JP2512347B2 - Method and apparatus for measuring impurity concentration in gas - Google Patents

Method and apparatus for measuring impurity concentration in gas

Info

Publication number
JP2512347B2
JP2512347B2 JP3050606A JP5060691A JP2512347B2 JP 2512347 B2 JP2512347 B2 JP 2512347B2 JP 3050606 A JP3050606 A JP 3050606A JP 5060691 A JP5060691 A JP 5060691A JP 2512347 B2 JP2512347 B2 JP 2512347B2
Authority
JP
Japan
Prior art keywords
gas
measuring
discharge
concentration
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3050606A
Other languages
Japanese (ja)
Other versions
JPH06281624A (en
Inventor
晋亮 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON EI PII AI KK
ROJITETSUKU SHISUTEMU KK
Original Assignee
NIPPON EI PII AI KK
ROJITETSUKU SHISUTEMU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON EI PII AI KK, ROJITETSUKU SHISUTEMU KK filed Critical NIPPON EI PII AI KK
Priority to JP3050606A priority Critical patent/JP2512347B2/en
Publication of JPH06281624A publication Critical patent/JPH06281624A/en
Application granted granted Critical
Publication of JP2512347B2 publication Critical patent/JP2512347B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、気体中の不純物濃度の
測定方法及びその測定装置に関し、特に半導体製造に使
用する高純度ガス中の微量不純物の測定に適用して有効
な技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the concentration of impurities in a gas and a measuring apparatus therefor, and more particularly to a technique effectively applied to the measurement of trace impurities in a high-purity gas used in semiconductor manufacturing. is there.

【0002】[0002]

【従来の技術】近年、半導体製造工程においては、LS
Iデバイスの微細化、薄膜化と共に、半導体製造に使用
されるプロセスガス中の不純物がデバイスに悪影響を与
えるため、プロセスガス中の不純物測定が重要となって
きた。特に大気からの混入がおこりやすい水分は強吸着
性を有するため、一度ガスラインに混入すると除去する
のが難しく、また不純物の中でも水が最もプロセスに悪
影響を与えているためモニタリングが必要となってい
る。
2. Description of the Related Art Recently, in the semiconductor manufacturing process, LS
With the miniaturization and thinning of I devices, the impurities in the process gas used for semiconductor manufacturing have a bad influence on the device, so that the measurement of impurities in the process gas has become important. Moisture, which is apt to be mixed in from the atmosphere, has a strong adsorptive property, so it is difficult to remove it once it is mixed in the gas line. In addition, water is the most harmful of the impurities, so monitoring is required. There is.

【0003】そして、従来ガス中の微量水分を測定する
測定器としては、ガス中の水分が結露する温度、すなわ
ち露点により水分濃度を測定する露点計が用いられてい
る。
As a conventional measuring instrument for measuring a small amount of water in a gas, a dew point meter for measuring the water concentration by the temperature at which the water in the gas is condensed, that is, the dew point is used.

【0004】[0004]

【発明が解決しようとする問題点】しかしながら、露点
計は、結露したことを、検出面にくもりが発生した温度
を検出することにより求めるため、ガス中の水分濃度が
きわめて低い場合には、検出面に多量のガスを流して微
小の水滴が堆積してある値まで積算されないと、検出器
が動作しないため、ppm以下の極低濃度領域では、結
露の検出に数時間から数十時間を要し応答時間がきわめ
て遅かった。
However, since the dew point meter determines that dew condensation has occurred by detecting the temperature at which cloudiness has occurred on the detection surface, it can be detected when the water concentration in the gas is extremely low. The detector does not operate unless a small amount of water droplets are accumulated on the surface and accumulated to a value where minute water droplets are accumulated.Therefore, it takes several hours to several tens of hours to detect condensation in the extremely low concentration range of ppm or less. However, the response time was extremely slow.

【0005】本発明は、このような従来の技術が有する
問題点に鑑みなされたもので、その目的とするところ
は、ガス中の極微量の不純物、特に極微量の水分が高速
に検出できる測定方法とその装置を提供することにあ
る。
The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to measure a very small amount of impurities in a gas, particularly a very small amount of water at a high speed. A method and apparatus therefor.

【0006】[0006]

【問題点を解決するための手段】この目的のため、本発
明は、コロナ放電の放電電流が一定となるようにした高
圧定電流電源により印加された測定ガスが通流する放電
室内の放電計と対向電極間の電位差の変化により気体中
の不純物濃度の測定を行うものである。また測定ガスの
種類によっては放電針と対向電極間の電位差と気体中の
不純物の濃度との関係が1対1でない場合もあるので、
測定ガスに既知濃度の不純物を含む標準ガスを添加する
ことにより測定ガスの濃度を強制的に変化させて、放電
針と対向電極間の電位差が増加するかまたは減少するか
によって気体中の不純物濃度が極小値よりも高濃度であ
るか低濃度であるかを判断するものである。
To this end, the present invention is directed to a discharge meter in a discharge chamber in which a measurement gas applied by a high-voltage constant-current power supply is arranged so that the discharge current of corona discharge is constant. The impurity concentration in the gas is measured by changing the potential difference between the counter electrode and the counter electrode. In addition, depending on the type of measurement gas, the relationship between the potential difference between the discharge needle and the counter electrode and the concentration of impurities in the gas may not be 1: 1.
By adding a standard gas containing a known concentration of impurities to the measurement gas, the concentration of the measurement gas is forcibly changed, and the concentration of impurities in the gas increases or decreases depending on whether the potential difference between the discharge needle and the counter electrode increases or decreases. Is to determine whether the concentration is higher or lower than the minimum value.

【0007】そして、前記測定方法の実施に使用する測
定装置においては、測定ガスが流通する放電室と、該放
電室内に設けられ、かつコロナ放電の放電電流が一定と
なるようにした高圧定電流電源により印加される放電針
および該放電針と対向して設けられた対向電極と、該放
電針と対向電極間の電位差を測定する測定手段とを有し
ているものである。また高圧定電流電源と放電針との間
には可変抵抗器が設けられ、また放電室には、該放電室
内を100℃以上に温度調節可能な温調器が設けられ、
更にまた放電室内を通流する測定ガスに既知濃度の不純
物を含む標準ガスを添加するための標準ガス発生器が設
けられ、更にまた測定ガス中の不純物濃度が1ppm以
下の濃度であることを確認できる水分濃度計が設けられ
たものである。
In the measuring device used for carrying out the above-mentioned measuring method, a discharge chamber in which a measuring gas flows, and a high-voltage constant current provided in the discharge chamber and having a constant discharge current for corona discharge. It has a discharge needle applied by a power source, a counter electrode provided so as to face the discharge needle, and a measuring means for measuring the potential difference between the discharge needle and the counter electrode. A variable resistor is provided between the high-voltage constant-current power supply and the discharge needle, and a temperature controller capable of adjusting the temperature of the discharge chamber to 100 ° C. or higher is provided in the discharge chamber.
Furthermore, a standard gas generator was added to add a standard gas containing a known concentration of impurities to the measurement gas flowing through the discharge chamber, and it was confirmed that the concentration of impurities in the measurement gas was 1 ppm or less. It is equipped with a moisture concentration meter.

【0008】[0008]

【作用】上記のように構成された測定装置において、放
電室内にそのガス入口より測定ガスが導入されて放電室
内の放電針に、コロナ放電の放電電流が一定となるよう
にした高圧定電流電源により高電圧が印加されると、該
放電針と対向電極の間でコロナ放電が起き、該コロナ放
電の放電電流は一定とされているから、測定ガス中の不
純物濃度がppm以下においては不純物濃度増加と共に
電極間にかける印加電圧は低下するので、電極間の電位
差を測定手段により測定すれば、気体中の不純物濃度が
測定される。
In the measuring device constructed as described above, a high-pressure constant-current power supply is provided in which the measuring gas is introduced into the discharge chamber through its gas inlet to make the discharge current of the corona discharge constant at the discharge needle inside the discharge chamber. When a high voltage is applied by, the corona discharge occurs between the discharge needle and the counter electrode, and the discharge current of the corona discharge is constant. Since the applied voltage applied between the electrodes decreases with the increase, the impurity concentration in the gas can be measured by measuring the potential difference between the electrodes by the measuring means.

【0009】そして、放電針の消耗等による電位差の絶
対値の変動や偏差の補正、測定ガスの種類に対応した放
電電圧の最適値の補正は高圧定電流電源と放電針との間
に介装の可変抵抗器によって行われ、また測定ガス中の
不純物の中に強吸着性成分、特に水が含まれている場合
には、放電室の壁面が冷えていると吸脱着時間が長くな
って測定ガスの不純物濃度が変化したとき、高速応答性
が悪くなって測定誤差を生じ、またコロナ放電によって
起きる測定ガスのイオン化には温度依存性があるために
温度変化による測定誤差を生じるため、放電室内は温調
器により水の沸点(100℃)以上に温度調節され、ま
たは一定の温度に調節される。また測定ガスの種類によ
っては放電針と対向電極との間の電位差と気体中の不純
物濃度との関係が1対1でない場合もあるので、この場
合においては、標準ガス発生器からの既知濃度の標準ガ
スが測定ガスに添加されて測定ガスの濃度が強制的に変
えられた場合に電極間の電位差が増加するかまたは減少
するかを測定することによって気体中の不純物濃度が極
小値よりも高濃度であるが低濃度であるかが判断され
る。また測定ガス中の不純物濃度が1ppm以下の濃度
であるということが露点計等の水分濃度計で確認されて
いれば、電極間の電位差と濃度の関係は1対1となり、
濃度の判定が容易となる。
Correction of the variation and deviation of the absolute value of the potential difference due to wear of the discharge needle, and the correction of the optimum value of the discharge voltage corresponding to the type of measurement gas are provided between the high-voltage constant current power supply and the discharge needle. If the measurement gas contains impurities with strong adsorptive properties, especially water, the adsorption / desorption time will be longer if the wall of the discharge chamber is cold. When the impurity concentration of the gas changes, the high-speed response deteriorates, causing a measurement error.In addition, the ionization of the measurement gas caused by corona discharge causes a measurement error due to a temperature change. Is adjusted to a temperature above the boiling point (100 ° C.) of water by a temperature controller or adjusted to a constant temperature. In addition, the relationship between the potential difference between the discharge needle and the counter electrode and the impurity concentration in the gas may not be 1: 1 depending on the type of the measurement gas. In this case, the known concentration from the standard gas generator is The impurity concentration in the gas is higher than the minimum value by measuring whether the potential difference between the electrodes increases or decreases when the standard gas is added to the measurement gas and the concentration of the measurement gas is forcibly changed. It is determined whether the concentration is low but low. Also, if it is confirmed by a moisture concentration meter such as a dew point meter that the concentration of impurities in the measurement gas is 1 ppm or less, the relationship between the potential difference between the electrodes and the concentration is 1: 1.
The concentration can be easily determined.

【0010】[0010]

【実施例】本発明の実施例について図面を参照して説明
すると、図1において、ステンレススチール等の金属製
ブロック10は、その中央縦方向に放電室11を形成す
る空間部12を有すると共に上部側面には測定ガス(ア
ルゴン、シボラン、水素、ヘリウム、窒素、一酸化窒
素、一酸化二窒素、ネオン、酸素、三弗化燐、ホスフィ
ン、モノシラン、ジシラン等)を導入するための入口1
3を有し、底部には出口14を有している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings. In FIG. 1, a block 10 made of metal such as stainless steel has a space 12 for forming a discharge chamber 11 in the central longitudinal direction thereof and an upper part thereof. On the side surface, an inlet 1 for introducing a measurement gas (argon, civolane, hydrogen, helium, nitrogen, nitric oxide, dinitrogen monoxide, neon, oxygen, phosphorus trifluoride, phosphine, monosilane, disilane, etc.)
3 and an outlet 14 at the bottom.

【0011】ブロック10の上端面には、その空間部1
2の上端を閉口してフランジ15が金属パッキン16に
よりシールされて密閉的に固着されると共に、ブロック
10とフランジ15は接地され、該フランジ15と空間
部12とで放電室11が形成されている。そして、該放
電室11内には、フランジ15の下面よりこれと一体に
L形に延設された対向電極17が設けられ、該対向電極
17のやや上方には、絶縁端子19を介してフランジ1
5に取り付けられた放電針18が設けられている。
On the upper end surface of the block 10, the space 1 is formed.
The upper end of 2 is closed and the flange 15 is sealed by the metal packing 16 and hermetically fixed, the block 10 and the flange 15 are grounded, and the discharge chamber 11 is formed by the flange 15 and the space 12. There is. A counter electrode 17 is provided in the discharge chamber 11 so as to extend integrally from the lower surface of the flange 15 in an L shape. The counter electrode 17 is slightly above the counter electrode 17 via an insulating terminal 19. 1
A discharge needle 18 attached to the No. 5 is provided.

【0012】そして、放電針18は、可変抵抗器20を
介して定電流回路によりコロナ放電の放電電流が一定と
なるようにした高圧定電流電源21と、該高圧定電流電
源21により印加されて生じる放電針18と対向電極1
7間の電位差を測定し、かつその値をコンピュータに出
力できるようになっている測定手段(電圧モニター)2
2とに並列接続されている。またブロック10には、ヒ
ータ23及び熱電対24が付設されて、これらは温調器
25に接続され、該温調器25によって放電室11内が
100℃以上、好ましくは120℃位に温度調節が出き
るようになっている。
The discharge needle 18 is applied by the high-voltage constant current power source 21 through which the constant-current circuit keeps the discharge current of the corona discharge constant via the variable resistor 20, and the high-voltage constant current power source 21. Generated discharge needle 18 and counter electrode 1
Measuring means (voltage monitor) 2 capable of measuring the potential difference between 7 and outputting the value to a computer.
2 is connected in parallel with Further, a heater 23 and a thermocouple 24 are attached to the block 10, and these are connected to a temperature controller 25, and the temperature inside the discharge chamber 11 is adjusted to 100 ° C. or higher, preferably 120 ° C. by the temperature controller 25. Is available.

【0013】なお、ブロック10とフランジ15とを金
属パッキン16でシールしているのは、放電室11内に
もしもガスのリークがあると大気成分が混入して測定ガ
スの不純物濃度を変化させてしまうからであり、また金
属バッキンを使用するのは、接地のためとブロック10
が高温(200℃程度)になるためである。またブロッ
ク10とフランジ15が接地されているのは、高圧定電
流電源21との接地とブロック10の接地で回路がつな
がり電流が流れ、定電流回路を正常に動作させるための
ものである。
The block 10 and the flange 15 are sealed by the metal packing 16 because if there is a gas leak in the discharge chamber 11, atmospheric components are mixed and the impurity concentration of the measurement gas is changed. The metal backing is used for the grounding and the block 10
Is high temperature (about 200 ° C.). Further, the block 10 and the flange 15 are grounded so that the circuit is connected by the grounding of the high voltage constant current power source 21 and the grounding of the block 10 so that a current flows and the constant current circuit operates normally.

【0014】以上の構成において、放電室11内に測定
ガスが導入されると共に、放電室11内が温調器25に
より所定温度に調節された状態で放電針18と対向電極
17の間に高圧定電流電源により約1KV〜3KV程度
の高電圧が印加されると、放電針18の周囲ではコロナ
放電が起こり、約1〜10μA程度の電流が流れ、この
放電電流は定電流回路により一定に制御されるため、し
たがって、放電状態が変れば電極間の電位差が変わるこ
とになる。更に説明すると、測定ガス中の不純物濃度が
ppm以下においては、窒素ガス中の水分濃度と電極間
の電位差との関係を示した図4からも明らかなように、
不純物濃度の増加と共に、電極間にかける印加電圧は低
下するので、この電極間の電位差を測定手段22により
測定することによって気体中の不純物濃度が測定され
る。
In the above structure, the measurement gas is introduced into the discharge chamber 11, and a high pressure is applied between the discharge needle 18 and the counter electrode 17 while the discharge chamber 11 is adjusted to a predetermined temperature by the temperature controller 25. When a high voltage of about 1 KV to 3 KV is applied by the constant current power source, corona discharge occurs around the discharge needle 18 and a current of about 1 to 10 μA flows, and this discharge current is controlled to be constant by the constant current circuit. Therefore, when the discharge state changes, the potential difference between the electrodes also changes. More specifically, when the impurity concentration in the measurement gas is less than or equal to ppm, as is clear from FIG. 4, which shows the relationship between the water concentration in nitrogen gas and the potential difference between the electrodes,
Since the applied voltage between the electrodes decreases with the increase of the impurity concentration, the impurity concentration in the gas can be measured by measuring the potential difference between the electrodes by the measuring means 22.

【0015】図2の実施例は、測定ガスの入口13に標
準ガス発生器26が付設されたもので、測定ガスの種類
によっては図4に示すように、電極間の電位差と不純物
濃度が1対1に対応しない領域があるために、標準ガス
発生器26から既知濃度の標準ガス、好ましくは、濃度
が10ppb以下で測定ガスと同成分の高純度ガスがバ
ルブ27を介して管路28より測定ガスに添加されて測
定ガスの濃度が強制的に変えられ、これによって測定さ
れる放電電圧の変化の増減方向から、2つの可能な不純
物濃度の何れであるかが決定される。
In the embodiment of FIG. 2, a standard gas generator 26 is attached to the inlet 13 of the measuring gas. Depending on the type of the measuring gas, as shown in FIG. 4, the potential difference between the electrodes and the impurity concentration are 1 or less. Since there is a region that does not correspond to the pair 1, a standard gas having a known concentration from the standard gas generator 26, preferably, a high-purity gas having a concentration of 10 ppb or less and the same component as the measurement gas is supplied from the conduit 28 via the valve 27. The concentration of the measurement gas is forcibly changed by being added to the measurement gas, and the increase or decrease direction of the change in the discharge voltage measured thereby determines which of the two possible impurity concentrations.

【0016】例えば、図5では、測定された電位差が2
000Vの場合に濃度が600ppbと10000pp
bの2点に解があり、1つの測定値だけからはその何れ
かを特定することはできない。そこで、不純物濃度1p
pbの標準ガスを測定ガスに添加していく。するともし
測定ガスの不純物濃度が600ppbであれば、図6に
示すように、電極間の電位差は増加し、一方測定ガスの
不純物濃度が10000ppbの場合では、標準ガスの
添加量を増加させるにつれて、一旦放電電圧は低下する
が、更に添加量を増加させると放電電位差の減少は停止
し、逆に増加に転ずる。この変化を観測することにより
測定ガスの不純物濃度が2つの解の何れかであるかを特
定することができる。
For example, in FIG. 5, the measured potential difference is 2
In case of 000V, the concentration is 600ppb and 10000pp
There are solutions at two points of b, and it is not possible to specify either of them from only one measured value. Therefore, the impurity concentration is 1p
The standard gas of pb is added to the measurement gas. However, if the impurity concentration of the measurement gas is 600 ppb, the potential difference between the electrodes increases, as shown in FIG. The discharge voltage once drops, but when the addition amount is further increased, the decrease of the discharge potential difference stops, and on the contrary, it starts to increase. By observing this change, it is possible to specify which of the two solutions the impurity concentration of the measurement gas has.

【0017】図3の実施例は、測定ガスの入口13に露
点計等の水分濃度計29が付設されたもので、該水分濃
度計29からは測定ガスが図5の最下点の値(ppmオ
ーダー)より小さいかまたは大きいかの信号を出すこと
ができるようになっており、たとえ電位差と不純物濃度
との関係が1対1の関係にないような不純物濃度の測定
ガスであっても水分濃度計29の信号を使って測定ガス
の濃度を判断できるようになっている。水分濃度計29
はppmオーダーの比較的高い水分濃度であれば、数秒
から数分の応答時間で水分濃度の測定ができるため、比
較的高速に測定ガスの水分濃度を判定でき、放電電圧が
高低何れの濃度に対応しているかを切り分けるために充
分な情報を与えてくれる。
In the embodiment shown in FIG. 3, a moisture concentration meter 29 such as a dew point meter is attached to the inlet 13 of the measurement gas. It is possible to output a signal that is smaller or larger than (ppm order), and even if the measurement gas has an impurity concentration such that the relationship between the potential difference and the impurity concentration is not in a one-to-one relationship, The signal of the densitometer 29 can be used to determine the concentration of the measurement gas. Moisture concentration meter 29
Is a relatively high water concentration in the ppm order, the water concentration can be measured with a response time of a few seconds to a few minutes, so the water concentration of the measurement gas can be determined relatively quickly, and the discharge voltage can be either high or low. It gives enough information to determine if it is compatible.

【0018】更に実施例としては、特に図示しないが、
一定の高圧に印加された放電針と対向電極の間に起こる
コロナ放電の放電電流を測定手段にて測定して気体中の
不純物濃度を測定するものがある。
Further, as an embodiment, although not particularly shown,
There is a method in which the discharge current of corona discharge generated between a discharge needle applied to a constant high voltage and a counter electrode is measured by a measuring means to measure the impurity concentration in the gas.

【0019】[0019]

【発明の効果】しかして、本発明によれば、ppm以下
の極低濃度領域において、測定ガス中の不純物、特に水
分濃度を高速に測定することができる。
As described above, according to the present invention, it is possible to rapidly measure the concentration of impurities, particularly the water content, in the measurement gas in the extremely low concentration range of ppm or less.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る測定装置の一例を示した断面的説
明図である。
FIG. 1 is a cross-sectional explanatory view showing an example of a measuring apparatus according to the present invention.

【図2】本発明に係る測定装置の他例を示した断面的説
明図である。
FIG. 2 is a cross-sectional explanatory view showing another example of the measuring apparatus according to the present invention.

【図3】本発明に係る測定装置の更に他例を示した断面
的説明図である。
FIG. 3 is a cross-sectional explanatory view showing still another example of the measuring apparatus according to the present invention.

【図4】窒素ガス中の水分濃度と電極間の電位差との関
係を示した説明図である。
FIG. 4 is an explanatory diagram showing the relationship between the water concentration in nitrogen gas and the potential difference between electrodes.

【図5】図4とその例示範囲を異にした窒素ガス中の水
分濃度と電極間の電位差との関係を示した説明図であ
る。
FIG. 5 is an explanatory diagram showing the relationship between the water concentration in nitrogen gas and the potential difference between electrodes, which is different from that of FIG. 4 in its exemplified range.

【図6】図4と更にその例示範囲を異にした窒素ガス中
の水分濃度と電極間の電位差との関係を示した説明図で
ある。
FIG. 6 is an explanatory diagram showing the relationship between the water concentration in nitrogen gas and the potential difference between electrodes, which is different from that of FIG. 4 in its exemplified range.

【符号の説明】[Explanation of symbols]

10 ブロック 11 放電室 13 測定ガス入口 14 測定ガス出口 15 フランジ 16 対向電極 18 放電針 20 可変抵抗器 21 高圧定電流電源 22 測定手段(電圧モニター) 25 温調器 26 標準ガス発生器 29 水分濃度計 10 Block 11 Discharge Chamber 13 Measurement Gas Inlet 14 Measurement Gas Outlet 15 Flange 16 Counter Electrode 18 Discharge Needle 20 Variable Resistor 21 High Voltage Constant Current Power Supply 22 Measuring Means (Voltage Monitor) 25 Temperature Controller 26 Standard Gas Generator 29 Moisture Concentration Meter

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 コロナ放電の放電電流が一定となるよう
にした高圧定電流電源により印加された測定ガスが通流
する放電室内の放電針と対向電極間の電位差の変化によ
り気体中の不純物を測定することを特徴とする気体中の
不純物濃度の測定方法。
1. The impurities in the gas are removed by the change in the potential difference between the discharge needle and the counter electrode in the discharge chamber, through which the measurement gas applied by the high-voltage constant-current power supply in which the discharge current of the corona discharge is kept constant. A method for measuring the concentration of impurities in a gas, which comprises measuring.
【請求項2】 測定ガスに既知濃度の不純物を含む標準
ガスを添加することにより測定ガスの濃度を強制的に変
化させ、放電針と対向電極間の電位差の変わる方向が判
るようにしたことを特徴とする請求項1の気体中の不純
物濃度の測定方法。
2. A method of forcibly changing the concentration of the measuring gas by adding a standard gas containing impurities of a known concentration to the measuring gas so that the direction in which the potential difference between the discharge needle and the counter electrode changes can be known. The method for measuring the concentration of impurities in a gas according to claim 1.
【請求項3】 導入口から導入された測定ガスが通流す
る放電室と該放電室内に配置され、かつコロナ放電の放
電電流が一定となるようにした高圧定電流電源により
電圧が印加される放電針及び該放電針と対向して配置さ
れた対向電極と、前記放電針と対向電極間の電位差を測
定する測定手段とを有する構成を特徴とする気体中の不
純物濃度の測定装置。
3. A measurement gas introduced from the introduction port is disposed in the discharge chamber and the discharge chamber flowing, and high by a high voltage constant current power supply discharge current to a constant corona discharge
And a counter electrode to which a voltage is disposed opposite to the discharge needle and said discharge needle is applied, the impurity concentration in the gas, characterized in configuration having a measuring means for measuring the potential difference between the discharge needles and a counter electrode measuring device.
【請求項4】 前記高圧定電流電源と前記放電針との間
に可変抵抗器が介装されたことを特徴とする請求項3の
気体中の不純物濃度の測定装置。
4. An apparatus for measuring the concentration of impurities in a gas according to claim 3, wherein a variable resistor is interposed between the high-voltage constant current power supply and the discharge needle.
【請求項5】 前記放電室内を通流する測定ガスに既知
濃度の不純物を含む標準ガスを添加するための標準ガス
発生器が放電室の前記測定ガス導入口に付設されたこと
特徴とする請求項3または4の気体中の不純物濃度の
測定装置。
Wherein the standard gas generator for adding a standard gas containing an impurity of the known concentration to the measurement gas to the discharge chamber a flows is attached to the measuring gas inlet of the discharge chamber
The device for measuring the concentration of impurities in a gas according to claim 3 or 4 .
【請求項6】 測定ガス中の不純物濃度が1ppm以下
の濃度であることを確認できる水分濃度計が前記放電室
の測定ガス導入口に付設されたことを特徴とする請求項
または4の気体中の不純物濃度の測定装置。
6. The water concentration meter impurity concentration in the measurement gas can be confirmed that the following concentrations 1ppm said discharge chamber
The measuring device for measuring the impurity concentration in the gas according to claim 3 or 4 , wherein the measuring gas introducing port is attached .
JP3050606A 1991-02-22 1991-02-22 Method and apparatus for measuring impurity concentration in gas Expired - Fee Related JP2512347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3050606A JP2512347B2 (en) 1991-02-22 1991-02-22 Method and apparatus for measuring impurity concentration in gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3050606A JP2512347B2 (en) 1991-02-22 1991-02-22 Method and apparatus for measuring impurity concentration in gas

Publications (2)

Publication Number Publication Date
JPH06281624A JPH06281624A (en) 1994-10-07
JP2512347B2 true JP2512347B2 (en) 1996-07-03

Family

ID=12863629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3050606A Expired - Fee Related JP2512347B2 (en) 1991-02-22 1991-02-22 Method and apparatus for measuring impurity concentration in gas

Country Status (1)

Country Link
JP (1) JP2512347B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002168832A (en) * 2000-11-30 2002-06-14 Fujitsu Ltd Gas detecting method and gas-concentration measuring method as well as gas sensor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57468A (en) * 1980-05-09 1982-01-05 Masahiro Morita Quick freezer
JPS6319820A (en) * 1986-07-12 1988-01-27 Oki Electric Ind Co Ltd Method of positioning concave mirror

Also Published As

Publication number Publication date
JPH06281624A (en) 1994-10-07

Similar Documents

Publication Publication Date Title
US6537347B2 (en) Method for deciding on the timing of replacing a chemical filter, filter life detection sensor, chemical filter unit, and semiconductor manufacturing apparatus
US20060211253A1 (en) Method and apparatus for monitoring plasma conditions in an etching plasma processing facility
JPH09210963A (en) Solid gas sensor
JPH05242858A (en) Gas analyzing device
US3448261A (en) Signal detection and measuring circuit
JP2951027B2 (en) Method for judging that gas purifier has reached the end of its useful life and apparatus used therefor
US4063446A (en) Method of and apparatus for automatically detecting traces of organic solvent vapors in air
US2579352A (en) Method and apparatus for the quantitative measurement of impurities in an atmosphere
US5168323A (en) Device and method for determining impurities in a gas
Piemontesi et al. Analysis of decomposition products of sulfur hexafluoride in negative dc corona with special emphasis on content of H/sub 2/O and O/sub 2
JP2512347B2 (en) Method and apparatus for measuring impurity concentration in gas
JP4500993B2 (en) Insulating gas decomposition detection apparatus and decomposition gas detection method
US2445073A (en) Vapor detector
JPS6381929A (en) Detector for end point of dry etching
US3656339A (en) Glow discharge detector
US4596148A (en) Tritium pressure measurement
JPH0534331A (en) Method for quantitative analysis of sulfur dioxide in sulfur hexafluoride decomposition gas
US4889814A (en) Method and apparatus for detection of trace impurities in an impure inert gas
JP2858103B2 (en) Method and apparatus for measuring impurity concentration in gas
Crompton et al. Precision measurements of ionization coefficients in uniform static fields
US11609200B2 (en) Sensor module
JPH06317561A (en) Measuring apparatus of impurity concentration in gas
JP2838239B2 (en) Method for measuring trace impurities in gas
JPH0922680A (en) Device for measuring concentration of impurity in gas
JP3550222B2 (en) Mass spectrometer

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees