JPH09243603A - Method and device for measuring concentration of impurities in gas - Google Patents

Method and device for measuring concentration of impurities in gas

Info

Publication number
JPH09243603A
JPH09243603A JP8199996A JP8199996A JPH09243603A JP H09243603 A JPH09243603 A JP H09243603A JP 8199996 A JP8199996 A JP 8199996A JP 8199996 A JP8199996 A JP 8199996A JP H09243603 A JPH09243603 A JP H09243603A
Authority
JP
Japan
Prior art keywords
discharge
gas
measuring
electrodes
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8199996A
Other languages
Japanese (ja)
Inventor
Kazuaki Mizogami
員章 溝上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON A P I KK
Original Assignee
NIPPON A P I KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON A P I KK filed Critical NIPPON A P I KK
Priority to JP8199996A priority Critical patent/JPH09243603A/en
Publication of JPH09243603A publication Critical patent/JPH09243603A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure the concn. of impurities in gas to be measured at a high speed with high accuracy without being affected by a discharge current value and a discharge distance. SOLUTION: High voltage is applied by a high voltage power supply 21 across two electrodes (a wire electrode and the inner peripheral wall surface of a passage 7) in a discharge chamber 2 into which gas to be measured is introduced and the current value of the corona discharge between two electrodes is measured by a current measuring means 20 and the high voltage value of the corona discharge is measured by a voltage measuring means 22 and the concn. of impurities in the gas is measured on the basis of the value obtained by dividing the measured discharge voltage value by the discharge current value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、気体中の不純物濃
度の測定方法およびその測定装置に関し、特に高純度ガ
ス中の微量不純物の測定に実施して有効な技術に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the concentration of impurities in a gas and a measuring apparatus therefor, and more particularly to a technique effective for measuring a trace amount of impurities in a high-purity gas.

【0002】[0002]

【従来の技術】最近、半導体製造工程に用いられる高純
度ガスの測定においては、コロナ放電の放電電流が一定
となるようにした高圧定電流電源により印加された測定
ガスが通流する放電室内の放電針と対向電極間の電位差
の変化により、気体中の不純物濃度を測定する高感度ガ
ス測定装置が知られている(例えば、特開平6−281
624号公報参照)。
2. Description of the Related Art Recently, in the measurement of high-purity gas used in the semiconductor manufacturing process, the inside of the discharge chamber in which the measurement gas applied by a high-voltage constant current power source that keeps the discharge current of corona discharge constant flows. A high-sensitivity gas measuring device for measuring the impurity concentration in a gas by changing the potential difference between a discharge needle and a counter electrode is known (for example, JP-A-6-281).
624).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
測定方法および測定装置においては、放電の電圧値は、
不純物の濃度が一定であっても、放電針の針先の曲率半
径に依存し、長時間の連続放電により、針先の曲率半径
が変化し、放電電圧が変化するという問題点があり、ま
た、高電圧を使用するため、感電の危険性があるという
問題点があった。
However, in the conventional measuring method and measuring apparatus, the discharge voltage value is
Even if the concentration of impurities is constant, there is a problem that the radius of curvature of the tip changes depending on the radius of curvature of the tip of the discharge needle and the long-term continuous discharge changes the discharge voltage. However, since a high voltage is used, there is a risk of electric shock.

【0004】本発明は、このような問題点に鑑みなされ
たもので、その目的とするところは、長時間の連続放電
によるも放電電圧が変化しないで正確に測定でき、ま
た、高電圧を使用しないで、安全に測定することができ
る気体中の不純物濃度の測定方法とその測定装置を提供
することにある。
The present invention has been made in view of the above problems, and an object of the present invention is to enable accurate measurement without changing the discharge voltage even after continuous discharge for a long time, and to use a high voltage. It is another object of the present invention to provide a method for measuring the concentration of impurities in a gas that can be measured safely and a measuring device therefor.

【0005】[0005]

【課題を解決するための手段】この目的を達成するた
め、本発明は、高圧電源により印加された測定ガスが通
流する放電室内の二つの電極間の放電電圧値を、放電電
流値で除算した値で気体中の不純物濃度の測定を行うも
のであり、また前記放電電圧値を、前記放電電流値に測
定装置固有の一定の電流値を加えた放電電流値で除算し
た値で気体中の不純物濃度の測定を行うものであり、ま
た前記放電電圧値を、前記放電電流値と前記二つの電極
間の距離の積算値で除算した値で気体中の不純物濃度の
測定を行うものであり、また前記放電電圧値を、前記放
電電流値に測定装置固有の一定の電流値を加えた放電電
流値と前記電極間の距離に測定装置固有の一定の距離を
加えた距離との積算値で除算した値で気体中の不純物濃
度の測定を行うものである。
To achieve this object, the present invention divides a discharge voltage value between two electrodes in a discharge chamber through which a measurement gas applied by a high voltage power source flows, by a discharge current value. It is intended to measure the impurity concentration in the gas by the value, and the discharge voltage value is divided by the discharge current value obtained by adding a constant current value specific to the measuring device to the discharge current value. For measuring the impurity concentration, and for measuring the impurity concentration in the gas, the discharge voltage value is a value obtained by dividing the discharge current value and the integrated value of the distance between the two electrodes. Further, the discharge voltage value is divided by an integrated value of a discharge current value obtained by adding a constant current value specific to the measuring device to the discharge current value and a distance obtained by adding a constant distance specific to the measuring device to the distance between the electrodes. To measure the impurity concentration in the gas with the specified value A.

【0006】そして、前記測定方法の実施に使用される
測定装置においては、流入口からの測定ガスが通流する
放電室と、該放電室内に配置された二つの電極、好まし
くは放電電極としてのワイヤー電極と筒状電極、または
絶縁基板上に微細化配線技術により形成された二つの電
極と、該二つの電極間に高電圧を印加する高圧電源と、
前記二つの電極間の放電電圧値と放電電流値を測定する
それぞれの測定手段とを備えた構成を特徴とするもので
ある。
In the measuring apparatus used for carrying out the above-mentioned measuring method, there are provided a discharge chamber through which the measuring gas from the inlet flows, and two electrodes arranged in the discharge chamber, preferably a discharge electrode. A wire electrode and a tubular electrode, or two electrodes formed on an insulating substrate by a fine wiring technique, and a high-voltage power supply for applying a high voltage between the two electrodes,
It is characterized in that it comprises a measuring means for measuring a discharge voltage value and a discharge current value between the two electrodes.

【0007】[0007]

【発明の実施の形態】発明の実施の形態について図面を
参照して説明すると、本発明者等は、気体中の不純物濃
度の測定について種々開発研究を試みた結果、二つの電
極間の放電電圧は図4に示されているように、放電電流
に影響されて変動するが、ある領域においては、この関
数が一次関数であることを見出した。したがって、この
関数と電流Iとの交点をI0とし、放電電圧Eを放電電
流(I+I0)で除算した値は一定であり、また、放電
電圧は図5に示されているように、二つの電極間の距離
に影響されて変動するが、ある領域においては、この関
数が一次関数であることを見出した。したがって、この
関数と距離Lとの交点をL0とし、放電電圧Eを電極間
の距離(L+L0)で除算した値は一定であることを見
出した。更に説明すれば、図4、図5において、電流
I、電圧E、電極間距離Lとの関係式は、本発明に係る
測定装置固有の電流値I0、電極間距離L0だけ平行移動
させれば、原点0を通る直線となり、この式を用いると
測定値IとE、測定値LとEから、1点の測定で直線の
傾きがわかり、短時間で気体中の不純物濃度の測定が可
能となる。若し、I0、L0が事前にわかっていなけれ
ば、2点以上の測定によりI0、L0を測定毎に算出しな
ければ、傾きがわからない。本発明は、このような知見
に基づくものであって、本発明の方法によれば、二つの
電極間の放電電圧値を、放電電流値で除算した値で、ま
たは放電電圧値を、放電電流値に測定装置固有の一定の
電流値を加えた放電電流値で除算した値で、または放電
電圧値を、放電電流値と電極間距離の積算値で除算した
値で、または放電電圧値を、放電電流値に一定の電流値
を加えた電流値と電極間距離に一定の距離を加えた距離
との積算値で除算した値で気体中の不純物濃度がそれぞ
れ測定される。そして、この方法は、流入口からの測定
ガスが通流する放電室と、該放電室内に配置された二つ
の電極、好ましくは、一方の電極(放電電極)がワイヤ
ー電極であり、または絶縁基板上に微細化配線技術によ
り形成された二つの電極と、該二つの電極間に高電圧を
印加する高圧電源と、前記二つの電極間の放電電圧値と
放電電流値を測定するそれぞれの測定手段とを備えた測
定装置によって実施される。
BEST MODE FOR CARRYING OUT THE INVENTION The embodiments of the present invention will be described with reference to the drawings. The inventors of the present invention have made various development studies on the measurement of the impurity concentration in gas, and as a result, have found that the discharge voltage between two electrodes is As shown in FIG. 4, it varies depending on the discharge current, but in a certain region, it was found that this function is a linear function. Therefore, the intersection of this function and the current I is I 0, and the value obtained by dividing the discharge voltage E by the discharge current (I + I 0 ) is constant, and the discharge voltage is two as shown in FIG. It was found that this function is a linear function in a certain region, although it varies depending on the distance between two electrodes. Therefore, it was found that the value obtained by dividing the discharge voltage E by the distance (L + L 0 ) between the electrodes, where L 0 is the intersection of this function and the distance L, is constant. To explain further, in FIGS. 4 and 5, the relational expressions of the current I, the voltage E, and the interelectrode distance L are translated by the current value I 0 and interelectrode distance L 0 peculiar to the measuring apparatus according to the present invention. Then, a straight line passing through the origin 0 is obtained. Using this formula, the slope of the straight line can be known from the measured values I and E and the measured values L and E at one point, and the impurity concentration in the gas can be measured in a short time. It will be possible. If I 0 and L 0 are not known in advance, the slope cannot be known unless I 0 and L 0 are calculated for each measurement by measuring two or more points. The present invention is based on such knowledge, and according to the method of the present invention, a discharge voltage value between two electrodes is divided by a discharge current value, or a discharge voltage value is calculated as a discharge current value. A value obtained by dividing the discharge current value by adding a constant current value specific to the measuring device to the value, or the discharge voltage value, by dividing the discharge current value by the integrated value of the distance between the electrodes, or the discharge voltage value, The impurity concentration in the gas is measured by a value obtained by dividing by an integrated value of a current value obtained by adding a constant current value to the discharge current value and a distance obtained by adding a constant distance to the inter-electrode distance. Then, this method is a discharge chamber through which a measurement gas flows from an inlet, and two electrodes arranged in the discharge chamber, preferably one electrode (discharge electrode) is a wire electrode, or an insulating substrate. Two electrodes formed by a miniaturized wiring technique, a high-voltage power supply for applying a high voltage between the two electrodes, and respective measuring means for measuring a discharge voltage value and a discharge current value between the two electrodes. It is carried out by a measuring device equipped with.

【0008】図1に、本発明に係る測定装置の一例が示
されている。同図において、ステンレススチール等の金
属製ブロック1は、その中央を貫通して略H形の放電室
2を有している。該放電室2はその一方に測定ガス(ア
ルゴン、シボラン、水素、ヘリウム、窒素、一酸化窒
素、一酸化二窒素、ネオン、酸素、三弗化燐、ホフフィ
ン、モノシラン、ジンラン等)の流入口3と連なるガス
流入室部4を有するとともに、その他方にはガス流出口
5と連なるガス流出室部6を有し、これら室部4、6は
狭い筒状の通路7で連通され、該通路7の内周壁面8が
筒状電極となっている。ガス流入室部4側には、金属パ
ッキン9を介してフランジ10が密閉的に固着されると
ともに、ガス流出口6側にも金属パッキン11を介して
フランジ12が密閉的に固着されて、ブロック1とフラ
ンジ10、12は接地され、二つのフランジ10、12
とで放電室2が形成されている。放電室2における通路
7の中央には、放電電極13としての一本のワイヤー電
極が設けられている。該放電電極13(ワイヤー電極)
は、その一端14がフランジ10に絶縁端子16を介し
て取着された端子17に溶着されるとともに、他端15
はフランジ12に絶縁端子18を介して取着された端子
19に溶着されて水平に張設されている。
FIG. 1 shows an example of the measuring device according to the present invention. In the figure, a metal block 1 made of stainless steel or the like has a substantially H-shaped discharge chamber 2 penetrating its center. The discharge chamber 2 has an inlet 3 for measuring gas (argon, civolane, hydrogen, helium, nitrogen, nitric oxide, dinitrogen monoxide, neon, oxygen, phosphorus trifluoride, hoffphine, monosilane, jinran, etc.). Has a gas inflow chamber 4 communicating with the gas outflow chamber 6, and a gas outflow chamber 6 communicating with the gas outlet 5 on the other side. The chambers 4 and 6 are communicated with each other through a narrow tubular passage 7. The inner peripheral wall surface 8 is a cylindrical electrode. A flange 10 is hermetically fixed to the gas inlet chamber 4 side via a metal packing 9, and a flange 12 is hermetically fixed to the gas outlet 6 side via a metal packing 11 to block the block. 1 and the flanges 10 and 12 are grounded, and the two flanges 10 and 12 are
And the discharge chamber 2 is formed. At the center of the passage 7 in the discharge chamber 2, a single wire electrode as the discharge electrode 13 is provided. The discharge electrode 13 (wire electrode)
Has one end 14 welded to a terminal 17 attached to the flange 10 via an insulating terminal 16 and the other end 15
Is welded to a terminal 19 attached to the flange 12 via an insulating terminal 18 and is horizontally stretched.

【0009】放電電極13(ワイヤー電極)を溶着して
いる端子19は、放電の電流値を測定する電流測定手段
(電流モニター)20を介して高圧電源21と直列接続
されるとともに、放電の電圧値を測定する電圧測定手段
(電圧モニター)22と並列接続されている。そして、
高圧電源21により放電電極13(ワイヤー電極)と電
極8間に印加された放電の電圧値Eと電流値Iは、電圧
測定手段22と電流測定手段20により測定され、その
値はコンピュータ(図示しない)に出力されるようにな
っている。
The terminal 19 to which the discharge electrode 13 (wire electrode) is welded is connected in series with a high voltage power supply 21 via a current measuring means (current monitor) 20 for measuring the discharge current value, and the discharge voltage is It is connected in parallel with a voltage measuring means (voltage monitor) 22 for measuring a value. And
The voltage value E and the current value I of the discharge applied between the discharge electrode 13 (wire electrode) and the electrode 8 by the high-voltage power supply 21 are measured by the voltage measuring means 22 and the current measuring means 20, and the values are calculated by a computer (not shown). ) Is output to.

【0010】図2および図3には、本発明に係る測定装
置の他例が示されている。図2において、図1との対応
部分には同一符号が附されている。本例は、二つの電極
が絶縁基板上に微細化配線技術によって形成されたもの
である。更に説明すると、ステンレススチール等の金属
製ブロック30は、測定ガスの放電室31を形成する凹
陥部32と、該凹陥部32に連通のガス流入口33とガ
ス流出口34を有している。凹陥部32の開口側には、
金属製フランジ35が金属パッキン36を介して密閉的
に固着されて、放電室31が形成されるとともに、ブロ
ック30とフランジ35は接地されている。放電室31
内には、二つの電極38、39と絶縁基板40を含む電
極体37が配置されている。二つの電極38、39は、
絶縁基板40上に微細化配線技術によって作られたもの
で、二つの電極のうち一方の放電電極38は、基板部4
1と、該基板部41の一側面中央に一体に設けられた取
着端子部42と、基板部41の他側面に一体に突設せら
れた複数の電極針部43を有する略剣山状電極であり、
他方の電極39は、基板部44と、該基板部44に各電
極針部43と対応させて穿設された複数の貫通孔45
と、基板部44上に一体に突設せられた水平舌片部47
と垂直部48からなる略逆L形状の複数の電極部46を
有し、放電電極38はその各電極針部43の先端部が絶
縁基板40の各貫通孔を介して電極39の各貫通孔45
よりやや外方に突出せられ、かつ電極部46の水平舌片
部47と対向せられた状態で挿着され、放電電極38、
絶縁基板40および電極39が一体化されて構成されて
いる。そして、電極体37は、その放電電極38におけ
る取着端子部42がフランジ35に絶縁端子49を介し
て取着されることにより、放電室31内に配置されると
ともに、電極39とフランジ35はリード線50を介し
て接続されている。
2 and 3 show another example of the measuring device according to the present invention. 2, parts corresponding to those in FIG. 1 are designated by the same reference numerals. In this example, two electrodes are formed on an insulating substrate by a fine wiring technique. More specifically, the metal block 30 made of stainless steel or the like has a recess 32 that forms the discharge chamber 31 for the measurement gas, and a gas inlet 33 and a gas outlet 34 that communicate with the recess 32. On the opening side of the recess 32,
The metal flange 35 is hermetically fixed via the metal packing 36 to form the discharge chamber 31, and the block 30 and the flange 35 are grounded. Discharge chamber 31
An electrode body 37 including two electrodes 38 and 39 and an insulating substrate 40 is arranged therein. The two electrodes 38, 39 are
The discharge electrode 38, which is one of the two electrodes, is formed on the insulating substrate 40 by a fine wiring technique.
1, an attachment terminal portion 42 integrally provided on the center of one side surface of the substrate portion 41, and a plurality of electrode needle portions 43 integrally projecting on the other side surface of the substrate portion 41. And
The other electrode 39 includes a substrate portion 44 and a plurality of through holes 45 formed in the substrate portion 44 so as to correspond to the electrode needle portions 43.
And a horizontal tongue piece 47 that is integrally projected on the base plate portion 44.
The discharge electrode 38 has a plurality of substantially inverted L-shaped electrode portions 46 each including a vertical portion 48, and the tip of each electrode needle portion 43 of the discharge electrode 38 passes through each through hole of the insulating substrate 40 and each through hole of the electrode 39. 45
The discharge electrode 38 is inserted in a state of being projected slightly outward and facing the horizontal tongue portion 47 of the electrode portion 46.
The insulating substrate 40 and the electrode 39 are integrally formed. The electrode body 37 is disposed in the discharge chamber 31 by attaching the attachment terminal portion 42 of the discharge electrode 38 to the flange 35 via the insulating terminal 49, and the electrode 39 and the flange 35 are separated from each other. It is connected via a lead wire 50.

【0011】なお、何れの実施例においても、特に図示
しないが、ブロック1、30には放電室2、31内の温
度が100℃以上、好ましくは120℃位に保持される
ようその温度を制御する温調手段が付設されている。
In any of the embodiments, although not particularly shown, the temperatures of the blocks 1 and 30 are controlled so that the temperatures in the discharge chambers 2 and 31 are maintained at 100 ° C. or higher, preferably about 120 ° C. A temperature control means is attached.

【0012】上記の構成に係る測定装置において、ガス
流入口3、33より測定ガスが放電室2、31内に導入
されるとともに、放電室2、31内が所定温度に調節さ
れた状態で放電電極13、38に高圧電源21により約
1KV〜3KV程度の高電圧が印加されると、放電電極
13と筒状電極である通路内周壁面8の間、放電電極3
8の電極針部43と電極39の間でそれぞれコロナ放電
が起き、該コロナ放電の電流値Iは電流測定手段20に
より測定され、また、電圧値Eは電圧測定手段22によ
り測定され、これら電流値〔μA〕I、電圧値〔KV〕
E、放電電極13(ワイヤー電極)と通路内周壁面8の
距離〔mm〕L、放電電極38の電極針部43の先端と電
極39における電極部46の水平舌片部47との間の距
離〔mm〕Lは、E/IまたはE/I+I0〔但し、I0
本測定装置固有の一定の電流値〕またはE/I・Lまた
はE/(I+I0)・(L+L0)〔但し、L0は本測定
装置固有の一定の距離〕の式をもってコンピュータ処理
され、その得られた数値によって気体中の不純物濃度
は、放電の電流値および放電の距離に影響されることな
く測定される。
In the measuring apparatus having the above-mentioned structure, the measuring gas is introduced into the discharge chambers 2 and 31 through the gas inlets 3 and 33, and the discharge chambers 2 and 31 are discharged while being regulated to a predetermined temperature. When a high voltage of about 1 KV to 3 KV is applied to the electrodes 13 and 38 by the high voltage power source 21, the discharge electrode 3 is interposed between the discharge electrode 13 and the inner wall surface 8 of the passage, which is a cylindrical electrode.
Corona discharge occurs between the electrode needle portion 43 and the electrode 39 of No. 8, the current value I of the corona discharge is measured by the current measuring means 20, and the voltage value E is measured by the voltage measuring means 22. Value [μA] I, voltage value [KV]
E, distance [mm] L between the discharge electrode 13 (wire electrode) and the inner wall surface 8 of the passage, distance between the tip of the electrode needle portion 43 of the discharge electrode 38 and the horizontal tongue portion 47 of the electrode portion 46 of the electrode 39 [Mm] L is E / I or E / I + I 0 [where I 0 is a constant current value peculiar to this measuring device] or E / I · L or E / (I + I 0 ) · (L + L 0 ) [however , L 0 is a constant distance peculiar to the present measurement device], and the impurity concentration in the gas is measured by the obtained numerical value without being affected by the discharge current value and the discharge distance. .

【0013】[0013]

【発明の効果】しかして、本発明によれば、ppm以下
の極低濃度領域において、測定ガス中の不純物、特に水
分濃度を放電の電流値および放電の距離に影響されるこ
となく、高速にして、かつ高精度をもって測定すること
ができる。
As described above, according to the present invention, the concentration of impurities, particularly moisture, in the measurement gas can be increased at a high speed without being affected by the discharge current value and the discharge distance in the extremely low concentration range of ppm or less. And can be measured with high accuracy.

【0014】また、二つの電極がワイヤー電極と筒状電
極の場合にあっては、長時間の連続放電によるも放電電
圧が変化しないで放電状態が安定化し、分析精度を向上
させることができる。
In the case where the two electrodes are the wire electrode and the cylindrical electrode, the discharge voltage is not changed even after continuous discharge for a long time, the discharge state is stabilized, and the analysis accuracy can be improved.

【0015】また、二つの電極が絶縁基板上に微細化配
線技術により形成された場合にあっては、二つの電極の
サイズが小さくなって放電電圧も低下するため、従来の
ような高電圧を使用する必要がない。したがって、感電
の危険性が低下し、更には電源が電池、バッテリー等で
も可能となるため、装置全体の小型化ができ、携帯性に
優れるものである。
Further, when the two electrodes are formed on the insulating substrate by the fine wiring technique, the size of the two electrodes is reduced and the discharge voltage is also reduced. No need to use. Therefore, the risk of electric shock is reduced, and since the power source can be a battery, a battery, etc., the overall size of the device can be reduced and the portability is excellent.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る測定装置の一例での断面的説明図
である。
FIG. 1 is a cross-sectional explanatory view of an example of a measuring apparatus according to the present invention.

【図2】本発明に係る測定装置の他例での断面的説明図
である。
FIG. 2 is a cross-sectional explanatory view of another example of the measuring apparatus according to the present invention.

【図3】図2における電極体の部分的拡大斜視図であ
る。
3 is a partially enlarged perspective view of an electrode body in FIG.

【図4】放電電圧と放電電流との関係図である。FIG. 4 is a relationship diagram between a discharge voltage and a discharge current.

【図5】放電電圧と放電距離との関係図である。FIG. 5 is a relationship diagram between a discharge voltage and a discharge distance.

【符号の説明】[Explanation of symbols]

1、30 ブロック 2、31 放電室 3、33 ガス流入口 5、34 ガス流出口 7 通路 8 通路内周壁面 10、12、35 フランジ 13 放電電極(ワイヤー電極) 20 電流測定手段 21 高圧電源 22 電圧測定手段 38、39 電極 40 絶縁基板 L 放電距離 1, 30 Block 2, 31 Discharge Chamber 3, 33 Gas Inlet 5, 34 Gas Outlet 7 Passage 8 Passage Inner Walls 10, 12, 35 Flange 13 Discharge Electrode (Wire Electrode) 20 Current Measuring Means 21 High Voltage Power Supply 22 Voltage Measuring means 38, 39 Electrode 40 Insulating substrate L Discharge distance

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 高圧電源により印加された測定ガスが通
流する放電室内の二つの電極間の放電電圧値を、放電電
流値で除算した値で気体中の不純物濃度を測定すること
を特徴とする気体中の不純物濃度の測定方法。
1. The impurity concentration in the gas is measured by a value obtained by dividing a discharge voltage value between two electrodes in a discharge chamber through which a measurement gas applied by a high-voltage power supply flows, by a discharge current value. Measuring method of impurity concentration in gas.
【請求項2】 前記放電電圧値を、前記放電電流値に測
定装置固有の一定の電流値を加えた放電電流値で除算し
た値で気体中の不純物濃度を測定することを特徴とする
気体中の不純物濃度の測定方法。
2. An impurity concentration in a gas is measured by a value obtained by dividing the discharge voltage value by a discharge current value obtained by adding a constant current value specific to a measuring device to the discharge current value. Method for measuring the impurity concentration of.
【請求項3】 前記放電電圧値を、前記放電電流値と前
記二つの電極間の距離の積算値で除算した値で気体中の
不純物濃度を測定することを特徴とする気体中の不純物
濃度の測定方法。
3. The impurity concentration in the gas is measured by a value obtained by dividing the discharge voltage value by an integrated value of the discharge current value and the distance between the two electrodes. Measuring method.
【請求項4】 前記放電電圧値を、前記放電電流値に測
定装置固有の一定の電流値を加えた放電電流値と前記電
極間の距離に測定装置固有の一定の距離を加えた距離と
の積算値で除算した値で気体中の不純物濃度を測定する
ことを特徴とする気体中の不純物濃度の測定方法。
4. The discharge voltage value is a discharge current value obtained by adding a constant current value specific to the measuring device to the discharge current value, and a distance obtained by adding a constant distance specific to the measuring device to the distance between the electrodes. A method for measuring the impurity concentration in a gas, which comprises measuring the impurity concentration in the gas by a value divided by an integrated value.
【請求項5】 流入口からの測定ガスが通流する放電室
と、該放電室内に配置された二つの電極と、該二つの電
極間に高電圧を印加する高圧電源と、前記二つの電極間
の放電電圧値と放電電流値を測定するそれぞれの測定手
段とを備えた構成を特徴とする気体中の不純物濃度の測
定装置。
5. A discharge chamber through which a measurement gas flows from an inlet, two electrodes arranged in the discharge chamber, a high-voltage power supply for applying a high voltage between the two electrodes, and the two electrodes. An apparatus for measuring the concentration of impurities in a gas, characterized in that the apparatus is provided with respective measuring means for measuring a discharge voltage value and a discharge current value between the two.
【請求項6】 前記二つの電極のうち、一方の放電電極
がワイヤー電極であることを特徴とする請求項5の気体
中の不純物濃度の測定装置。
6. The device for measuring the concentration of impurities in a gas according to claim 5, wherein one of the two electrodes is a wire electrode.
【請求項7】 前記二つの電極が、絶縁基板上に微細化
配線技術により形成された電極であることを特徴とする
請求項5の気体中の不純物濃度の測定装置。
7. The apparatus for measuring the concentration of impurities in a gas according to claim 5, wherein the two electrodes are electrodes formed on an insulating substrate by a fine wiring technique.
【請求項8】 前記二つの電極が複数個配置されている
ことを特徴とする請求項7の気体中の不純物濃度の測定
装置。
8. The device for measuring the concentration of impurities in a gas according to claim 7, wherein a plurality of the two electrodes are arranged.
JP8199996A 1996-03-11 1996-03-11 Method and device for measuring concentration of impurities in gas Pending JPH09243603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8199996A JPH09243603A (en) 1996-03-11 1996-03-11 Method and device for measuring concentration of impurities in gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8199996A JPH09243603A (en) 1996-03-11 1996-03-11 Method and device for measuring concentration of impurities in gas

Publications (1)

Publication Number Publication Date
JPH09243603A true JPH09243603A (en) 1997-09-19

Family

ID=13762184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8199996A Pending JPH09243603A (en) 1996-03-11 1996-03-11 Method and device for measuring concentration of impurities in gas

Country Status (1)

Country Link
JP (1) JPH09243603A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002168832A (en) * 2000-11-30 2002-06-14 Fujitsu Ltd Gas detecting method and gas-concentration measuring method as well as gas sensor
KR100844966B1 (en) * 2006-02-17 2008-07-09 주식회사 오토전자 Apparatus and sensor assembly for detecting gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002168832A (en) * 2000-11-30 2002-06-14 Fujitsu Ltd Gas detecting method and gas-concentration measuring method as well as gas sensor
KR100844966B1 (en) * 2006-02-17 2008-07-09 주식회사 오토전자 Apparatus and sensor assembly for detecting gas

Similar Documents

Publication Publication Date Title
US5304797A (en) Gas analyzer for determining impurity concentration of highly-purified gas
US5304294A (en) Method and apparatus for sensing nox
FI870465A0 (en) FOERFARANDE OCH ANORDNING FOER ATT UPPTAECKA SMAO GAS- ELLER AONGMAENGDER I GASBLANDNINGAR.
US20060054809A1 (en) Method and apparatus for carrying out ion mobility spectrometry analyses
JPH09243603A (en) Method and device for measuring concentration of impurities in gas
Dutton et al. The determination of attachment and ionization coefficients in air
Freeman et al. Near-infrared nonmetal atomic emission from a helium microwave-induced plasma: element ratio determinations
JP2858103B2 (en) Method and apparatus for measuring impurity concentration in gas
ITMI20011193A1 (en) METHOD FOR MEASUREMENT USING IONIC MOBILITY SPECTROSCOPY OF THE CONCENTRATION OF WATER IN ARGON, HYDROGEN, NITROGEN AND HELIUM
Deisler, Jr et al. Rapid gas analyzer using ionization by alpha particles
Mezentsev et al. Probe measurements of the electron convective velocity in axisymmetric low-temperature helium plasmas
SU1173292A1 (en) Method of ionization detection of gas admixtures
Price et al. Negative ion molecule reactions in CO2 at high pressures and temperatures
JP2512347B2 (en) Method and apparatus for measuring impurity concentration in gas
SU543214A1 (en) Ion spectrometer
SU830221A1 (en) Method of determining impurity concentration in gas mixture
JPS5619624A (en) Detection of etching end point in plasma processor
Rundle et al. CHEMICAL REACTIONS IN ELECTRICAL DISCHARGES: III. THE POSITIVE COLUMN IN DC. GLOW DISCHARGES THROUGH OXYGEN
SU1404981A1 (en) Electric potential meter
JP3998534B2 (en) Gas oxygen concentration measuring method and gas oxygen concentration measuring apparatus
SU868478A1 (en) Electroinduction-type dust content meter
FR2390727A1 (en) Oxygen concn. detection cell - has hollow cylindrical sample chamber containing reference and measurement electrodes, latter is made of oxide of zirconium
Dunnett et al. The kinetics of the zinc ion reduction at the dropping mercury electrode in dimethylformamide
JP2006201106A (en) Analytical method and device for impurity in gas mixture
GB1512235A (en) Electronic flow gauge