JPH09243662A - Manufacture of probe - Google Patents

Manufacture of probe

Info

Publication number
JPH09243662A
JPH09243662A JP4927996A JP4927996A JPH09243662A JP H09243662 A JPH09243662 A JP H09243662A JP 4927996 A JP4927996 A JP 4927996A JP 4927996 A JP4927996 A JP 4927996A JP H09243662 A JPH09243662 A JP H09243662A
Authority
JP
Japan
Prior art keywords
stirring
plating
plating solution
stirring state
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4927996A
Other languages
Japanese (ja)
Other versions
JP3050520B2 (en
Inventor
Yoshinari Takayama
嘉也 高山
Kazunori So
和範 宗
Kiyoshi Miyake
清 三宅
Hiroshi Yada
寛 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP8049279A priority Critical patent/JP3050520B2/en
Publication of JPH09243662A publication Critical patent/JPH09243662A/en
Application granted granted Critical
Publication of JP3050520B2 publication Critical patent/JP3050520B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Wire Bonding (AREA)
  • Measuring Leads Or Probes (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method for a probe which comprises bump contacts which restrain the nonuniformity of their shape and an irregularity in their height even when the bump contacts are formed by an electrolytic plating method. SOLUTION: A conductive circuit inside through holes 4 in an insulating substrate 1 is used as a cathode, a metal is precipitated and filled so as to protrude inside the through holes 4 by an electrolytic plating operation, and bump contacts 2 are formed. In this case, while a stirring state which stirs a plating liquid in a plating tank and a non-stirring state which stops its stirring operation are being repeated alternately. The electrolytic plating operation is performed, and the bump contacts 2 are grown. It is preferable that the breakdown in terms of time of one cycle when the stirring state and the non- stirring state are repeated alternately is 5-30sec or higher for the stirring state and 3-100min or lower for the non-stirring state.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、集積回路等の微細
な被検査体に対する電気的諸特性の測定、あるいは高温
下で行われるバーンインテスト等に有用なバンプ接点を
有する回路基板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a circuit board having a bump contact which is useful for measuring various electrical characteristics of a microscopic inspection object such as an integrated circuit or for a burn-in test performed at a high temperature. .

【0002】[0002]

【従来の技術】近年、集積回路などの微細な半導体素子
に対するバーンインテスト等の電気的諸特性の検査は、
シリコンウエハから切り出された段階(ダイレベル)
で、パッケージング前のチップ(ベアチップ)に対して
行われることが要求されている。またCSP(チップサ
イズパッケージ)等、半導体実装においてもベアチップ
サイズでの接合が行われつつある。上記の様にICチッ
プなどにおける微細ピッチに形成された導体に対して、
繰り返しの接触や永久的な接合を行なうものとして、バ
ンプ接点を有する回路基板が知られている。以下、この
バンプ接点を有する回路基板を、繰り返しの接触や永久
的な接合などの用途にかかわらず単に「プローブ」とい
う。
2. Description of the Related Art In recent years, inspection of various electrical characteristics such as burn-in test for fine semiconductor elements such as integrated circuits has been conducted.
Stage cut from silicon wafer (die level)
Therefore, it is required to be performed on a chip (bare chip) before packaging. Further, in semiconductor mounting such as CSP (chip size package), bonding with bare chip size is being performed. As described above, for conductors formed in a fine pitch in an IC chip or the like,
A circuit board having bump contacts is known as a material for repeated contact and permanent bonding. Hereinafter, the circuit board having the bump contacts will be simply referred to as a "probe" regardless of the application such as repeated contact or permanent bonding.

【0003】バンプ接点は、回路基板の面状から突起す
るように形成された接点であって、ドーム状の外径を呈
するものが一般的である。また、バンプ接点は、被検査
体・被実装体に応じて複数設けられ、各バンプ接点がこ
の回路基板の特定の導電性回路と導通された構造を有し
ている。このバンプ接点を有する回路基板は、検査用プ
ローブとして、ICベアチップ実装用のフィルムキャリ
アとして用いられている(特開昭62−182672号
公報参照)。
The bump contact is a contact formed so as to protrude from the surface of the circuit board, and generally has a dome-shaped outer diameter. A plurality of bump contacts are provided according to the object to be inspected and the object to be mounted, and each bump contact has a structure in which it is electrically connected to a specific conductive circuit of the circuit board. The circuit board having the bump contacts is used as a probe for inspection and as a film carrier for mounting an IC bare chip (see JP-A-62-182672).

【0004】バンプ接点の形成方法としては、浸漬方
式、噴流方式による電解めっきによって、導電性回路を
負極として接点材料を析出させ成長させる方法が一般的
である。この電解めっきの工程において、バンプ接点の
異常析出を抑制するための、また、バンプ接点の高さを
均一に形成するための検討が行われている。例えば、被
めっき面に対するめっき液の流れの方向によって異形の
バンプ接点が成長するという問題を解消するために、め
っき液の吹き出しノズルと被めっき面を平行に保ちノズ
ルを2次元揺動することが知られている(特開平2−6
1089号公報参照)。また、噴流カップを利用したバ
ンプ接点の形成方法では、水平な姿勢で浮遊させた状態
でめっきすることにより均一な高さのバンプ接点が得ら
れることが知られている(特開平4−315434号公
報参照)。
As a method of forming a bump contact, a method of depositing and growing a contact material by using an electroconductive circuit as a negative electrode by electrolytic plating by a dipping method or a jet method is generally used. In the process of this electroplating, studies have been conducted to suppress abnormal deposition of bump contacts and to form bump contacts at a uniform height. For example, in order to solve the problem that irregular-shaped bump contacts grow depending on the direction of the flow of the plating solution with respect to the surface to be plated, the nozzle for ejecting the plating solution and the surface to be plated may be kept parallel and the nozzle may be two-dimensionally swung. Known (Japanese Patent Laid-Open No. 2-6
No. 1089). Further, in the method of forming bump contacts using a jet cup, it is known that bump contacts having a uniform height can be obtained by plating while floating in a horizontal posture (Japanese Patent Laid-Open No. 4-315434). See the bulletin).

【0005】[0005]

【発明が解決しようとする課題】しかしながら被めっき
面上でのめっき液の流速及び流れ方向を完全に均一にす
ることは難しく、特に平滑化剤であるレベラー、光沢化
剤であるブライトナーを含む電解めっきにて形成される
バンプ接点はめっき液の流れに敏感であり、めっき液の
流れ方向にバンプ接点の頂点が偏るなど形状の不均一が
生じやすい。また、この頂点の偏った異常なバンプ接点
は、頂点の偏りのない正常なバンプ接点に比べ、絶縁性
基板表面からの高さが低くなるため電気検査での接点不
良や半導体実装時におけるICチップとの接合不良が発
生する。
However, it is difficult to make the flow velocity and flow direction of the plating solution on the surface to be plated completely uniform, and in particular, a leveler as a smoothing agent and a brightener as a brightening agent are included. The bump contact formed by electrolytic plating is sensitive to the flow of the plating solution, and the shape of the bump contact is likely to be uneven such that the apex of the bump contact is deviated in the flow direction of the plating solution. In addition, the abnormal bump contact with uneven vertices has a lower height from the surface of the insulating substrate than a normal bump contact with no uneven vertices, and thus a contact failure in an electrical inspection or an IC chip during semiconductor mounting. Poor bonding with

【0006】本発明の目的は上記の問題を解決し、電解
めっきにより形成されたバンプ接点でありながら、形状
の不均一や高さのばらつきが抑制されたバンプ接点を有
するプローブの製造方法を提供することである。
An object of the present invention is to solve the above problems, and to provide a method for manufacturing a probe having bump contacts formed by electrolytic plating, in which unevenness in shape and variation in height are suppressed. It is to be.

【0007】[0007]

【課題を解決するための手段】本発明のプローブの製造
方法は、次の特徴を有するものである。 (1)絶縁性基板の一方の面に導電性回路を設け、該絶
縁性基板の他方の面のバンプ接点を形成すべき位置に貫
通孔を設け、該貫通孔の内部底面に導電性回路を露出さ
せ、該貫通孔内に露出した導電性回路を陰極とし、電解
めっきによって、該貫通孔内に金属を充填しさらに突起
させてバンプ接点を形成するに際し、めっき槽内のめっ
き液を攪拌する攪拌状態と、その攪拌を停止する非攪拌
状態とを交互に繰り返しながら電解めっきを行いバンプ
接点を成長させることを特徴とするプローブの製造方
法。
The probe manufacturing method of the present invention has the following features. (1) A conductive circuit is provided on one surface of an insulating substrate, a through hole is provided on the other surface of the insulating substrate at a position where a bump contact is to be formed, and a conductive circuit is provided on the inner bottom surface of the through hole. When the exposed conductive circuit exposed in the through hole is used as a cathode and electrolytic plating is performed to fill the through hole with metal and further project the bump to form a bump contact, the plating solution in the plating tank is agitated. A method for manufacturing a probe, characterized in that electrolytic plating is performed while alternately repeating a stirring state and a non-stirring state in which the stirring is stopped to grow bump contacts.

【0008】(2)攪拌状態と非攪拌状態とを交互に繰
り返すときの1サイクルの時間的なうちわけが、攪拌状
態を5秒以上30秒以下とし、非攪拌状態を3分以上1
00分以下とするものである上記(1)記載のプローブ
の製造方法。
(2) When the stirring state and the non-stirring state are alternately repeated, one cycle includes a time period of 5 seconds to 30 seconds and a non-stirring state of 3 minutes to 1 minute.
The method for producing a probe according to (1) above, which is set to 00 minutes or less.

【0009】(3)めっき槽内のめっき液の攪拌が、エ
アーの噴出による攪拌、ポンプを用いためっき液の循環
による攪拌、攪拌羽根の運動による攪拌、絶縁性基板自
体の運動による攪拌のいずれかである上記(1)記載の
プローブの製造方法。
(3) Agitation of the plating solution in the plating tank is either agitation by jetting air, agitation by circulating the plating solution using a pump, agitation by movement of an agitation blade, or agitation by movement of the insulating substrate itself. The method for producing a probe according to (1) above.

【0010】(4)貫通孔内に露出した導電性回路の付
近のめっき液の温度が、異なる貫通孔の間で互いに2度
以内の温度差となるように、めっき液の温度を制御する
ものである上記(1)記載のプローブの製造方法。
(4) Controlling the temperature of the plating solution so that the temperature of the plating solution in the vicinity of the conductive circuit exposed in the through hole has a temperature difference of 2 degrees or less between different through holes. The method for producing a probe according to (1) above.

【0011】(5)めっき槽の全周囲にめっき液を加熱
するための加熱手段をさらに設け、該加熱手段の各部同
士の温度差を1度以内に制御することによって、上記め
っき液の温度が制御されるものである上記(4)記載の
プローブの製造方法。
(5) By further providing heating means for heating the plating solution all around the plating tank and controlling the temperature difference between the respective parts of the heating means to within 1 degree, the temperature of the plating solution can be controlled. The method for producing a probe according to (4) above, which is controlled.

【0012】(6)加熱手段が、めっき槽全体を取り囲
む密閉型の加温槽であって、該加温槽の壁面内に設けら
れた流路内を、外部熱源にて加熱された熱媒体が循環す
るものである上記(5)記載のプローブの製造方法。
(6) The heating means is a closed type heating tank that surrounds the entire plating tank, and the inside of the channel provided in the wall surface of the heating tank is heated by an external heat source. The method for producing a probe according to (5) above, wherein

【0013】本発明のプローブは、検査用プローブのよ
うに接触対象物に対して一時的に接触を行なうものだけ
ではなく、ベアチップを実装するフィルムキャリアのよ
うに永久的に接触させたままで用いる接続手段をも意味
するものである。
The probe of the present invention is not only a probe for making a temporary contact with an object to be contacted like a probe for inspection, but also a connection to be used while being in a permanent contact like a film carrier on which a bare chip is mounted. It also means means.

【0014】[0014]

【作用】電解めっきによりバンプ接点を形成する際に、
めっき槽内のめっき液を機械的に攪拌する攪拌状態と、
この攪拌を停止する非攪拌状態とを交互に繰り返しなが
らめっきを行うことで、めっき液中のイオン濃度の分
布、温度分布を、めっき槽内全体にわたってより均一に
近づけることができる。これによって、絶縁性基板に形
成される貫通孔が、該基板面上の広い範囲にわたって分
散するものであっても、各貫通孔に形成されるバンプ接
点は、互いに均一な形状で、接点高さのばらつきが少な
いものとなる。バンプ接点の高さは、基板の表面を基準
としたバンプ接点の頂上部分の高さである。
[Function] When forming bump contacts by electrolytic plating,
A stirring state in which the plating solution in the plating tank is mechanically stirred,
By performing the plating while alternately repeating the non-stirring state in which the stirring is stopped, the distribution of the ion concentration and the temperature distribution in the plating solution can be made more uniform throughout the plating bath. As a result, even if the through holes formed in the insulating substrate are distributed over a wide range on the substrate surface, the bump contacts formed in each through hole have a uniform shape and contact height. There will be less variation. The bump contact height is the height of the top portion of the bump contact relative to the surface of the substrate.

【0015】[0015]

【発明の実施の形態】ここでは、ICの電極パッドに接
触させて動作検査を行なうための検査用のプローブの構
造の場合を例として、本発明の製造方法を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Here, the manufacturing method of the present invention will be described by taking as an example the case of the structure of a probe for inspection for contacting an electrode pad of an IC to perform an operation inspection.

【0016】図1は、本発明の製造方法におけるバンプ
接点の形成工程の一例を示す図であって、電界めっきに
よってバンプ接点が形成された状態を示している。同図
に例示するように、絶縁性基板1の一方の面に導電性回
路3を設け、該絶縁性基板の他方の面のバンプ接点を形
成すべき位置に貫通孔4を設け、該貫通孔の内部底面に
導電性回路3を露出させ、この貫通孔4内に露出した導
電性回路を陰極とし、電解めっきによって該貫通孔内に
金属を析出させて充填し導通路とし、さらに金属の析出
を継続し絶縁性基板の表面から突起させてバンプ接点2
とし、プローブを形成するものである。また、7はめっ
き液、8はめっき槽、9は陽極である。この電解めっき
の工程において、めっき液を攪拌する攪拌状態と、その
攪拌を停止する非攪拌状態とを交互に繰り返しながら、
バンプ接点を成長させる。
FIG. 1 is a view showing an example of a bump contact forming step in the manufacturing method of the present invention, showing a state in which the bump contact is formed by electrolytic plating. As illustrated in the figure, a conductive circuit 3 is provided on one surface of the insulating substrate 1, and a through hole 4 is provided on the other surface of the insulating substrate at a position where a bump contact is to be formed. The conductive circuit 3 is exposed on the inner bottom surface of the, the conductive circuit exposed in the through hole 4 is used as a cathode, and the metal is deposited and filled in the through hole by electrolytic plating to form a conductive path. And bump contact 2 by protruding from the surface of the insulating substrate.
And form a probe. Further, 7 is a plating solution, 8 is a plating tank, and 9 is an anode. In this electrolytic plating step, while alternately repeating a stirring state of stirring the plating solution and a non-stirring state of stopping the stirring,
Grow bump contacts.

【0017】同図の例では、めっき液の攪拌は、ポンプ
10によりめっき液をフィルター(図示せず)を通して
循環させることで行っている。また、めっき槽8はさら
に加温槽12内に収納され、加温槽蓋13によって密閉
されている。この加温槽と加温槽蓋の壁内部には熱媒体
が外部熱源との間で循環しており、めっき槽の壁面を介
して間接的にめっき液を一定の温度に温めている。めっ
き液7の温度制御は、めっき液7に浸漬された温度セン
サー11によりヒーターを制御することで行われる。
In the example shown in FIG. 1, the plating solution is agitated by circulating the plating solution through a filter (not shown) by the pump 10. Further, the plating tank 8 is further housed in a heating tank 12 and is closed by a heating tank lid 13. A heating medium circulates between the heating tank and the wall of the heating tank lid with an external heat source, and indirectly heats the plating solution to a constant temperature via the wall surface of the plating tank. The temperature control of the plating solution 7 is performed by controlling the heater by the temperature sensor 11 immersed in the plating solution 7.

【0018】同図の例で得られるプローブは、絶縁性基
板1の一方の面側に形成された複数のバンプ接点2と、
絶縁性基板の他方の面に形成された導電性回路3とが、
絶縁性基板の厚み方向に設けられた貫通孔4内に充填さ
れた金属5を介して導通された基本構造を有するものと
なる。同図の例では、導電性回路はさらに絶縁性皮膜6
によって被覆されている。
The probe obtained in the example of FIG. 1 has a plurality of bump contacts 2 formed on one surface side of the insulating substrate 1,
The conductive circuit 3 formed on the other surface of the insulating substrate,
The insulating substrate has a basic structure in which the metal 5 filled in the through hole 4 provided in the thickness direction of the insulating substrate is electrically connected. In the example of the figure, the conductive circuit is further provided with an insulating film 6.
Covered by

【0019】絶縁性基板の材料としては、導電性回路、
バンプ接点を安定して支持し、実質的に電気絶縁特性を
有するものであれば特に限定されない。また、バンプ接
点を接触対象部に対して柔軟に追従させて接触させるた
めには、可撓性を有する材料が好ましい。このような材
料としては、ポリエステル系樹脂、エポキシ系樹脂、ウ
レタン系樹脂、ポリスチレン系樹脂、ポリエチレン系樹
脂、ポリアミド系樹脂、ポリイミド系樹脂、アクリロニ
トリル−ブタジエン−スチレン(ABS)共重合体樹
脂、ポリカーボネート系樹脂、シリコーン系樹脂、フッ
素系樹脂などの熱硬化性樹脂または熱可塑性樹脂が挙げ
られ、これらのうち、耐熱性、加熱による寸法安定性お
よび機械的強度に優れるポリイミド系樹脂が特に好適に
使用される。
The material of the insulating substrate is a conductive circuit,
There is no particular limitation as long as it stably supports the bump contacts and has substantially electrical insulating properties. Further, in order to allow the bump contact to flexibly follow and contact the contact target portion, a flexible material is preferable. Examples of such materials include polyester resins, epoxy resins, urethane resins, polystyrene resins, polyethylene resins, polyamide resins, polyimide resins, acrylonitrile-butadiene-styrene (ABS) copolymer resins, polycarbonate resins. Thermosetting resins or thermoplastic resins such as resins, silicone-based resins, and fluorine-based resins are mentioned. Among them, polyimide-based resins, which are excellent in heat resistance, dimensional stability by heating, and mechanical strength, are particularly preferably used. It

【0020】導電性回路は、配線パターンのみならず、
電極、リードなどを包含する広い概念のことである。導
電性回路の材料としては、導電性を有する材料であれば
特に限定するものではないが、公知の回路基板における
回路パターンの材料が好ましく、特に、接触対象部のフ
ァインピッチ化にともなって配線幅が減少することや、
信号を高速にする必要があることから、抵抗の小さい銅
が好ましい。導電回路の厚みは、特に限定されないが、
1μm〜200μm、好ましくは5μm〜80μmに設
定することが好ましい。
The conductive circuit is not limited to the wiring pattern,
It is a broad concept that includes electrodes and leads. The material of the conductive circuit is not particularly limited as long as it is a material having conductivity, but the material of the circuit pattern in a known circuit board is preferable, and in particular, the wiring width becomes finer with the fine pitch of the contact target portion. Decrease,
Copper, which has low resistance, is preferable because it requires a high-speed signal. The thickness of the conductive circuit is not particularly limited,
It is preferable to set the thickness to 1 μm to 200 μm, preferably 5 μm to 80 μm.

【0021】導電性回路を絶縁性基板の一方の面に形成
する方法は、絶縁性基板に無電解めっき、スパッタリン
グ等で形成する方法、銅箔等の導電性回路にワニス状態
の絶縁性基板を塗工しキュアして形成する方法、それぞ
れフィルム状の導電性回路と絶縁性基板とを接着剤を介
して張り合わせる方法などがある。
The method of forming the conductive circuit on one surface of the insulating substrate includes a method of forming the insulating substrate by electroless plating, sputtering or the like, or a conductive circuit such as a copper foil having a varnished insulating substrate. There are a method of forming by coating and curing, and a method of bonding a film-like conductive circuit and an insulating substrate with an adhesive agent.

【0022】導電性回路は、さらに絶縁性皮膜によって
被覆されてもよい。即ち、導電性回路が、絶縁性基板と
絶縁性皮膜の層とによって挟まれた態様である。絶縁性
皮膜の材料としては、電気絶縁性を有するものであれば
どのようなものであってもよい。この絶縁性皮膜をその
まま製品とする場合は、絶縁性基板と同等の材料とする
ことが好ましく、これによって絶縁性基板と絶縁性皮膜
との線膨張率が等しくなり温度変化によってカールする
などの問題がなくなる。また、この絶縁性皮膜を電解め
っきのための一次的なレジスト膜とするならば、公知の
レジスト膜材料を用いてよく、電解めっき後容易に剥離
しやすく、しかも電解めっき時の電流漏れのないものが
好ましい。特に、耐熱性の塩化ビニルレジストは電流漏
れもなく可塑剤を調整することで機械的に剥離ができる
ので好ましい。導電性回路と絶縁性皮膜の積層方法も、
導電性回路と絶縁性基板の場合と同様であるが、塩化ビ
ニル性のレジストをスクリーン印刷で施すこともでき
る。
The conductive circuit may be further covered with an insulating film. That is, the conductive circuit is sandwiched between the insulating substrate and the insulating film layer. The material of the insulating film may be any material as long as it has electrical insulation. When this insulating film is used as a product as it is, it is preferable to use the same material as the insulating substrate, which causes the linear expansion coefficient of the insulating substrate and the insulating film to be equal and curls due to temperature changes. Disappears. Further, if this insulating film is used as a primary resist film for electrolytic plating, a known resist film material may be used, and it can be easily peeled off after electrolytic plating, and there is no current leakage during electrolytic plating. Those are preferable. In particular, a heat resistant vinyl chloride resist is preferable because it can be mechanically peeled by adjusting the plasticizer without current leakage. The method of laminating the conductive circuit and the insulating film is also
Similar to the case of the conductive circuit and the insulating substrate, a vinyl chloride resist can be applied by screen printing.

【0023】絶縁性基板に対する貫通孔の形成方法とし
ては、パンチングなどの機械的穿孔方法、フォトリソグ
ラフィー加工、プラズマ加工、化学エッチング加工、レ
ーザー加工などが挙げられるが、ファインピッチ化に対
応するためには微細加工が可能なレーザー加工が好まし
く、特に紫外域に発振波長を有する紫外レーザーを用い
た穿孔加工を用いることが望ましい。貫通孔の開口形
状、即ち、貫通孔の長手軸に垂直な断面の形状は限定さ
れないが、円形が好ましい。貫通孔の孔径は、φ5μm
〜φ200μm、特にφ8μm〜φ100μm程度が好
ましい。
The method of forming the through holes in the insulating substrate includes mechanical punching method such as punching, photolithography processing, plasma processing, chemical etching processing, laser processing and the like. Is preferably laser processing capable of fine processing, and it is particularly preferable to use perforation processing using an ultraviolet laser having an oscillation wavelength in the ultraviolet region. The shape of the opening of the through hole, that is, the shape of the cross section perpendicular to the longitudinal axis of the through hole is not limited, but a circular shape is preferable. The diameter of the through hole is φ5μm
To φ200 μm, particularly preferably about φ8 μm to φ100 μm.

【0024】貫通孔内を充填する金属材料、および、バ
ンプ接点を構成する金属材料としては、電解めっき法に
よって析出可能な金属であれば特に限定されず、公知の
金属材料が使用できる。例えば金、銀、銅、白金、鉛、
錫、ニッケル、コバルト、インジウム、ロジウム、クロ
ム、タングステン、ルテニウムなどの単独金属、または
これらを成分とする各種合金、例えば、半田、ニッケル
−錫、金−コバルトなどが挙げられる。
The metal material filling the through holes and the metal material forming the bump contact are not particularly limited as long as they can be deposited by the electrolytic plating method, and known metal materials can be used. For example, gold, silver, copper, platinum, lead,
Single metals such as tin, nickel, cobalt, indium, rhodium, chromium, tungsten, and ruthenium, or various alloys containing these as components, such as solder, nickel-tin, and gold-cobalt.

【0025】電流効率は90%以上が好ましい。90%
未満だと金属の析出と伴にガスの発生が多いため、バン
プ接点が形成されにくいためである。
The current efficiency is preferably 90% or more. 90%
If it is less than the above range, a large amount of gas is generated together with the deposition of metal, so that it is difficult to form bump contacts.

【0026】めっき液として、光沢剤を含むワット浴、
スルファミン酸浴を使用する場合は、Cu不純物の濃度
は5ppm以下にするのが好ましい。5ppmを越える
とバンプ接点の頂点が凹んだ形状となり、絶縁性基板の
表面からバンプ接点の頂点までの高さが低くなり、接触
不良を生じるので好ましくない。
Watt bath containing a brightener as a plating solution,
When using a sulfamic acid bath, the concentration of Cu impurities is preferably 5 ppm or less. If it exceeds 5 ppm, the apex of the bump contact becomes recessed, the height from the surface of the insulating substrate to the apex of the bump contact becomes low, and contact failure occurs, which is not preferable.

【0027】また、個々のバンプ接点の構造としては、
銅、ニッケルなど、良導体であって安価な金属材料を用
いてコアとなるバンプ接点を形成した後、該バンプ接点
の表面には用途に応じて、高硬度の金属や材料的に安定
な金属の皮膜(表層)を設けてもよい。このような金属
としては種々の貴金属が挙げられる。例えば、半導体素
子との接合には化学的に安定し接触信頼性の高い金など
を、またバーンイン等の電気検査には硬度の高いロジウ
ムやルテニウム等を用いることが好ましい。
The structure of each bump contact is as follows.
After forming a bump contact serving as a core using a metal material that is a good conductor and is inexpensive, such as copper or nickel, the surface of the bump contact is made of a metal of high hardness or a material that is stable in terms of material, depending on the application. A film (surface layer) may be provided. Such noble metals include various noble metals. For example, it is preferable to use gold, which is chemically stable and has high contact reliability, for joining to a semiconductor element, and rhodium, ruthenium, or the like having high hardness for electrical inspection such as burn-in.

【0028】バンプ接点の高さは特に限定されるもので
はないが、1μm〜100μm程度とするのが好まし
い。ただし、この値はバンプ接点の高さの呼び寸法であ
って、同一の絶縁性基板上に形成されるバンプ接点の高
さは、どのような呼び寸法であっても、高さのばらつき
は、ゼロであることが理想である。実使用上において
は、バンプ接点の高さのばらつきは、±2μm程度以内
であればよいが、用途に応じてばらつきの公差範囲に緩
急を自由に設定すればよい。
Although the height of the bump contact is not particularly limited, it is preferably about 1 μm to 100 μm. However, this value is a nominal dimension of the height of the bump contact, and the height of the bump contact formed on the same insulating substrate has a variation in height regardless of the nominal dimension. Ideally it should be zero. In actual use, the height variation of the bump contact may be within ± 2 μm, but the tolerance range of the variation may be set freely according to the application.

【0029】攪拌状態は、攪拌手段が動作し、めっき液
が強制的に攪拌されている状態である。めっき液を攪拌
状態とするための手段は限定されないが、例えば、エア
ーの噴出による攪拌、ポンプを用いためっき液の循環に
よる攪拌、攪拌羽根の運動による攪拌、絶縁性基板自体
の運動による攪拌、その他めっき槽自体の振動による攪
拌などが挙げられる。ポンプを用いためっき液の循環に
より攪拌を行なう場合であれば、めっき槽内の全浴量の
0.1回転以上、1回転以下が好ましい。ここで1回転
とは、例えばめっき槽内の全浴量が10リットルであれ
ば、1分間に10リットル循環することをいう。従っ
て、めっき槽に入れるめっき液の量によって、1分間当
たりの液の循環量は決定される。0.1回転未満では非
攪拌状態中生じためっき液のイオン濃度、温度のバラツ
キを均一にすることが難しく、1回転を越えると非攪拌
状態にもどる時間が長くめっき液の流れに沿った変形バ
ンプ接点が生じ好ましくない。
The stirring state is a state in which the stirring means operates and the plating solution is forcibly stirred. Means for putting the plating solution in a stirring state is not limited, for example, stirring by jetting air, stirring by circulating the plating solution using a pump, stirring by movement of a stirring blade, stirring by movement of the insulating substrate itself, Other examples include stirring by vibration of the plating tank itself. When stirring is performed by circulating the plating solution using a pump, the total bath amount in the plating tank is preferably 0.1 rotations or more and 1 rotation or less. Here, one rotation means, for example, if the total amount of the bath in the plating tank is 10 liters, 10 liters are circulated per minute. Therefore, the circulation amount of the liquid per minute is determined by the amount of the plating liquid put in the plating tank. If it is less than 0.1 rotation, it is difficult to make uniform the ion concentration and temperature of the plating solution generated during the non-stirring state, and if it is more than 1 rotation, it takes a long time to return to the non-stirring state and deforms along the flow of the plating solution. Bump contact is generated, which is not preferable.

【0030】攪拌状態を継続する時間は、1回につき、
5秒以上30秒以下が好ましく、特に好ましくは10秒
以上20秒以下である。
The time for which the stirring state is continued is as follows:
It is preferably 5 seconds or more and 30 seconds or less, and particularly preferably 10 seconds or more and 20 seconds or less.

【0031】非攪拌状態とは、上記攪拌手段の動作を停
止している状態をいい、攪拌停止後においてめっき液が
攪拌状態による慣性によって流動している状態をも含
む。めっき液の慣性による流動が停止した後は、一般的
な電解めっき法における条件と同様、電界による金属イ
オンの泳動、濃度差による金属イオンの拡散、温度差に
よるめっき液の対流などが、静的に生じている。非攪拌
状態を継続する時間は、1回につき、3分以上100分
以下が好ましい。非攪拌状態の持続時間が3分未満であ
れば、バンプ接点がめっき液の流れに沿って変形するの
で好ましくない。また非攪拌状態が100分を越えると
めっき液のイオン濃度、温度がばらつき、これによって
バンプ接点高さが不均一となり好ましくない。
The non-stirred state means a state in which the operation of the stirrer is stopped, and includes a state in which the plating solution is flowing due to the inertia of the stirrer after the stirring is stopped. After the flow due to the inertia of the plating solution is stopped, the migration of metal ions due to the electric field, the diffusion of metal ions due to the concentration difference, the convection of the plating solution due to the temperature difference, etc. are Has occurred in. The time for which the non-stirred state is continued is preferably 3 minutes or more and 100 minutes or less per time. If the duration of the non-stirred state is less than 3 minutes, the bump contact is deformed along the flow of the plating solution, which is not preferable. Further, if the non-stirred state exceeds 100 minutes, the ionic concentration and temperature of the plating solution will vary, which makes the bump contact height non-uniform, which is not preferable.

【0032】電解めっきにおける電流値は、0.01m
A以上100mA以下の範囲が好ましく、該範囲以外で
は、イオン濃度が過小となるためガスが発生し、異常析
出を生じるので好ましくない。
The current value in electrolytic plating is 0.01 m
A range of A or more and 100 mA or less is preferable, and other than this range, the ion concentration becomes too small, gas is generated, and abnormal precipitation occurs, which is not preferable.

【0033】貫通孔内に露出した導電性回路の付近のめ
っき液の温度は、異なる貫通孔の間で互いに2度以内の
温度差となるようにすることが好ましい。この温度差が
2度を越えると析出量がバラツキ好ましくない。
It is preferable that the temperature of the plating solution near the conductive circuit exposed in the through hole has a temperature difference of 2 degrees or less between different through holes. If this temperature difference exceeds 2 degrees, the amount of precipitation varies and it is not preferable.

【0034】上記温度差を2度以内に保つための好まし
い例としては、めっき液を局所的に加熱するのではな
く、めっき槽の全周囲に、めっき液を加熱するための加
熱手段をさらに設け、めっき槽の壁面を介して、めっき
液を間接的に加熱し保温することが好ましい。とくに、
加熱手段の各部同士の温度差を1度以内に制御すること
によって、めっき液の温度を2度以内に制御することが
容易となる。加熱手段としては、例えば多数のヒーター
をめっき槽の壁面全体に均等に分散させる構造などが挙
げられるが、図1のように、めっき槽8をさらに加温槽
12に収納し、加温槽蓋13によって覆い、この加温槽
と加温槽蓋の壁内部に熱媒体を外部熱源14との間で循
環させる構造が好ましい加熱手段として挙げられる。熱
媒体としては、水、油、蒸気等の温度制御可能なもので
あればよい。
As a preferable example for keeping the temperature difference within 2 degrees, heating means for heating the plating solution is further provided all around the plating tank, instead of locally heating the plating solution. It is preferable to indirectly heat the plating solution by heating it through the wall surface of the plating tank. In particular,
By controlling the temperature difference between the respective parts of the heating means within 1 degree, it becomes easy to control the temperature of the plating solution within 2 degrees. Examples of the heating means include a structure in which a large number of heaters are evenly dispersed over the entire wall surface of the plating tank. As shown in FIG. 1, the plating tank 8 is further housed in a heating tank 12 and a heating tank lid is provided. A preferable heating means is a structure which is covered with 13, and a heating medium is circulated between the heating tank and the wall of the heating tank lid with the external heat source 14. The heat medium may be water, oil, steam or the like that can control the temperature.

【0035】めっき槽は熱伝導率が良く、絶縁されてい
れば限定されないが、ステンレスをテフロンでコートし
たものが好ましい。めっき液の温度制御は、めっき液中
に温度センサーを配置して行なうことが好ましい。温度
センサーはめっきの際の電流分布を乱さない限り何本で
もよいが、均等に多数設定する方が温度の微調整が可能
となり好ましい。
The plating bath is not limited as long as it has a good thermal conductivity and is insulated, but a stainless steel coated with Teflon is preferable. The temperature control of the plating solution is preferably performed by disposing a temperature sensor in the plating solution. Any number of temperature sensors may be used as long as they do not disturb the current distribution during plating, but it is preferable to set a large number of temperature sensors because fine adjustment of the temperature is possible.

【0036】電流容量は0.01mA/リットル以上1
00mA/リットル以下が好ましく、0.01mA/リ
ットル未満だと絶縁性基板からの漏電により給電がばら
つく。また100mA/リットルを越えると非攪拌状態
時のイオンの供給が不足するため、バンプ接点が異常析
出し好ましくない。
Current capacity is 0.01 mA / liter or more 1
It is preferably less than or equal to 00 mA / liter, and if less than 0.01 mA / liter, power supply varies due to electric leakage from the insulating substrate. On the other hand, if it exceeds 100 mA / liter, the supply of ions in the non-stirred state will be insufficient, resulting in abnormal deposition of bump contacts, which is not preferable.

【0037】電流密度は1A/dm2 以上10A/dm
2 以下が好ましい。1A/dm2 未満では電流容量が1
mA/リットル以下に設定された場合に析出のバラツキ
が大きくなり、一方10A/dm2 を越えると電流容量
が1mA/リットル以上に設定された場合にバラツキが
大きくなり好ましくない。
The current density is 1 A / dm 2 or more and 10 A / dm 2.
It is preferably 2 or less. Current capacity is less than 1 A / dm 2
When it is set to mA / liter or less, the variation of precipitation becomes large, while when it exceeds 10 A / dm 2 , the variation becomes large when the current capacity is set to 1 mA / liter or more, which is not preferable.

【0038】絶縁性基板をめっき槽内のめっき液中に配
置するときの姿勢は、絶縁性基板の貫通孔が開口されて
いる側の面と鉛直方向とがなす角度を±20°とするの
が好ましい。この角度が±20°の範囲以内に無い場
合、貫通孔の開口が下を向いている場合であれば、めっ
き液中に存在する気泡が貫通孔に付着しこれに沿ってバ
ンプ接点が成長し外観上欠けとなって好ましくない。ま
た貫通孔の開口が上を向いている場合であれば、めっき
液中に浮遊する有機、無機成分の異物が貫通孔を埋め、
めっきの析出ができなかったり、析出できた場合であっ
てもバンプ接点の形状が異常となって好ましくない。
The posture when the insulating substrate is placed in the plating solution in the plating bath is such that the angle between the surface of the insulating substrate on the side where the through holes are opened and the vertical direction is ± 20 °. Is preferred. If this angle is not within the range of ± 20 °, and if the opening of the through hole faces downward, the bubbles present in the plating solution adhere to the through hole and the bump contact grows along this. It is not preferable because it is defective in appearance. Also, if the opening of the through-hole faces upward, foreign matter of organic or inorganic components floating in the plating solution fills the through-hole,
The plating cannot be deposited, or even if it is deposited, the shape of the bump contact becomes abnormal, which is not preferable.

【0039】[0039]

【実施例】以下、実施例を挙げて、本発明を具体的に説
明する。 実施例1 厚さ35μmの銅箔に、ポリイミド前駆体溶液を乾燥後
の厚みが25μmとなるように塗工し、乾燥、硬化させ
銅箔と絶縁性基板であるポリイミドフィルムとの2層フ
ィルムを作製した。次に、銅箔の表面に回路パターン状
にレジスト層を形成した後、フォト工程を用いて所望の
回路パターンを有する導電性回路を形成した。
The present invention will be specifically described below with reference to examples. Example 1 A copper foil having a thickness of 35 μm was coated with a polyimide precursor solution so that the thickness after drying was 25 μm, dried, and cured to form a two-layer film of a copper foil and a polyimide film as an insulating substrate. It was made. Next, after forming a resist layer in a circuit pattern on the surface of the copper foil, a conductive circuit having a desired circuit pattern was formed using a photo process.

【0040】ポリイミドフィルムに対して、導電性回路
が形成された面の裏面から、バンプ接点を形成すべき位
置に、発振波長248nmのKrFエキシマレーザー光
をマスクを通して照射してドライエッチングを施し、貫
通孔を1800ケ形成し、各貫通孔の内部底面に導電性
回路を露出させた。各貫通孔の底部直径は50μm、開
口部直径は60μmであった。次いで貫通孔に酸素プラ
ズマを施し、ポリイミドと反対側の導電性回路に耐熱性
塩化ビニルのレジストを厚さが50μmとなるようにス
クリーン印刷し、乾燥させた。
The polyimide film is irradiated with KrF excimer laser light having an oscillation wavelength of 248 nm through a mask from the rear surface of the surface where the conductive circuit is formed to the position where the bump contact is to be formed, and dry etching is performed to penetrate the polyimide film. 1800 holes were formed and the conductive circuit was exposed on the inner bottom surface of each through hole. The bottom diameter of each through hole was 50 μm, and the opening diameter was 60 μm. Next, oxygen plasma was applied to the through-holes, and a heat-resistant vinyl chloride resist was screen-printed on the conductive circuit on the side opposite to the polyimide to a thickness of 50 μm, and dried.

【0041】UV照射後、上記2層基材の貫通孔内に露
出した銅箔を、過硫酸ナトリウム系のソフトエッチング
液を用いて40kHzの超音波をかけ処理し、電気伝導
度2μS/cm以下の水で洗浄した後、図1に示すよう
に、アノード7を陽極とし、導電性回路を陰極とし、貫
通孔内に接点材料としてニッケルを析出させて充填し、
さらに絶縁性基板の表面から突起するように成長させて
バンプ接点2を形成した。めっき条件は次に示す通りで
ある。
After UV irradiation, the copper foil exposed in the through-holes of the two-layer base material was subjected to ultrasonic waves of 40 kHz using a sodium persulfate-based soft etching solution to have an electric conductivity of 2 μS / cm or less. After washing with water, the anode 7 is used as an anode, the conductive circuit is used as a cathode, and nickel is deposited and filled as a contact material in the through hole, as shown in FIG.
Further, the bump contact 2 was formed by growing so as to project from the surface of the insulating substrate. The plating conditions are as shown below.

【0042】〔めっき条件〕めっき液の成分は、めっき
液1リットル中の成分として、硫酸ニッケル;300
g、塩化ニッケル;65g、ほう酸;45g、添加剤
(荏原ユージライト社製)♯610;15ml、♯6
3;20ml、♯62;5mlとした。また、電解めっ
きを行なう場合の操作条件としては、めっき液量;10
リットル、めっき温度;60℃±0.5℃、電流密度
4.5A/dm2 とした。電流値は時間の経過と伴に連
続的に変化させた。以下に各経過時間における電流値を
示す。(経過時間/電流値)=(0分/1.59m
A)、(25分/2.28mA)、(30分/2.85
mA)、(35分/3.46mA)、(40分/5.4
0mA)、(45分/7.76mA)。
[Plating conditions] The components of the plating solution are nickel sulfate; 300 as components in 1 liter of the plating solution.
g, nickel chloride; 65 g, boric acid; 45 g, additive (manufactured by Ebara-Udylite Co., Ltd.) # 610; 15 ml, # 6
3; 20 ml, # 62; 5 ml. The operating conditions for electrolytic plating are: plating solution amount: 10
L, plating temperature; 60 ° C. ± 0.5 ° C., current density 4.5 A / dm 2 . The current value was continuously changed with the passage of time. The current value at each elapsed time is shown below. (Elapsed time / current value) = (0 minutes / 1.59 m
A), (25 minutes / 2.28 mA), (30 minutes / 2.85)
mA), (35 min / 3.46 mA), (40 min / 5.4
0 mA), (45 min / 7.76 mA).

【0043】非攪拌状態は10分間とし、攪拌状態は1
0秒間とした。攪拌容量は0.5回転循環とした。
The non-stirred state was 10 minutes, and the stird state was 1
It was set to 0 seconds. The stirring capacity was 0.5 rotation circulation.

【0044】めっき槽の仕様は、30cm×30cm×
30cm(深さ)であった。このめっき槽全体をさらに
密閉型の加温槽に収納し、該加温槽の壁面内に設けられ
た流路内を、水を熱媒体として流路各部において60℃
±0.2℃となるように温度制御しながら循環させて、
めっき槽の壁面を介して、めっき液を均一に加熱した。
温度センサーは、めっき槽中央と8隅に設置した。陰極
−陽極間の距離は20cmとした。
The specifications of the plating tank are 30 cm × 30 cm ×
It was 30 cm (depth). The entire plating tank is further housed in a closed type heating tank, and the inside of the flow path provided in the wall surface of the heating tank uses water as a heat medium at 60 ° C. in each part of the flow path.
Circulate while controlling the temperature to be ± 0.2 ° C,
The plating solution was uniformly heated through the wall surface of the plating tank.
The temperature sensors were installed at the center of the plating tank and at the eight corners. The distance between the cathode and the anode was 20 cm.

【0045】攪拌手段は、ポンプによってめっき液を循
環させることによって行い、被めっき物の下側より吸引
し、アノードの下側より槽内に排出してめっき液を循環
させるものとした。
The agitating means is such that the plating solution is circulated by a pump, sucked from the lower side of the object to be plated and discharged from the lower side of the anode into the tank to circulate the plating solution.

【0046】形成されたバンプ接点は、光沢のマッシュ
ルーム形状でバンプ接点の頂点はバンプ接点径の中心に
きており異常は見られなかった。またポリイミド表面か
らのバンプ接点高さは平均20μmとなり、高さのばら
つきの幅は3μm(最小高さ18μm、最大高さ21μ
m)となった。
The formed bump contact had a shiny mushroom shape, and the apex of the bump contact was located at the center of the bump contact diameter, and no abnormality was observed. The bump contact height from the polyimide surface is 20 μm on average, and the width of height variation is 3 μm (minimum height 18 μm, maximum height 21 μm.
m).

【0047】比較例1 非攪拌状態を2分としたこと以外は、上記実施例と全く
同様の条件でバンプ接点を形成した。その結果、めっき
液の流れ方向に沿ってバンプ接点は変形し、バンプ接点
高さは平均18μm、高さのばらつきの幅は7μm(最
小高さ13μm、最大高さ20μm)となり、実施例1
で形成したバンプ接点と比較して平均高さが低くなり、
高さのばらつきの幅は2倍以上となった。
Comparative Example 1 A bump contact was formed under the same conditions as in the above-mentioned example except that the non-stirred state was 2 minutes. As a result, the bump contacts were deformed along the flow direction of the plating solution, the bump contact height was 18 μm on average, and the height variation width was 7 μm (minimum height 13 μm, maximum height 20 μm).
The average height is lower than the bump contact formed in
The width of height variation was more than doubled.

【0048】比較例2 絶縁性基板における陰極(貫通孔内に露出した導電性回
路)付近のめっき液の温度を58℃〜62℃として、温
度差が最大で4度となるようにしたこと以外は上記実施
例と同様の条件でバンプ接点を形成した。その結果、陰
極表面の温度を58℃付近とした場合ではバンプ接点の
平均高さは18μmであった。一方、62℃付近とした
場合ではバンプ接点の平均高さは22μmであった。ま
た全体としては、バンプ接点の平均高さは20μmとな
り、高さのばらつきの幅は7μm(最小高さ16μm、
最大高さ23μm)となり、実施例1で形成したバンプ
接点に比較して平均高さは同等となったが、比較例1と
同様に高さのバラツキの範囲は倍以上となった。
Comparative Example 2 Except that the temperature of the plating solution in the vicinity of the cathode (the conductive circuit exposed in the through hole) on the insulating substrate was 58 ° C. to 62 ° C., and the temperature difference was 4 ° at maximum. Formed bump contacts under the same conditions as in the above example. As a result, when the temperature of the cathode surface was set to about 58 ° C., the average height of the bump contacts was 18 μm. On the other hand, when the temperature was around 62 ° C., the average height of the bump contacts was 22 μm. As a whole, the average height of the bump contacts is 20 μm, and the width of height variation is 7 μm (minimum height 16 μm,
The maximum height was 23 μm, and the average height was the same as that of the bump contact formed in Example 1, but the range of height variation was more than double as in Comparative Example 1.

【0049】[0049]

【発明の効果】電解めっき法によってバンプ接点を成長
させる際に、攪拌状態と非攪拌状態とを交互に繰り返し
ながら接点材料を析出させることにより、バンプ接点の
高さのバラツキを抑制することができる。また同時にバ
ンプ接点の形状に異常が生じることも抑制できる。
When the bump contact is grown by the electrolytic plating method, the contact material is deposited while alternately repeating the stirring state and the non-stirring state, whereby the variation in the height of the bump contact can be suppressed. . At the same time, it is possible to prevent the shape of the bump contact from being abnormal.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のプローブの製造方法を模式的に示す図
である。
FIG. 1 is a diagram schematically showing a method for producing a probe of the present invention.

【符号の説明】[Explanation of symbols]

1 絶縁性基板 2 バンプ接点 3 導電性回路 4 貫通孔 5 金属(接点材料) 6 絶縁性皮膜 1 Insulating Substrate 2 Bump Contact 3 Conductive Circuit 4 Through Hole 5 Metal (Contact Material) 6 Insulating Film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 矢田 寛 大阪府茨木市下穂積1丁目1番2号 日東 電工株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Hiroshi Yada 1-2-1, Shimohozumi, Ibaraki City, Osaka Prefecture Nitto Denko Corporation

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 絶縁性基板の一方の面に導電性回路を設
け、該絶縁性基板の他方の面のバンプ接点を形成すべき
位置に貫通孔を設け、該貫通孔の内部底面に導電性回路
を露出させ、該貫通孔内に露出した導電性回路を陰極と
し、電解めっきによって、該貫通孔内に金属を充填しさ
らに突起させてバンプ接点を形成するに際し、めっき槽
内のめっき液を攪拌する攪拌状態と、その攪拌を停止す
る非攪拌状態とを交互に繰り返しながら電解めっきを行
いバンプ接点を成長させることを特徴とするプローブの
製造方法。
1. A conductive circuit is provided on one surface of an insulating substrate, a through hole is provided on the other surface of the insulating substrate at a position where a bump contact is to be formed, and a conductive circuit is formed on the inner bottom surface of the through hole. When the circuit is exposed and the conductive circuit exposed in the through hole is used as a cathode, the through hole is filled with a metal by electroplating and further projected to form a bump contact. A method of manufacturing a probe, characterized in that electrolytic plating is performed while alternately repeating a stirring state of stirring and a non-stirring state of stopping the stirring to grow bump contacts.
【請求項2】 攪拌状態と非攪拌状態とを交互に繰り返
すときの1サイクルの時間的なうちわけが、攪拌状態を
5秒以上30秒以下とし、非攪拌状態を3分以上100
分以下とするものである請求項1記載のプローブの製造
方法。
2. The time sequence of one cycle when the stirring state and the non-stirring state are alternately repeated is that the stirring state is 5 seconds to 30 seconds and the non-stirring state is 3 minutes to 100 minutes.
The method for producing a probe according to claim 1, wherein the amount is not more than a minute.
【請求項3】 めっき槽内のめっき液の攪拌が、エアー
の噴出による攪拌、ポンプを用いためっき液の循環によ
る攪拌、攪拌羽根の運動による攪拌、絶縁性基板自体の
運動による攪拌のいずれかである請求項1記載のプロー
ブの製造方法。
3. The stirring of the plating solution in the plating tank is any one of stirring by jetting air, stirring by circulating the plating solution using a pump, stirring by movement of a stirring blade, and stirring by movement of the insulating substrate itself. The method for producing a probe according to claim 1, wherein
【請求項4】 貫通孔内に露出した導電性回路の付近の
めっき液の温度が、異なる貫通孔の間で互いに2度以内
の温度差となるように、めっき液の温度を制御するもの
である請求項1記載のプローブの製造方法。
4. The temperature of the plating solution is controlled so that the temperature of the plating solution near the conductive circuit exposed in the through hole has a temperature difference of 2 degrees or less between different through holes. A method for manufacturing a probe according to claim 1.
【請求項5】 めっき槽の全周囲にめっき液を加熱する
ための加熱手段をさらに設け、該加熱手段の各部同士の
温度差を1度以内に制御することによって、上記めっき
液の温度が制御されるものである請求項4記載のプロー
ブの製造方法。
5. The temperature of the plating solution is controlled by further providing heating means for heating the plating solution all around the plating tank, and controlling the temperature difference between respective parts of the heating means to within 1 degree. The method for producing a probe according to claim 4, wherein the probe is produced.
【請求項6】 加熱手段が、めっき槽全体を取り囲む密
閉型の加温槽であって、該加温槽の壁面内に設けられた
流路内を、外部熱源にて加熱された熱媒体が循環するも
のである請求項5記載のプローブの製造方法。
6. The heating means is a hermetically sealed heating tank that surrounds the entire plating tank, wherein a heating medium heated by an external heat source is provided in a flow passage provided in the wall surface of the heating tank. The method for producing a probe according to claim 5, wherein the probe is circulated.
JP8049279A 1996-03-06 1996-03-06 Probe manufacturing method Expired - Lifetime JP3050520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8049279A JP3050520B2 (en) 1996-03-06 1996-03-06 Probe manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8049279A JP3050520B2 (en) 1996-03-06 1996-03-06 Probe manufacturing method

Publications (2)

Publication Number Publication Date
JPH09243662A true JPH09243662A (en) 1997-09-19
JP3050520B2 JP3050520B2 (en) 2000-06-12

Family

ID=12826435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8049279A Expired - Lifetime JP3050520B2 (en) 1996-03-06 1996-03-06 Probe manufacturing method

Country Status (1)

Country Link
JP (1) JP3050520B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7332198B2 (en) 2001-11-02 2008-02-19 Ebara Corporation Plating apparatus and plating method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7288950B2 (en) 2002-08-07 2007-10-30 Hoya Corporation Contacting component, method of producing the same, and test tool having the contacting component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7332198B2 (en) 2001-11-02 2008-02-19 Ebara Corporation Plating apparatus and plating method

Also Published As

Publication number Publication date
JP3050520B2 (en) 2000-06-12

Similar Documents

Publication Publication Date Title
EP0433996B1 (en) Process for producing an anisotropic conductive film
EP0991795A1 (en) Electro-chemical deposition system and method of electroplating on substrates
US20060046481A1 (en) Manufacturing methods and electroless plating apparatus for manufacturing wiring circuit boards
JPH07336017A (en) Manufacture of thin-film circuit by periodic reverse electrolyzing method and thin-film circuit board, thin-film multilayer circuit board and electronic circuit device using the same
US7160428B2 (en) Plating machine and process for producing film carrier tapes for mounting electronic parts
US4871435A (en) Electroplating apparatus
US5188702A (en) Process for producing an anisotropic conductive film
JP3050520B2 (en) Probe manufacturing method
JP2003321796A (en) Plating apparatus and method of manufacturing wiring board using the same
US8312628B2 (en) Liquid discharge head and method for manufacturing the same
TWI690620B (en) Electroless plating device and manufacturing method of metallized substrate
JP3050519B2 (en) PROBE MANUFACTURING METHOD AND CIRCUIT BOARD USED FOR THE SAME
US20060163058A1 (en) Apparatus for plating a semiconductor wafer and plating solution bath used therein
JP2004359994A (en) Electroplating equipment and method
US6017438A (en) Method for producing circuit substrate having bump contact point and jet stream type plating apparatus used therefor
JP2984064B2 (en) Method for producing anisotropic conductive film
JPH09260430A (en) Manufacture of probe and circuit board used therefor
JPH05152019A (en) Anisotropic conduction connector
US4915796A (en) Electroplating process
JP3677911B2 (en) Method and apparatus for plating semiconductor wafer
JP3899460B2 (en) Circuit board electroplating method
JP2007119820A (en) Method of manufacturing wiring board, and plating apparatus
KR100359174B1 (en) Film carrier and semiconductor device using this film carrier
JPH10154871A (en) Production of circuit board having bump contact and jet stream plating system employing the same
JP3815431B2 (en) Tape carrier for semiconductor device and manufacturing method thereof