG. That is, the direct current voltage Vin is divided by the resistors 30 and 31 as the first detector, the direct current voltage Vin is detected without being insulated, and Vout is output. Alternatively, means for dividing the DC voltage Vin as a second detector by the voltage divider 32 and converting the divided signal into a frequency, which is implemented by a circuit as shown in FIG. 5 (hereinafter V / F converter 33). To obtain a frequency proportional to the voltage, to insulate this frequency by the photocoupler 34, and to generate a voltage proportional to the frequency by means of converting the frequency from the frequency to a DC voltage (hereinafter, F / V converter 35). The DC voltage Vin was detected and the DC output Vout was output.

【0003】図6は、従来技術の応用例を示すものであ
る。図6の電力変換装置50は交流入力51から交流電
力を受電し、交流電力負荷58に電力を供給する装置で
ある。具体的な例として誘導電動機制御装置(VVVF
装置)、無停電電源装置(UPS装置)等がある。電力
変換装置50は通常、入力交流電圧51を整流器52に
よって整流した直流電圧55をインバータ56によって
再び交流に変換し、変換した交流電圧59を制御するこ
とで交流電力を制御する装置である。直流電圧検出器5
4は前記整流器52の出力の上記直流電圧55を検出
し、検出電圧信号Voutをインバータ制御器57に供
給する直流電圧検出器である。これにより、例えば交流
入力の電圧低下時又は上昇時のような異常時にインバー
タ56を制御し、入力電圧異常からインバータ56を保
護する。
FIG. 6 shows an application example of the prior art. The power conversion device 50 of FIG. 6 is a device that receives AC power from the AC input 51 and supplies power to the AC power load 58. As a specific example, an induction motor control device (VVVF
Device), an uninterruptible power supply (UPS device), and the like. The power conversion device 50 is a device that normally controls the AC power by converting the DC voltage 55 obtained by rectifying the input AC voltage 51 by the rectifier 52 into AC by the inverter 56 and controlling the converted AC voltage 59. DC voltage detector 5
A DC voltage detector 4 detects the DC voltage 55 output from the rectifier 52 and supplies the detected voltage signal Vout to the inverter controller 57. Thus, the inverter 56 is controlled in the event of an abnormality such as when the voltage of the AC input drops or rises, and the inverter 56 is protected from the input voltage abnormality.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記従来技術
においては、上記第1の直流電圧検出器では被検出電圧
と出力検出信号が非絶縁であり、例えば図6の電力変換
装置50においてはインバータ制御器57の電位が整流
器52の電位と同じになり、低い電圧で動作する上記イ
ンバータ制御器57に数100Vの様な高い電圧が印加
され、インバータ制御器の構成に数100Vの様な高耐
圧の半導体が必要になる。さらに、上記第2の検出器で
は実現する為の部品点数が多く、かつフォトカプラ、V
/FとF/Vコンバータのような高価な部品が必要であ
るという問題がある。
However, in the above-mentioned prior art, the detected voltage and the output detection signal are non-insulated in the first DC voltage detector. For example, in the power conversion device 50 of FIG. The electric potential of the controller 57 becomes the same as the electric potential of the rectifier 52, and a high voltage such as several hundreds of volts is applied to the above-mentioned inverter controller 57 which operates at a low voltage, and the inverter controller has a high withstand voltage such as several hundreds of volts. Semiconductors are needed. Further, the second detector has a large number of parts to be realized, and the photocoupler and V
There is a problem that expensive parts such as the / F and F / V converters are required.

【0005】[0005]

【課題を解決するための手段】第一の発明は、被検出電
圧と検出出力電圧信号を絶縁する一つの一次巻線と二つ
の二次巻線を持つ絶縁トランスと、前記絶縁トランスの
一次巻線側に第1のシャント抵抗器と、前記絶縁トラン
スの一次巻線の電流を交互に切替えるダイオードブリッ
ジと、オン・オフし前記絶縁トランスの二つの二次巻線
側の電流を交互に切り替える二つのスイッチと、前記二
つのスイッチをドライブする発振器と、前記絶縁トラン
スの二次側電圧を一定に保つ安定化直流電圧源と、前記
二つのスイッチの出力にもうけられ出力側電流を出力検
出電圧信号に変換する第2のシャント抵抗器からなる直
流電圧検出器である。
SUMMARY OF THE INVENTION A first invention is an insulating transformer having one primary winding and two secondary windings for insulating a detected voltage and a detected output voltage signal, and a primary winding of the insulating transformer. A first shunt resistor on the wire side, a diode bridge for alternately switching the current of the primary winding of the isolation transformer, and a second bridge for alternately switching on and off the current of the two secondary windings of the isolation transformer. Two switches, an oscillator that drives the two switches, a regulated DC voltage source that keeps the secondary voltage of the isolation transformer constant, and an output current output at the outputs of the two switches. Is a DC voltage detector including a second shunt resistor for converting into

【0006】二つのスイッチを交互にスイッチングして
絶縁トランスの二次側の二つの巻線電流を交互に切り替
えて前記絶縁トランスの一次側の直流電流が切り替えら
れる。前記絶縁トランスの一次巻線の電流が切り替わ
り、被検出電圧により第1のシャント抵抗器で減流され
る電流がダイオードブリッジによって前記絶縁トランス
の一次側に正極性と負極性になって流れる。前記絶縁ト
ランスの一次側電流を交互に切り替えることで前記絶縁
トランスの磁気飽和を阻止して一次側から二次側に電流
が伝わる。この時、安定化直流電圧源により前記絶縁ト
ランスの励磁電流を一定に保つことによって前記絶縁ト
ランスの励磁電流による電流伝達誤差を少なくする。前
記絶縁トランスの二次側に伝達された電流は第2のシャ
ント抵抗器により電圧に変換され、直流出力が取り出さ
れる。
The DC current on the primary side of the insulating transformer is switched by alternately switching the two switches to alternately switch the two winding currents on the secondary side of the insulating transformer. The current in the primary winding of the isolation transformer is switched, and the current reduced by the first shunt resistor due to the detected voltage flows in the primary side of the isolation transformer in the positive polarity and the negative polarity. By alternately switching the primary side current of the isolation transformer, magnetic saturation of the isolation transformer is blocked and current is transmitted from the primary side to the secondary side. At this time, the stabilized DC voltage source keeps the exciting current of the insulating transformer constant, thereby reducing the current transmission error due to the exciting current of the insulating transformer. The current transmitted to the secondary side of the isolation transformer is converted into a voltage by the second shunt resistor, and the DC output is taken out.

【0007】第二の発明は、被検出電圧と検出出力電圧
信号を絶縁する二つの一次巻線と二つの二次巻線を持つ
絶縁トランスと、前記絶縁トランスの一次巻線側に第1
のシャント抵抗器と、前記絶縁トランスの一次の二つの
巻線の電流を交互に切替えるダイオードと、オン・オフ
し前記絶縁トランスの二つの二次巻線側の電流を交互に
切り替える二つのスイッチと、前記二つのスイッチをド
ライブする発振器と、前記絶縁トランスの二次側電圧を
一定に保つ安定化直流電圧源と、前記二つのスイッチの
出力にもうけられ、出力側電流を出力検出電圧信号に変
換する第2のシャント抵抗器からなる直流電圧検出器で
ある。
A second invention is an insulation transformer having two primary windings and two secondary windings for insulating a voltage to be detected from a detected output voltage signal, and a first winding on the primary winding side of the insulation transformer.
Shunt resistor, a diode that alternately switches the currents of the two primary windings of the isolation transformer, and two switches that alternately turn on and off the currents of the two secondary windings of the isolation transformer. , An oscillator that drives the two switches, a stabilized DC voltage source that keeps the secondary side voltage of the isolation transformer constant, and the output of the two switches that converts the output side current into an output detection voltage signal 2 is a DC voltage detector including a second shunt resistor.

【0008】二つのスイッチを交互にスイッチングして
絶縁トランスの二次側の二つの巻線電流を交互に切り替
えて前記絶縁トランスの一次側の直流電流が二つの巻線
に切り替えられる。前記絶縁トランスの一次巻線の電流
が二つの巻線に交互に切り替わり、被検出電圧により第
1のシャント抵抗器で減流される電流がダイオードによ
って前記絶縁トランスの一次側の巻線に交互に流れる。
前記絶縁トランスの一次側電流を交互に二つの巻線に切
り替えることで前記絶縁トランスの磁気飽和を阻止して
一次側から二次側に電流が伝わる。この時、安定化直流
電圧源により前記絶縁トランスの励磁電流を一定に保つ
ことによって前記絶縁トランスの励磁電流による電流伝
達誤差を少なくする。前記絶縁トランスの二次側に伝達
された電流は第2のシャント抵抗器により電圧に変換さ
れ、直流出力が取り出される。
The two switches are alternately switched to alternately switch the two winding currents on the secondary side of the insulating transformer, and the direct current on the primary side of the insulating transformer is switched to the two windings. The current of the primary winding of the isolation transformer is alternately switched to two windings, and the current that is reduced by the first shunt resistor due to the detected voltage flows alternately to the primary winding of the isolation transformer by the diode. .
By alternately switching the primary side current of the insulating transformer to two windings, magnetic saturation of the insulating transformer is blocked and current is transmitted from the primary side to the secondary side. At this time, the stabilized DC voltage source keeps the exciting current of the insulating transformer constant, thereby reducing the current transmission error due to the exciting current of the insulating transformer. The current transmitted to the secondary side of the isolation transformer is converted into a voltage by the second shunt resistor, and the DC output is taken out.

【0009】[0009]

【発明の実施の形態】第一の本発明の実施の形態を図1
により説明する。本発明は、図1に示す、直流電圧1を
分圧するためのシャント抵抗器2及びシャント抵抗器1
5と、上記シャント抵抗器2とシャント抵抗器15を電
気的に絶縁するための絶縁トランス7と、前記絶縁トラ
ンス7の二つの二次巻線7b、7cに上記絶縁トランス
7の二次側電路18に流れる電流I2を、交互に流すた
めにオン・オフ動作を行うスイッチ11及びスイッチ1
2と、上記スイッチ11及びスイッチ12を交互にオン
・オフするための発振器13と、上記スイッチ11とス
イッチ12の動作により、上記絶縁トランス7の一次側
電路17に流れる電流I1を交互に切り替えるためのダ
イオードブリッジ18と、上記絶縁トランスの二次側の
印加電圧を安定化する手段の直流電圧源10及びトラン
ジスタ14と、上記絶縁トランス7の二次側直流電圧源
9とを、具備することを特徴とするものである。
BEST MODE FOR CARRYING OUT THE INVENTION A first embodiment of the present invention is shown in FIG.
This will be described below. The present invention relates to a shunt resistor 2 and a shunt resistor 1 for dividing a DC voltage 1 shown in FIG.
5, an insulating transformer 7 for electrically insulating the shunt resistor 2 and the shunt resistor 15, and two secondary windings 7b and 7c of the insulating transformer 7 on the secondary side electric path of the insulating transformer 7. The switch 11 and the switch 1 that perform an on / off operation in order to alternately flow the current I2 flowing through the switch 18.
2, an oscillator 13 for alternately turning on / off the switch 11 and the switch 12, and an operation of the switch 11 and the switch 12 to alternately switch the current I1 flowing in the primary side electric path 17 of the insulating transformer 7. The diode bridge 18, the DC voltage source 10 and the transistor 14 which are means for stabilizing the applied voltage on the secondary side of the isolation transformer, and the secondary side DC voltage source 9 of the isolation transformer 7. It is a feature.

【0010】図1において、発振器13によってスイッ
チ11とスイッチ12が交互にオンとオフする。スイッ
チ11がオフしてスイッチ12がオンしている状態では
直流電圧源9が供給して減流抵抗器8を流れる電流I2
は絶縁トランス7の二次巻線7bを流れてシャント抵抗
器15を流れる。一方、スイッチ11がオンしてスイッ
チ12がオフしている状態では直流電圧源9が供給して
減流抵抗器8を流れる電流I2は絶縁トランス7の二次
巻線7cを流れてシャント抵抗器15を流れる。上記ス
イッチ11と12をオン・オフすることによって絶縁ト
ランス7の一方の二次巻線7bの電圧V72から、他の
巻線7cの電圧V73に切り替える。絶縁トランス7の
二次巻線に印加する電圧を巻線7bから7cに切り替え
ることによって絶縁トランス7の一次巻線7aの電圧V
71が正極性から負極性に切り替わる。
In FIG. 1, a switch 11 and a switch 12 are alternately turned on and off by an oscillator 13. When the switch 11 is off and the switch 12 is on, the current I2 supplied from the DC voltage source 9 and flowing through the current reducing resistor 8
Flows through the secondary winding 7b of the insulating transformer 7 and then flows through the shunt resistor 15. On the other hand, when the switch 11 is on and the switch 12 is off, the current I2 supplied from the DC voltage source 9 and flowing through the current reducing resistor 8 flows through the secondary winding 7c of the insulating transformer 7 and the shunt resistor. Flow through 15. By turning on / off the switches 11 and 12, the voltage V72 of one secondary winding 7b of the insulating transformer 7 is switched to the voltage V73 of the other winding 7c. By switching the voltage applied to the secondary winding of the isolation transformer 7 from the windings 7b to 7c, the voltage V of the primary winding 7a of the isolation transformer 7 is changed.
71 is switched from the positive polarity to the negative polarity.

【0011】絶縁トランス7の一次巻線7aの電圧V7
1が正の状態ではダイオード3のカソードが正極性にな
り、ダイオード6のアノードが負極性になることでダイ
オード3とダイオード6は導通しないでダイオード4と
ダイオード5が導通する。一方、絶縁トランス7の一次
巻線7aの電圧V71が負の状態ではダイオード4のカ
ソードが正極性になり、ダイオード5のアノードが負極
性になることでダイオード4とダイオード5は導通しな
いでダイオード3とダイオード6が導通する。このダイ
オードの切替によってシャント抵抗器2で減流される直
流入力電圧Vinに比例した電流がトランス7の一次巻
線7aに流れて、トランス7が磁気飽和することなく二
次巻線7b、7cに直流入力電圧Vinに比例した電流
が流れる。直流入力電圧Vinに比例して流れるトラン
ス7の二次巻線電流はスイッチ11とスイッチ12によ
ってシャント抵抗器15に導かれ、シャント抵抗器15
によって直流出力電圧Voutに変換されてVinに比
例した電圧として出力される。
The voltage V7 of the primary winding 7a of the insulation transformer 7
When 1 is positive, the cathode of the diode 3 has a positive polarity and the anode of the diode 6 has a negative polarity, so that the diode 3 and the diode 6 do not conduct but the diode 4 and the diode 5 conduct. On the other hand, when the voltage V71 of the primary winding 7a of the insulating transformer 7 is negative, the cathode of the diode 4 has a positive polarity and the anode of the diode 5 has a negative polarity, so that the diode 4 and the diode 5 do not conduct and the diode 3 And the diode 6 becomes conductive. A current proportional to the DC input voltage Vin that is reduced by the shunt resistor 2 due to the switching of the diode flows to the primary winding 7a of the transformer 7, and the transformer 7 is not subjected to magnetic saturation, and the DC is supplied to the secondary windings 7b and 7c. A current proportional to the input voltage Vin flows. The secondary winding current of the transformer 7 that flows in proportion to the DC input voltage Vin is guided to the shunt resistor 15 by the switch 11 and the switch 12, and the shunt resistor 15
Is converted into a DC output voltage Vout and output as a voltage proportional to Vin.

【0012】ここで直流電圧源10はトランス7の二次
巻線7bと7cのそれぞれの電圧V72とV73を一定
に保ってトランス7の励磁電流を一定に保つ目的があ
る。PNP形トランジスタ14のベースをシャント抵抗
器15の陽極性側につないで、シャント抵抗器15の電
圧変動によるトランス7の二次巻線7b,7cの電圧V
72、V73の補償を行う。例えば、スイッチ11がオ
ン状態でシャント抵抗器15の電圧が零になった場合、
トランジスタ14のベース電流は最大になり、トランジ
スタ14は完全導通状態になり、コレクタ・エミッタ間
電圧は、半導体電圧ドロップを無視すれば、零になる。
この状態ではトランス7の二次巻線7cの電圧V73は
直流電圧源10の電圧と等しくなる。一方、スイッチ1
1がオン状態でシャント抵抗器15の電圧が例えば、1
0Vであればトランジスタ14のベース電流が少なくな
りトランジスタ14は不飽和状態になって、コレクタ・
エミッタ間電圧は、半導体電圧ドロップを無視すれば、
10Vになる。この状態では、上記同様トランス7の二
次巻線7cの電圧V73は直流電圧源10の電圧と等し
くなる。上記励磁電流を一定にすることでトランス7に
流れる電流がVinに比例した値になり、出力電圧Vo
utが入力電圧Vinに比例した値になる。すなわち、
トランス7の巻線比が1対1であれば出力電圧Vout
はシャント抵抗器15の抵抗値とシャント抵抗器2の抵
抗値の比で入力電圧Vinに比例する。
The DC voltage source 10 has the purpose of keeping the voltages V72 and V73 of the secondary windings 7b and 7c of the transformer 7 constant and keeping the exciting current of the transformer 7 constant. By connecting the base of the PNP transistor 14 to the positive side of the shunt resistor 15, the voltage V of the secondary windings 7b and 7c of the transformer 7 due to the voltage fluctuation of the shunt resistor 15
72 and V73 are compensated. For example, when the voltage of the shunt resistor 15 becomes zero when the switch 11 is on,
The base current of the transistor 14 is maximized, the transistor 14 is fully conductive, and the collector-emitter voltage becomes zero if the semiconductor voltage drop is ignored.
In this state, the voltage V73 of the secondary winding 7c of the transformer 7 becomes equal to the voltage of the DC voltage source 10. On the other hand, switch 1
When 1 is on, the voltage of the shunt resistor 15 is
If it is 0V, the base current of the transistor 14 will decrease and the transistor 14 will be in an unsaturated state,
As for the voltage between the emitters, if the semiconductor voltage drop is ignored,
10V. In this state, the voltage V73 of the secondary winding 7c of the transformer 7 becomes equal to the voltage of the DC voltage source 10 similarly to the above. By making the exciting current constant, the current flowing through the transformer 7 becomes a value proportional to Vin, and the output voltage Vo
ut has a value proportional to the input voltage Vin. That is,
If the winding ratio of the transformer 7 is 1: 1, the output voltage Vout
Is a ratio of the resistance value of the shunt resistor 15 and the resistance value of the shunt resistor 2 and is proportional to the input voltage Vin.

【0013】次に第二の発明の実施の形態を図2により
説明する。本発明は、図2に示す、直流電圧1を分圧す
るためのシャント抵抗器2及びシャント抵抗器15と、
上記シャント抵抗器2とシャント抵抗器15を電気的に
絶縁するための絶縁トランス77と、前記絶縁トランス
77の二つの二次巻線77c、77dに上記絶縁トラン
ス77の二次側電路18に流れる電流I2を、交互に流
すためにオン・オフ動作を行うスイッチ11及びスイッ
チ12と、上記スイッチ11及びスイッチ12を交互に
オン・オフするための発振器13と、上記スイッチ11
とスイッチ12の動作により、上記絶縁トランス77の
一次側電路17に流れる電流I1を交互に切り替えるた
めのダイオード78、79と、上記絶縁トランスの二次
側の印加電圧を安定化する手段の直流電圧源10及びト
ランジスタ14と、上記絶縁トランス77の二次側直流
電圧源9とを、具備することを特徴とするものである。
Next, an embodiment of the second invention will be described with reference to FIG. The present invention includes a shunt resistor 2 and a shunt resistor 15 for dividing a DC voltage 1 shown in FIG.
An insulating transformer 77 for electrically insulating the shunt resistor 2 and the shunt resistor 15 and two secondary windings 77c and 77d of the insulating transformer 77 flow to the secondary side electric circuit 18 of the insulating transformer 77. A switch 11 and a switch 12 that perform an on / off operation to alternately flow the current I2, an oscillator 13 that alternately turns on and off the switch 11 and a switch 12, and the switch 11
And the switch 12 operate to alternately switch the current I1 flowing through the primary side electric path 17 of the insulation transformer 77, and the DC voltage of the means for stabilizing the applied voltage on the secondary side of the insulation transformer. The power source 10 and the transistor 14 and the secondary side DC voltage source 9 of the isolation transformer 77 are provided.

【0014】図2において、発振器13によってスイッ
チ11とスイッチ12が交互にオンとオフする。スイッ
チ11がオフしてスイッチ12がオンしている状態では
直流電圧源9が供給して減流抵抗器8を流れる電流I2
は絶縁トランス77の二次巻線77cを流れてシャント
抵抗器15を流れる。一方、スイッチ11がオンしてス
イッチ12がオフしている状態では直流電圧源9が供給
して減流抵抗器8を流れる電流I2は絶縁トランス77
の二次巻線77dを流れてシャント抵抗器15を流れ
る。上記スイッチ11と12をオン・オフすることによ
って絶縁トランス77の一方の二次巻線77cの電圧V
83から、他の巻線77dの電圧V84に切り替える。
絶縁トランス77の二次巻線に印加する電圧を巻線77
cから77dに切り替えることによって絶縁トランス7
7の一次巻線の電圧が巻線77aが正極性から負極性に
変わる。さらに巻線77bの電圧は負極性から正極性に
切り替わる。
In FIG. 2, a switch 11 and a switch 12 are alternately turned on and off by an oscillator 13. When the switch 11 is off and the switch 12 is on, the current I2 supplied from the DC voltage source 9 and flowing through the current reducing resistor 8
Flows through the secondary winding 77c of the isolation transformer 77 and then flows through the shunt resistor 15. On the other hand, when the switch 11 is turned on and the switch 12 is turned off, the current I2 supplied from the DC voltage source 9 and flowing through the current reducing resistor 8 is the insulating transformer 77.
Flowing through the secondary winding 77d and flowing through the shunt resistor 15. By turning on / off the switches 11 and 12, the voltage V of one secondary winding 77c of the insulating transformer 77 is
The voltage is switched from 83 to the voltage V84 of the other winding 77d.
The voltage applied to the secondary winding of the isolation transformer 77 is applied to the winding 77.
Isolation transformer 7 by switching from c to 77d
The voltage of the primary winding 7 changes from positive polarity to negative polarity in the winding 77a. Further, the voltage of the winding 77b is switched from the negative polarity to the positive polarity.

【0015】絶縁トランス77の一次巻線77aに正極
性電圧が印加されている状態ではダイオード78のカソ
ードが正極性になり、ダイオード79のカソードが負極
性になることでダイオード78は導通しないでダイオー
ド79が導通する。一方、一次巻線の電圧が絶縁トラン
ス77の一次巻線77bに正極性電圧が印加されている
状態ではダイオード79のカソードが正極性になり、ダ
イオード78のカソードが負極性になることでダイオー
ド79は導通しないでダイオード78が導通する。この
ダイオードの切替によってシャント抵抗器2で減流され
る直流入力電圧Vinに比例した電流がトランス7の一
次巻線77a又は77bに流れて、トランス77が磁気
飽和することなく二次巻線77c、77dに直流入力電
圧Vinに比例した電流が流れる。直流入力電圧Vin
に比例して流れるトランス77の二次巻線電流はスイッ
チ11とスイッチ12によってシャント抵抗器15に導
かれ、シャント抵抗器15によって直流出力電圧Vou
tに変換されてVinに比例した電圧として出力され
る。
When a positive voltage is applied to the primary winding 77a of the isolation transformer 77, the cathode of the diode 78 becomes positive and the cathode of the diode 79 becomes negative, so that the diode 78 does not conduct and the diode 78 does not conduct. 79 becomes conductive. On the other hand, when the voltage of the primary winding is applied to the primary winding 77b of the insulation transformer 77, the cathode of the diode 79 has a positive polarity and the cathode of the diode 78 has a negative polarity. Does not conduct, and the diode 78 conducts. A current proportional to the DC input voltage Vin reduced by the shunt resistor 2 due to the switching of the diode flows through the primary winding 77a or 77b of the transformer 7 and the secondary winding 77c, 77d without magnetic saturation of the transformer 77. A current that is proportional to the DC input voltage Vin flows through. DC input voltage Vin
The secondary winding current of the transformer 77 that flows in proportion to is guided to the shunt resistor 15 by the switch 11 and the switch 12, and the shunt resistor 15 causes the DC output voltage Vou.
It is converted into t and output as a voltage proportional to Vin.

【0016】ここで直流電圧源10はトランス77の二
次巻線77cと77dのそれぞれの電圧V83とV84
を一定に保ってトランス77の励磁電流を一定に保つ目
的がある。PNP形トランジスタ14のベースをシャン
ト抵抗器15の陽極性側につないで、シャント抵抗器1
5の電圧変動によるトランス77の二次巻線77c,7
7dの電圧V83、V84の補償を行う。例えば、スイ
ッチ11がオン状態でシャント抵抗器15の電圧が零に
なった場合、トランジスタ14のベース電流は最大にな
り、トランジスタ14は完全導通状態になり、コレクタ
・エミッタ間電圧は、半導体電圧ドロップを無視すれ
ば、零になる。この状態ではトランス77の二次巻線7
7dの電圧V83は直流電圧源10の電圧と等しくな
る。一方、スイッチ11がオン状態でシャント抵抗器1
5の電圧が例えば、10Vであればトランジスタ14の
ベース電流が少なくなりトランジスタ14は不飽和状態
になって、コレクタ・エミッタ間電圧は、半導体電圧ド
ロップを無視すれば、10Vになる。この状態では、上
記同様トランス77の二次巻線77dの電圧V84は直
流電圧源10の電圧と等しくなる。上記励磁電流を一定
にすることでトランス77に流れる電流がVinに比例
した値になり、出力電圧Voutが入力電圧Vinに比
例した値になる。すなわち、トランス77の巻線比が1
対1であれば出力電圧Voutはシャント抵抗器15の
抵抗値とシャント抵抗器2の抵抗値の比で入力電圧Vi
nに比例する。
Here, the DC voltage source 10 is the voltages V83 and V84 of the secondary windings 77c and 77d of the transformer 77, respectively.
Is kept constant and the exciting current of the transformer 77 is kept constant. By connecting the base of the PNP transistor 14 to the positive side of the shunt resistor 15, the shunt resistor 1
Secondary windings 77c, 7 of the transformer 77 due to the voltage fluctuation of 5
The voltage V83 and V84 of 7d are compensated. For example, when the switch 11 is on and the voltage of the shunt resistor 15 becomes zero, the base current of the transistor 14 becomes maximum, the transistor 14 becomes fully conductive, and the collector-emitter voltage becomes a semiconductor voltage drop. Is ignored, it becomes zero. In this state, the secondary winding 7 of the transformer 77
The voltage V83 of 7d becomes equal to the voltage of the DC voltage source 10. On the other hand, when the switch 11 is on, the shunt resistor 1
If the voltage of 5 is, for example, 10 V, the base current of the transistor 14 decreases, the transistor 14 becomes unsaturated, and the collector-emitter voltage becomes 10 V if the semiconductor voltage drop is ignored. In this state, similarly to the above, the voltage V84 of the secondary winding 77d of the transformer 77 becomes equal to the voltage of the DC voltage source 10. By making the exciting current constant, the current flowing through the transformer 77 becomes a value proportional to Vin, and the output voltage Vout becomes a value proportional to the input voltage Vin. That is, the winding ratio of the transformer 77 is 1
In the case of the pair 1, the output voltage Vout is the ratio of the resistance value of the shunt resistor 15 and the resistance value of the shunt resistor 2 to the input voltage Vi.
n.

【0017】[0017]

【実施例】図3に本発明の実施例を示す。図3の実施例
は図1の第一の発明の実施の形態に対して直流電圧源1
0を2個の直列ダイオード20に変更し、スイッチ11
と12を電解効果トランジスタに変更したものである。
直流電圧源10として2個の直列ダイオード20を使用
した場合、トランジスタ14がオン状態で2個の直列ダ
イーオド20の端子間に約1.4Vの電圧が発生する。
さらにトランジスタ4のエミッタ・ベース間に0.7V
が発生し、スイッチ11またはスイッチ12に電解効果
トランジスタを使用することで約0.7Vの電圧が発生
する。この状態ではトランス7の二次巻線7b又は7c
に2.8Vの安定した直流電圧が印加される。その他の
動作は図1の実施例と同様、トランス7の巻線比が1対
1であれば出力電圧Voutはシャント抵抗器15の抵
抗値とシャント抵抗器2の抵抗値の比で入力電圧Vin
に比例する。スイッチ11と12に電解効果トランジス
タを使用することによってスイッチ11と12が数10
0kHzの高周波で動作することができ、トランス7を
小型にすることができる。
EXAMPLE FIG. 3 shows an example of the present invention. The embodiment of FIG. 3 is different from the embodiment of the first invention of FIG.
0 is changed to two series diodes 20, and switch 11
And 12 are changed to field effect transistors.
When two series diodes 20 are used as the DC voltage source 10, a voltage of about 1.4V is generated between the terminals of the two series diodes 20 while the transistor 14 is in the ON state.
Furthermore, 0.7V between the emitter and base of transistor 4
And a voltage of about 0.7V is generated by using a field effect transistor for the switch 11 or the switch 12. In this state, the secondary winding 7b or 7c of the transformer 7
A stable DC voltage of 2.8 V is applied to. In other operations, if the winding ratio of the transformer 7 is 1: 1, the output voltage Vout is the ratio of the resistance value of the shunt resistor 15 and the resistance value of the shunt resistor 2 as in the embodiment of FIG.
Is proportional to By using field effect transistors for the switches 11 and 12, the switches 11 and 12 can be converted into several tens.
It can operate at a high frequency of 0 kHz, and the transformer 7 can be made compact.

【0018】[0018]

【発明の効果】以上のように一次側に直流電圧を切り替
える為のダイオードブリッジ18と、一つの一次巻線と
二つの二次巻線を持つトランス7の二次側にスイッチ1
1と12を設けて発振器13により約100kHzの高
周波でスイッチングすることにより絶縁トランスの小型
化ができ、きわめて部品点数の少ない簡易な構成でかつ
安価な絶縁形直流電圧検出回路を形成することができ
る。
As described above, the switch 1 is provided on the secondary side of the transformer 7 having the diode bridge 18 for switching the DC voltage to the primary side and one primary winding and two secondary windings.
By providing 1 and 12 and switching by the oscillator 13 at a high frequency of about 100 kHz, the size of the insulation transformer can be reduced, and a simple structure with a very small number of parts and an inexpensive insulation type DC voltage detection circuit can be formed. .

【図面の簡単な説明】[Brief description of drawings]

【図1】第一の発明の実施の形態の回路である。FIG. 1 is a circuit of an embodiment of the first invention.

【図2】第二の発明の実施の形態の回路である。FIG. 2 is a circuit according to an embodiment of the second invention.

【図3】第一の発明の実施例の回路図である。FIG. 3 is a circuit diagram of an embodiment of the first invention.

【図4】従来技術の第1例の基本回路である。FIG. 4 is a basic circuit of a first example of the prior art.

【図5】従来技術の第1例の基本回路である。FIG. 5 is a basic circuit of a first example of the prior art.

【図6】本発明の実施例の応用を示す。FIG. 6 shows an application of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 被検出直流電圧Vin 2、15 シャント抵抗器 3、4、5、6、78、79 ダイオード 7、77 絶縁トランス 7a 絶縁トランス7の一次巻線 7b、7c 絶縁トランス7の二次巻線 8 減流抵抗器 9 直流電圧源 10 安定化直流電圧源 11、12 スイッチ 13 発振器 14 トランジスタ 17、19 電路 18 ダイオードブリッジ 20 2個の直列ダイオード 21、22 電解効果トランジスタ 23 検出出力信号 50 電力変換装置 51 インバータ 77a、77b 絶縁トランス77の一次巻線 77c、77d 絶縁トランス77の二次巻線 1 Detected DC voltage Vin 2, 15 Shunt resistor 3, 4, 5, 6, 78, 79 Diode 7, 77 Insulation transformer 7a Primary winding 7b, 7c Secondary winding of isolation transformer 7 Reduction 8 Current resistor 9 DC voltage source 10 Stabilized DC voltage source 11, 12 Switch 13 Oscillator 14 Transistor 17, 19 Electric circuit 18 Diode bridge 20 Two series diodes 21, 22 Field effect transistor 23 Detection output signal 50 Power converter 51 Inverter 77a, 77b Primary winding of insulation transformer 77 77c, 77d Secondary winding of insulation transformer 77

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被検出電圧と検出出力電圧信号を絶縁す
る一つの一次巻線と二つの二次巻線を持つ絶縁トランス
と、前記絶縁トランスの一次巻線側に第1のシャント抵
抗器と、前記絶縁トランスの一次巻線の電流を交互に切
替えるダイオードブリッジと、オン・オフし前記絶縁ト
ランスの二つの二次巻線側の電流を交互に切り替える二
つのスイッチと、前記二つのスイッチをドライブする発
振器と、前記絶縁トランスの二次側電圧を一定に保つ安
定化直流電圧源と、前記二つのスイッチの出力にもうけ
られ、出力側電流を出力検出電圧信号に変換する第2の
シャント抵抗器からなる直流電圧検出器。
1. An insulating transformer having one primary winding and two secondary windings for insulating a detected voltage signal from a detected output voltage signal, and a first shunt resistor on the primary winding side of the insulating transformer. Driving the two switches, and a diode bridge that alternately switches the current of the primary winding of the isolation transformer, two switches that alternately turn on and off the currents of the two secondary windings of the isolation transformer, and the two switches. Oscillator, a stabilized DC voltage source that keeps the secondary voltage of the isolation transformer constant, and a second shunt resistor that is provided at the outputs of the two switches and that converts the output current to an output detection voltage signal. DC voltage detector consisting of.
【請求項2】 被検出電圧と検出出力電圧信号を絶縁す
る二つの一次巻線と二つの二次巻線を持つ絶縁トランス
と、前記絶縁トランスの一次巻線側に第1のシャント抵
抗器と、前記絶縁トランスの一次の二つの巻線の電流を
交互に切替えるダイオードと、オン・オフし前記絶縁ト
ランスの二つの二次巻線側の電流を交互に切り替える二
つのスイッチと、前記二つのスイッチをドライブする発
振器と、前記絶縁トランスの二次側電圧を一定に保つ安
定化直流電圧源と、前記二つのスイッチの出力にもうけ
られ、出力側電流を出力検出電圧信号に変換する第2の
シャント抵抗器からなる直流電圧検出器。
2. An insulating transformer having two primary windings and two secondary windings for insulating the detected voltage and the detected output voltage signal, and a first shunt resistor on the primary winding side of the insulating transformer. A diode that alternately switches the currents of the two primary windings of the isolation transformer, two switches that alternately turn on and off the currents of the two secondary windings of the isolation transformer, and the two switches And a stabilized DC voltage source that keeps the secondary voltage of the isolation transformer constant, and a second shunt that is provided at the outputs of the two switches and that converts the output current to an output detection voltage signal. DC voltage detector consisting of a resistor.
JP07832696A 1996-03-06 1996-03-06 DC voltage detector Expired - Fee Related JP3268725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07832696A JP3268725B2 (en) 1996-03-06 1996-03-06 DC voltage detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07832696A JP3268725B2 (en) 1996-03-06 1996-03-06 DC voltage detector

Publications (2)

Publication Number Publication Date
JPH09243675A true JPH09243675A (en) 1997-09-19
JP3268725B2 JP3268725B2 (en) 2002-03-25

Family

ID=13658852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07832696A Expired - Fee Related JP3268725B2 (en) 1996-03-06 1996-03-06 DC voltage detector

Country Status (1)

Country Link
JP (1) JP3268725B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008033428A1 (en) * 2008-07-16 2010-01-21 Conti Temic Microelectronic Gmbh Direct current voltage source's voltage measuring method for intermediate circuit in e.g. hybrid vehicle, involves indirectly measuring voltage that is induced in one of inductors of one of electric circuits by measuring device
CN112379153A (en) * 2020-10-30 2021-02-19 阳光电源股份有限公司 Direct current oscillation detection circuit, direct current arc detection circuit and inverter
CN117805474A (en) * 2024-03-01 2024-04-02 珠海泰坦科技股份有限公司 Passive direct-current overvoltage isolation detection circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008033428A1 (en) * 2008-07-16 2010-01-21 Conti Temic Microelectronic Gmbh Direct current voltage source's voltage measuring method for intermediate circuit in e.g. hybrid vehicle, involves indirectly measuring voltage that is induced in one of inductors of one of electric circuits by measuring device
DE102008033428B4 (en) 2008-07-16 2022-12-08 Vitesco Technologies Germany Gmbh Method and arrangement for voltage measurement with galvanic isolation
CN112379153A (en) * 2020-10-30 2021-02-19 阳光电源股份有限公司 Direct current oscillation detection circuit, direct current arc detection circuit and inverter
CN117805474A (en) * 2024-03-01 2024-04-02 珠海泰坦科技股份有限公司 Passive direct-current overvoltage isolation detection circuit

Also Published As

Publication number Publication date
JP3268725B2 (en) 2002-03-25

Similar Documents

Publication Publication Date Title
US6498320B2 (en) Power supply apparatus for arc-utilizing apparatus
US4150423A (en) Transformer coupled pass element
US6845019B2 (en) Flyback converter
US10333406B2 (en) Electric power converter providing outputs by adjusting first rectified output voltage by chopper circuit and adjusting second rectified output voltage by DC-DC converter
KR102593959B1 (en) Multiple output isolated power supplies, power supply devices, automatic test equipment, and methods for providing multiple isolated output voltages for use in automatic test equipment
US3818308A (en) Inverting bridge circuit
JP3268725B2 (en) DC voltage detector
JP2007014136A (en) Switching power supply
JP2001016851A (en) Switching power supply unit
JPH11136939A (en) Switching power supply
JPS60197162A (en) Switching power source
JP3580491B2 (en) Switching power supply
US4761728A (en) High voltage generating device
JPH0654525A (en) Dc/dc converter
JPS61207172A (en) Multioutput type constant-current circuit
JPH0549258A (en) Switching power supply
JP3436130B2 (en) Remote control standby device
JPH0793819B2 (en) Constant current supply circuit
JPH06303773A (en) Switching regulator circuit
JPH11262262A (en) Power unit
JPS6027916A (en) Power supply device
JPH10144544A (en) Output transformer for converter, and switching converter and equipment
JP2008245387A (en) Switching power supply
JPH05300738A (en) Dc power-supply apparatus
JP2006333578A (en) Switching power supply device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100118

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees