JPH09243602A - Structural analysis of azo compound - Google Patents

Structural analysis of azo compound

Info

Publication number
JPH09243602A
JPH09243602A JP5129296A JP5129296A JPH09243602A JP H09243602 A JPH09243602 A JP H09243602A JP 5129296 A JP5129296 A JP 5129296A JP 5129296 A JP5129296 A JP 5129296A JP H09243602 A JPH09243602 A JP H09243602A
Authority
JP
Japan
Prior art keywords
azo compound
sample
foil
ferromagnetic metal
structural analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5129296A
Other languages
Japanese (ja)
Inventor
Goji Kawaguchi
剛司 川口
Yoshimasa Hattori
芳正 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP5129296A priority Critical patent/JPH09243602A/en
Publication of JPH09243602A publication Critical patent/JPH09243602A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform the structural analysis of an azo compd. slightly soluble in an org. solvent within a short time by using a small amt. of a sample. SOLUTION: A very small amt. of an azo compd. is rapidly heated to predetermined temp. to be pyrolyzed and the generated pyrolyzed product is directly introduced into the lonizing chamber of a mass analyser by directly connecting a sample cell to the ionizing chamber 4a of the mass analyser 4. This apparatus is constituted of a heating probe 2, a sample cell 2a housing a sample and an ion detector. The azo compd. is rapidly heated by subjecting the azo compd. wrapped in ferromagnetic metal foil to high frequency induction heating.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電子写真用有機感
光体などに用いられる有機溶剤に難溶性のアゾ化合物の
構造解析方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for analyzing the structure of an azo compound which is sparingly soluble in an organic solvent used for an electrophotographic organic photoreceptor or the like.

【0002】[0002]

【従来の技術】アゾ化合物は顔料として用いられる他電
子写真用有機感光体などにも利用されており、その構造
解析は重要である。しかし、アゾ化合物には有機溶剤に
溶解し難いものも多く、これらの化合物に対しては、核
磁気共鳴分析法を適用できない。そのため、構造解析法
としては、赤外分光分析法、化学イオン化法を利用した
質量分析法あるいは化学的還元分解法などが適用されて
きたが、その詳細な構造解析は困難であった。
2. Description of the Related Art Azo compounds are used not only as pigments but also in organic photoconductors for electrophotography, and their structural analysis is important. However, many azo compounds are difficult to dissolve in an organic solvent, and the nuclear magnetic resonance analysis cannot be applied to these compounds. Therefore, as a structural analysis method, an infrared spectroscopic analysis method, a mass spectrometry method using a chemical ionization method, a chemical reductive decomposition method, or the like has been applied, but detailed structural analysis thereof has been difficult.

【0003】赤外分光分析法は官能基情報しか得られな
いので、特定の限られた部分構造の分析にしか有効でな
い。質量分析法においては、試料の分解、イオン化法が
重要である。化学イオン化法は、分解を抑えて試料分子
全体をイオン化するため部分構造情報は得難い。化学的
還元分解法は試料を化学的に分解するので、多種の分解
生成物を得ることが可能であるが、その反面、1試料に
要する量は多く、また試料の反応性が異なるため分解条
件の最適化検討に多数の試料と長時間を必要とする。
Since infrared spectroscopic analysis can obtain only functional group information, it is effective only for the analysis of a specific limited partial structure. In mass spectrometry, sample decomposition and ionization methods are important. The chemical ionization method suppresses decomposition and ionizes the entire sample molecule, so it is difficult to obtain partial structural information. Since the chemical reductive decomposition method chemically decomposes the sample, it is possible to obtain various kinds of decomposition products, but on the other hand, the amount required for one sample is large and the reactivity of the sample is different, so the decomposition conditions are different. A large number of samples and a long time are required for the optimization study.

【0004】[0004]

【発明が解決しようとする課題】比較的簡便な構造解析
法として、熱分解ガスクロマトグラフィー/質量分析法
がある。図5は従来の熱分解ガスクロマトグラフィー/
質量分析装置の模式図である。熱分解プローブ2中に置
かれた試料Sは瞬時に熱分解される。熱分解生成物はキ
ャリアガス(供給回路は図示を省略してある)と共にキ
ャピラリカラム3に送られ、キャピラリカラムにより時
間差をもって質量分析計部4のイオン化室4aである検
出器4bに到達する。
As a relatively simple structural analysis method, there is a pyrolysis gas chromatography / mass spectrometry method. Figure 5 shows conventional pyrolysis gas chromatography /
It is a schematic diagram of a mass spectrometer. The sample S placed in the pyrolysis probe 2 is instantly pyrolyzed. The thermal decomposition product is sent to the capillary column 3 together with a carrier gas (a supply circuit is not shown), and reaches the detector 4b which is the ionization chamber 4a of the mass spectrometer section 4 with a time lag due to the capillary column.

【0005】この構造解析法は、熱分解温度とキャピラ
リカラムの選択が適正であれば、一般的には部分構造情
報を得るには適した方法である。しかし、ガスクロマト
グラフィーにおいて分解生成物を分離する条件の設定が
煩雑であり、何度か試行する必要があり時間を要する。
また、ガスクロマトグラフィー中に分解生成物がトラッ
プされ、質量分析計に導入されず、検出できない場合が
ある。
This structural analysis method is generally suitable for obtaining partial structural information if the pyrolysis temperature and the selection of the capillary column are appropriate. However, setting conditions for separating decomposition products in gas chromatography is complicated, and it is necessary to try several times, which requires time.
In addition, decomposition products may be trapped during gas chromatography, not introduced into the mass spectrometer, and may not be detected.

【0006】本発明は上記の問題点に鑑み成されたもの
でり、有機溶剤に難溶性のアゾ化合物の構造解析を、少
量の試料を用いて、短時間に行う方法を提供する。
The present invention has been made in view of the above problems, and provides a method for carrying out structural analysis of an azo compound which is hardly soluble in an organic solvent in a short time using a small amount of sample.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明のアゾ化合物の構造解析方法は試料セル中
の微量のアゾ化合物を所定の温度に急速加熱して熱分解
させ、生じた熱分解生成物を、試料セルを質量分析計の
イオン化室に直接連結することにより、直接イオン化室
に導入することとする。
In order to achieve the above object, the structure analysis method for an azo compound according to the present invention is a method in which a trace amount of an azo compound in a sample cell is rapidly heated to a predetermined temperature to cause thermal decomposition and is generated. The thermal decomposition product will be directly introduced into the ionization chamber of the mass spectrometer by directly connecting it to the ionization chamber.

【0008】前記アゾ化合物の急速加熱は、アゾ化合物
を内部に包み込む強磁性体金属製の小片の高周波誘導加
熱によることとする。前記強磁性体金属の小片は表面が
粗らされている箔であると良い。前記強磁性体金属の小
片は箔をボート状に成形し、試料を入れた後押し潰すと
良い。
The rapid heating of the azo compound is based on high frequency induction heating of a small piece made of a ferromagnetic metal that wraps the azo compound inside. The small piece of ferromagnetic metal is preferably a foil having a roughened surface. The small pieces of the ferromagnetic metal are preferably formed by molding a foil into a boat, putting a sample, and then crushing the foil.

【0009】[0009]

【発明の実施の形態】図1は本発明に係る直接熱分解質
量分析計の模式図である。熱分解プローブ2の先端に装
着されている試料セル2aを直接質量分析計4のイオン
化室4aに接続してある。このような装置では、熱分解
された有機溶剤に難溶性のアゾ化合物試料からの熱分解
生成物は、吸着されたり、2次反応を起こす時間を与え
られず、イオン化室4aに導入され、直ちにイオン化さ
れ四重極電極4bをへて検出器4cに至り質量分析され
る。従って、熱分解温度および熱分解時間が適正であれ
ば(1温度とは限らない)、試料分子を構成していた基
が熱分解生成物として得られ。精度ある構造解析が可能
となる。
1 is a schematic diagram of a direct pyrolysis mass spectrometer according to the present invention. A sample cell 2a attached to the tip of the pyrolysis probe 2 is directly connected to the ionization chamber 4a of the mass spectrometer 4. In such an apparatus, the thermal decomposition product from the azo compound sample that is sparingly soluble in the thermally decomposed organic solvent is adsorbed or given no time to cause a secondary reaction, and is introduced into the ionization chamber 4a and immediately It is ionized and reaches the detector 4c through the quadrupole electrode 4b for mass spectrometry. Therefore, if the thermal decomposition temperature and the thermal decomposition time are appropriate (not limited to one temperature), the groups constituting the sample molecule can be obtained as a thermal decomposition product. Accurate structural analysis is possible.

【0010】有機溶剤に難溶性のアゾ化合物の熱分解法
としては、試料を溶剤に溶解する必要がなく、また急峻
な温度上昇と、設定温度の正確さの点で誘導加熱法が最
適である。誘導加熱法はキュリー温度が室温以上の強磁
性体金属箔に微量試料を加熱中に試料が飛散しないよう
に包み込み、この箔を高周波誘導加熱するものである。
強磁性がキュリー温度で消滅することにより箔の温度が
正確にキュリー温度に保たれる。強磁性体金属は、F
e、Ni、Co、Crのいずれかの単体または2ないし
3種の合金であり、組成によってキュリー温度が異な
る。
As a thermal decomposition method of an azo compound which is hardly soluble in an organic solvent, it is not necessary to dissolve the sample in the solvent, and the induction heating method is most suitable in terms of a steep temperature rise and the accuracy of the set temperature. . The induction heating method is a method in which a small amount of a sample is wrapped in a ferromagnetic metal foil having a Curie temperature of room temperature or higher so as not to scatter during heating, and the foil is subjected to high frequency induction heating.
The disappearance of ferromagnetism at the Curie temperature keeps the foil temperature exactly at the Curie temperature. Ferromagnetic metal is F
e, Ni, Co, or Cr, which is a simple substance or an alloy of 2 to 3 types, and the Curie temperature is different depending on the composition.

【0011】さらに、試料の包み込むときの試料の散逸
を防止するため、箔表面に細かい凹凸を付けたり、箔を
予めボート状あるいは試験管状に成形しておくことは有
効である。 実施例1 この実施例では本発明に係る構造解析方法の確認のた
め、次式で表される構造の良く知られているアゾ化合物
クロロダイアンブルーを用いた。
Further, in order to prevent the sample from being scattered when the sample is wrapped, it is effective to form fine irregularities on the foil surface or preform the foil into a boat shape or a test tube shape. Example 1 In this example, in order to confirm the method for structural analysis according to the present invention, a well-known azo compound chlorodian blue having a structure represented by the following formula was used.

【0012】[0012]

【化1】 Embedded image

【0013】図2はアゾ化合物の包み込みの手順であ
る。(a)は粗面5aを有する強磁性体箔5に試料Sを
載せた状態であり、(b)は試料S上に箔を折り返した
状態であり、(c)はさらに2回捲いた状態である。こ
のアゾ化合物2μg を秤量して試料Sとし、約1×5m
m、厚さ50μm の強磁性体の箔5に包み込んだ。箔の
試料を包む面には予めダイヤモンドやすりで擦り、粗面
5aを作っておいたので、試料粉を包み込み作業中に飛
散しなかった。
FIG. 2 shows a procedure for wrapping the azo compound. (A) is a state in which the sample S is placed on the ferromagnetic foil 5 having the rough surface 5a, (b) is a state in which the foil is folded back on the sample S, and (c) is a state in which the foil is further wound twice. Is. 2 μg of this azo compound is weighed to form a sample S, which is about 1 × 5 m
It was wrapped in a ferromagnetic foil 5 of m and 50 μm in thickness. Since the rough surface 5a was prepared by rubbing the surface of the foil wrapping the sample with diamond file in advance, the sample powder did not scatter during the wrapping operation.

【0014】試料を包んだ箔5bを石英の試料セル(図
1参照)に入れ、試料セルは高周波コイルの中に置い
た。キュリー温度590℃の場合が最も明確にm/z
(mは検出イオンの分子量、zはイオンの価数)が20
0以上の信号が検出された。図3は、本発明に係る実施
例のアゾ化合物の質量分析スペクトルである。m/z=
237、252、263、278のラインa、b、c、
およびdはそれぞれ、次の構造式(1)、(2)、
(3)および(4)で現されるアゾ化合物の構成分子イ
オンに対応していることが確認できた。
The foil 5b enclosing the sample was placed in a quartz sample cell (see FIG. 1) and the sample cell was placed in a high frequency coil. The clearest m / z at a Curie temperature of 590 ° C
(M is the molecular weight of the detected ion, z is the valence of the ion) is 20
Zero or more signals were detected. FIG. 3 is a mass spectrometry spectrum of the azo compounds of Examples according to the present invention. m / z =
237, 252, 263, 278 lines a, b, c,
And d are respectively the following structural formulas (1), (2),
It was confirmed that it corresponds to the constituent molecular ions of the azo compound represented by (3) and (4).

【0015】[0015]

【化2】 Embedded image

【0016】実施例2 図4は本発明に係る試料被覆ボートの成形時の図であ
る。(a)は成形金型の正面図であり、(b)はボート
の斜視図である。強磁性の箔5をステンレス鋼製の下金
型6a、上金型6bを用いて、ボート状に成形してか
ら、アゾ化合物試料を秤量し、ボートの側面を潰し、試
料を包んだ。以降は実施例1と同様に質量分析を行った
が、全く同じ質量分析スペクトルを得た。この実施例で
は強磁性の箔を折り畳む必要がなく、試料の包み込みは
単なるシート状より容易であり、試料の飛散はなかっ
た。
Example 2 FIG. 4 is a view of a sample-covered boat according to the present invention during molding. (A) is a front view of a molding die, (b) is a perspective view of a boat. The ferromagnetic foil 5 was molded into a boat shape using a stainless steel lower mold 6a and an upper mold 6b, and then the azo compound sample was weighed and the side surface of the boat was crushed to wrap the sample. After that, mass spectrometry was performed in the same manner as in Example 1, but exactly the same mass spectrometry spectrum was obtained. In this example, it was not necessary to fold the ferromagnetic foil, the wrapping of the sample was easier than the simple sheet shape, and the sample was not scattered.

【0017】[0017]

【発明の効果】本発明によれば、アゾ化合物の構造解析
方法を微量のアゾ化合物を所定の温度に急速加熱して熱
分解させ、熱分解生成物を、試料セルを質量分析計のイ
オン化室に直接連結することにより、直接質量分析計の
イオン化室に導入するようにしたため、熱分解された試
料からの熱分解生成物は、吸着されたり、2次反応を起
こす時間を与えられず、イオン化室に導入され、直ちに
イオン化され質量分析される。従って、熱分解温度およ
び熱分解時間が適正であれば(1温度とは限らない)、
試料分子を構成していた基が熱分解生成物として得ら
れ、精度ある構造解析が可能となる。
According to the present invention, the structure analysis method for an azo compound is carried out by rapidly heating a small amount of the azo compound to a predetermined temperature for thermal decomposition, and the thermal decomposition product is stored in a sample cell in an ionization chamber of a mass spectrometer. Since it was introduced directly into the ionization chamber of the mass spectrometer by directly connecting to, the pyrolysis products from the pyrolyzed sample could not be adsorbed or given a time to cause a secondary reaction, resulting in ionization. Introduced into the chamber, immediately ionized and mass analyzed. Therefore, if the pyrolysis temperature and the pyrolysis time are appropriate (not necessarily 1 temperature),
The groups constituting the sample molecule are obtained as a thermal decomposition product, which enables accurate structural analysis.

【0018】さらに、前記アゾ化合物の急速加熱を、ア
ゾ化合物を内部に包み込む強磁性体金属製の小片の高周
波誘導加熱によることとしたため、試料温度は制度の高
い再現性があり、同じ構成分子は同じ熱分解生成物とし
て得られ、同定性が高い。また、前記強磁性体金属の小
片を表面が粗らされた箔あるいはボート状としたため、
試料の秤量後の散逸が防止でき、安定性良く構造解析が
できる。
Further, since the rapid heating of the azo compound is performed by the high frequency induction heating of a small piece made of a ferromagnetic metal which wraps the azo compound inside, the sample temperature has high accuracy and reproducibility, and the same constituent molecules are It is obtained as the same thermal decomposition product and has high identification. Further, since the surface of the small piece of the ferromagnetic metal is roughened or boat-shaped,
Dispersion of the sample after weighing can be prevented, and structural analysis can be performed with good stability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る直接熱分解質量分析計の模式図FIG. 1 is a schematic diagram of a direct pyrolysis mass spectrometer according to the present invention.

【図2】アゾ化合物の包み込みの手順、(a)粗面5a
を有する強磁性体箔5に試料Sを載せた状態、(b)試
料S上に箔を折り返した状態、、(c)さらに2回捲い
た状態を示す図
FIG. 2 is a procedure for wrapping an azo compound, (a) rough surface 5a
Showing a state in which the sample S is placed on the ferromagnetic foil 5 having, (b) a state in which the foil is folded back on the sample S, and (c) a state in which it is further wound twice.

【図3】本発明に係る実施例のアゾ化合物の質量分析ス
ペクトルを示す図
FIG. 3 is a diagram showing a mass spectrometry spectrum of an azo compound of an example according to the present invention.

【図4】本発明に係る試料被覆ボートの成形時の図、
(a)成形金型の正面図、(b)ボートの斜視図
FIG. 4 is a diagram at the time of molding the sample-covered boat according to the present invention,
(A) Front view of molding die, (b) Perspective view of boat

【図5】従来の熱分解クロマトグラフィー/質量分析計
の模式図
FIG. 5 is a schematic diagram of a conventional pyrolysis chromatography / mass spectrometer.

【符号の説明】[Explanation of symbols]

1 ガスクロマトグラフィー 2 加熱プローブ 2a 試料セル 2c 高周波コイル 3 キャピラリカラム 4 質量分析計 4a イオン化室 4b 四重極電極 4c 検出部 5 強磁性体箔 5a 粗面 5b 試料包み込み状態 5c ボート状強磁性体 6a 上金型 6b 下金型 1 Gas Chromatography 2 Heating Probe 2a Sample Cell 2c High Frequency Coil 3 Capillary Column 4 Mass Spectrometer 4a Ionization Chamber 4b Quadrupole Electrode 4c Detecting Part 5 Ferromagnetic Foil 5a Rough Surface 5b Sample Enveloping State 5c Boat Ferromagnetic 6a Upper mold 6b Lower mold

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】試料セル中の微量の有機溶剤に難溶性のア
ゾ化合物を所定の温度に急速加熱して熱分解させ、生じ
た熱分解生成物を、試料セルを質量分析計のイオン化室
に直接連結することにより、直接イオン化室に導入する
ことを特徴とするアゾ化合物の構造解析方法。
1. A azo compound that is sparingly soluble in a trace amount of an organic solvent in a sample cell is rapidly heated to a predetermined temperature for thermal decomposition, and the resulting thermal decomposition product is transferred to the ionization chamber of the mass spectrometer. A structure analysis method for an azo compound, which is characterized in that the azo compound is directly introduced into the ionization chamber by direct connection.
【請求項2】前記アゾ化合物の急速加熱は、アゾ化合物
を内部に包み込む強磁性体金属製の小片の高周波誘導加
熱によることを特徴とする請求項1に記載のアゾ化合物
の構造解析方法。
2. The method for analyzing the structure of an azo compound according to claim 1, wherein the rapid heating of the azo compound is performed by high frequency induction heating of a small piece made of a ferromagnetic metal that wraps the azo compound inside.
【請求項3】前記強磁性体金属の小片は表面が粗らされ
ている箔であることを特徴とする請求項2に記載のアゾ
化合物の構造解析方法。
3. The method for analyzing the structure of an azo compound according to claim 2, wherein the small piece of the ferromagnetic metal is a foil having a roughened surface.
【請求項4】前記強磁性体金属の小片は箔をボート状に
成形し、試料を入れた後押し潰されることを特徴とする
請求項2に記載のアゾ化合物の構造解析方法。
4. The method for analyzing the structure of an azo compound according to claim 2, wherein the small pieces of the ferromagnetic metal are formed by molding a foil into a boat shape, inserting a sample and then crushing the foil.
JP5129296A 1996-03-08 1996-03-08 Structural analysis of azo compound Pending JPH09243602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5129296A JPH09243602A (en) 1996-03-08 1996-03-08 Structural analysis of azo compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5129296A JPH09243602A (en) 1996-03-08 1996-03-08 Structural analysis of azo compound

Publications (1)

Publication Number Publication Date
JPH09243602A true JPH09243602A (en) 1997-09-19

Family

ID=12882853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5129296A Pending JPH09243602A (en) 1996-03-08 1996-03-08 Structural analysis of azo compound

Country Status (1)

Country Link
JP (1) JPH09243602A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038354A1 (en) * 2008-09-30 2010-04-08 キヤノンアネルバ株式会社 Mass spectrometry device and mass spectrometry method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038354A1 (en) * 2008-09-30 2010-04-08 キヤノンアネルバ株式会社 Mass spectrometry device and mass spectrometry method
US8324568B2 (en) 2008-09-30 2012-12-04 Canon Anelva Corporation Mass spectrometer and mass spectrometry method

Similar Documents

Publication Publication Date Title
US4408125A (en) Modular pyrolysis inlet and method for pyrolyzing compounds for analysis by mass spectrometer
Chen et al. Surface desorption atmospheric pressure chemical ionization mass spectrometry for direct ambient sample analysis without toxic chemical contamination
Barin et al. Determination of toxic elements in tricyclic active pharmaceutical ingredients by ICP-MS: a critical study of digestion methods
Frech et al. A new furnace design for constant temperature electrothermal atomic absorption spectroscopy
DE69715843T2 (en) METHOD FOR DETECTING EXPLOSIVES
Irimiea et al. A comprehensive protocol for chemical analysis of flame combustion emissions by secondary ion mass spectrometry
Jagerdeo et al. Rapid analysis of forensic‐related samples using two ambient ionization techniques coupled to high‐resolution mass spectrometers
Borkowska-Burnecka et al. Comparison of pneumatic and ultrasonic nebulizations in inductively coupled plasma atomic emission spectrometry—matrix effects and plasma parameters
Brewer et al. Atmospheric identification of active ingredients in over‐the‐counter pharmaceuticals and drugs of abuse by atmospheric pressure glow discharge mass spectrometry (APGD‐MS)
Sovová et al. A study of the composition of the products of laser-induced breakdown of hexogen, octogen, pentrite and trinitrotoluene using selected ion flow tube mass spectrometry and UV-Vis spectrometry
CN110658278A (en) Rapid detection and analysis method for plasticizer in textile
RU2695954C1 (en) Method of spectrometric analysis of gaseous decomposition products of explosives
Matusiewicz et al. Simultaneous determination of hydride forming elements (As, Bi, Ge, Sb, Se) and Hg in biological and environmental reference materials by electrothermal vaporization–microwave induced plasma-optical emission spectrometry with their in situ trapping in a graphite furnace
JPH09243602A (en) Structural analysis of azo compound
US4980131A (en) Micro-volume, Curie-Point pyrolysis/desorption apparatus
Gao et al. A rapid and sensitive quantitative analysis method for TNT using Raman spectroscopy
Fletcher et al. Rapid identification of seized controlled substances and related compounds by tandem mass spectrometry without chromatography
US6770877B2 (en) Method and apparatus for analyzing vapors generated from explosives
Hölzer et al. Hyphenation of thermogravimetry and soft single photon ionization–ion trap mass spectrometry (TG–SPI–ITMS) for evolved gas analysis: Application to coffee
De Forest The Potential of Pyrolysis-Gas Chromatography for the Pattern Individualization of Macromolecular Materials
Verzegnassi et al. Rapid identification of Mg‐chelated chlorins by on‐line high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry
US4146331A (en) Atomizing tube for atomic absorption spectrometers
US3992174A (en) Specimen capsule and process for gas chromatography
Goode et al. Determination of deuterium by gas chromatography with a microwave-induced plasma emission detector
JPH10221250A (en) Atomic absorption photometer and metal sample atom vapor generating device for use in photometer