JPH09243431A - Flow rate sensor and flowmeter utilizing the same - Google Patents

Flow rate sensor and flowmeter utilizing the same

Info

Publication number
JPH09243431A
JPH09243431A JP4991496A JP4991496A JPH09243431A JP H09243431 A JPH09243431 A JP H09243431A JP 4991496 A JP4991496 A JP 4991496A JP 4991496 A JP4991496 A JP 4991496A JP H09243431 A JPH09243431 A JP H09243431A
Authority
JP
Japan
Prior art keywords
point
limit value
straight line
characteristic curve
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4991496A
Other languages
Japanese (ja)
Inventor
Kenzo Ochi
謙三 黄地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4991496A priority Critical patent/JPH09243431A/en
Publication of JPH09243431A publication Critical patent/JPH09243431A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a simple polyline approximation line to a flow rate sensor having complicated characteristics. SOLUTION: A line 11 connecting an upper limit value 9 with a lower limit value 4 on a sensor output characteristic curve and the shortest distance from an arbitrary point 12 on the characteristic curve to an arbitrary point 13 on the line 11 are obtained, polyline approximation characteristics are provided with a point on the characteristic curve where the shortest distance is the maximum as a split point, and the polyline approximation line is used to provide characteristic values such as a flow speed from sensor output values. In addition, the sensor is used to constitute a fluidic flowmeter to realize a flowmeter with little error.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術】本発明は、ガス・水などの流体の
流量計測に用いるセンサの流量換算係数を与える折れ線
近似に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polygonal line approximation for giving a flow rate conversion coefficient of a sensor used for measuring a flow rate of a fluid such as gas or water.

【0002】[0002]

【従来の技術】従来この種の流量センサは、特公平7−
119635号公報に示すような熱線式フローセンサが
用いられる。また、この種のセンサはフルディックガス
流量計の低流量域の流量センサとして用いられている
(実公平6−18244号公報)。このセンサは、図6
に示すような流速−出力値特性を示す。同図において、
横軸は、ガス・水などの流体の流速、縦軸はセンサの、
例えば、抵抗、電圧などの出力値を示す。曲線1は、セ
ンサの出力特性を示す。
2. Description of the Related Art Conventionally, a flow sensor of this type is disclosed in Japanese Patent Publication No. 7-
A hot wire type flow sensor as shown in Japanese Patent No. 119635 is used. Further, this type of sensor is used as a flow rate sensor in the low flow rate range of a full Dick gas flow meter (Japanese Utility Model Publication No. 6-18244). This sensor is shown in FIG.
A flow velocity-output value characteristic as shown in is shown. In the figure,
The horizontal axis is the flow velocity of fluid such as gas or water, the vertical axis is the sensor,
For example, the output values such as resistance and voltage are shown. Curve 1 shows the output characteristics of the sensor.

【0003】センサ出力値(S)が得られると、破線2
の水平線をたどり、曲線1との交点から垂線3をおろ
し、流速(V)が得られることになる。
When the sensor output value (S) is obtained, the broken line 2
Tracing the horizontal line of, and dropping the perpendicular 3 from the intersection with the curve 1, the flow velocity (V) is obtained.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、この種
のセンサは、流速と出力値との関係が、一般に、n次多
項式からなる曲線(1)で示されるような複雑な特性を
示す。すなわち、流速(V)のn次多項式で示される場
合が多い。このため、マイコン(CPU)などで、逆に
出力値(S)から流速(V)などを演算する場合、複雑
な演算を必要とするため時間がかかり応答性が悪くな
る、また、CPUの演算能力が必要となり高価になるな
どの課題があった。また、特性曲線を折れ線近似して用
いる場合には、あらかじめ測定した測定点間を直線近似
した場合には、近似直線を求める測定点に誤差が入って
いると、得られた流速値(V)に誤差が入る。また、出
力値を等分割した折れ線近似直線を用い場合、用いる領
域の近似直線、すなわちセンサ出力値に応じて誤差が大
きくばらつくなどの課題もあった。
However, this type of sensor exhibits a complicated characteristic such that the relationship between the flow velocity and the output value is generally represented by a curve (1) composed of an nth degree polynomial. That is, it is often represented by an nth degree polynomial of the flow velocity (V). Therefore, when a microcomputer (CPU) or the like, on the contrary, calculates the flow velocity (V) from the output value (S), it requires a complicated calculation, which takes time and deteriorates the responsiveness. There was a problem that capacity was required and it became expensive. Further, when the characteristic curve is used as a polygonal line approximation, and when the measurement points that have been measured in advance are linearly approximated, if there is an error in the measurement point for which an approximated straight line is obtained, the obtained flow velocity value (V) There is an error in. Further, when using a polygonal line approximation straight line obtained by equally dividing the output value, there is a problem that the error greatly varies depending on the approximate straight line of the used region, that is, the sensor output value.

【0005】本発明は上記課題を解決するもので、簡単
な折れ線近似分割法で構成した、誤差の少ない流量セン
サを提供することを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a flow sensor having a small error, which is constituted by a simple polygonal line approximation division method.

【0006】[0006]

【課題を解決するための手段】本発明の流量センサは、
特性曲線上の上限値、下限値とを結ぶ直線と、この特性
曲線上の任意の点から前記任意の点への最短距離を求
め、この最短距離が最大となる特性曲線上の点を分割点
として折れ線近似特性を与えるようにしたものである。
A flow sensor according to the present invention comprises:
A straight line connecting the upper limit value and the lower limit value on the characteristic curve, and the shortest distance from any point on the characteristic curve to the arbitrary point is obtained, and the point on the characteristic curve where the shortest distance is maximum is a division point. As a polygonal line approximation characteristic.

【0007】この本発明によれば、複雑な特性曲線を、
少ない分割数で誤差の少ない折れ線近似直線に分割する
ことができ、簡単な演算で出力値から流速などの特性を
演算することができる。
According to this invention, a complicated characteristic curve
It is possible to divide into a polygonal line approximation straight line with a small error with a small number of divisions, and it is possible to calculate characteristics such as the flow velocity from the output value by a simple calculation.

【0008】[0008]

【発明の実施の形態】上記目的を達成するために本発明
の流量センサは、以下の方法で折れ線近似を構成した。
BEST MODE FOR CARRYING OUT THE INVENTION In order to achieve the above object, the flow rate sensor of the present invention is constructed by a polygonal line approximation by the following method.

【0009】すなわち、特性曲線上の上限値、下限値と
を結ぶ直線と、この特性曲線上の任意の点から前記直線
上の任意の点への最短距離を求め、この最短距離が最大
となる特性曲線上の点を分割点として折れ線近似特性を
与えて流量センサを構成した。
That is, a straight line connecting the upper limit value and the lower limit value on the characteristic curve and the shortest distance from an arbitrary point on the characteristic curve to an arbitrary point on the straight line are obtained, and the shortest distance becomes maximum. A flow rate sensor was constructed by using the points on the characteristic curve as dividing points and giving the approximated polygonal line characteristics.

【0010】また、特性曲線上の上限値、下限値とを結
ぶ直線と、この特性曲線上の任意の点から引いた特性曲
線の接線が、前記直線と平行となる点を分割点として折
れ線近似特性を与えて流量センサを構成した。
A straight line connecting the upper limit value and the lower limit value on the characteristic curve and a tangent line of the characteristic curve drawn from an arbitrary point on the characteristic curve are parallel to the straight line, and the polygonal line approximation is performed. A flow sensor was constructed by giving characteristics.

【0011】また、特性曲線上の上限値、下限値とを結
ぶ直線と、この特性曲線上の任意の点から前記直線に直
行する直交線を引き、前記直線との交点を求め、前記任
意の点と、直交点との距離が最大となる特性曲線上の点
を分割点として折れ線近似特性を与えて流量センサを構
成した。
Further, a straight line connecting the upper limit value and the lower limit value on the characteristic curve and an orthogonal line perpendicular to the straight line are drawn from an arbitrary point on the characteristic curve to obtain an intersection point with the straight line, and the arbitrary point is set. A flow line sensor was constructed by giving a polygonal line approximation characteristic with the point on the characteristic curve where the distance between the point and the orthogonal point is the maximum as the dividing point.

【0012】また、特性曲線上の上限値、下限値とを結
ぶ直線と、この特性曲線上の任意の点から垂直線を引
き、前記直線と交点を求め、任意の点と交点との距離が
最大となる特性曲線上の点を分割点として折れ線近似特
性を与えて流量センサを構成した。
A straight line connecting an upper limit value and a lower limit value on the characteristic curve and a vertical line from an arbitrary point on the characteristic curve are drawn to find an intersection with the straight line, and a distance between the arbitrary point and the intersection is determined. The flow sensor was constructed by giving the line approximation characteristics with the point on the maximum characteristic curve as the dividing point.

【0013】また、前記のような折れ線近似特性を有す
る流量センサで流量計を構成した。本発明は上記構成に
よるため、複雑な特性曲線を、少ない分割数で誤差の少
ない折れ線近似直線に分割することができ、簡単な演算
で出力値から流速などの特性を演算することができる。
Further, the flow meter is constituted by the flow rate sensor having the above-mentioned polygonal line approximation characteristic. Since the present invention has the above-described configuration, it is possible to divide a complicated characteristic curve into a polygonal line approximation straight line with a small number of divisions, and it is possible to calculate characteristics such as the flow velocity from the output value by a simple calculation.

【0014】以下、本発明の第1の実施例についてを図
面を用いて説明する。 (実施例1)図1は、本発明の実施例1の流量センサの
流速−出力値の特性曲線を折れ線近似する方法を示した
特性曲線図。横軸はセンサの出力値(S)を、縦軸は流
速などの特性値(V)を示す。それぞれの下限値を4
(S4、V4)、上限値を9(S9、V9)で示す。図中の
白丸(○)4、5、6、7、8、9は測定点を、滑らか
な曲線10は、6個の測定点を3次の多項式で近似した
回帰曲線、V=f(s)を示す。直線11は、上限値と下
限値を結んだ直線、V=g(s)=a・S+bを示す。a
は、直線11の傾きを示し、a=(V9−V4)/(S9
−S4)となる。まず最初に、曲線10上の任意の一点
12から、直線上の任意の点、13とを結ぶ。点13を
直線11上を移動させたときの2点12、13間の距離
L(12-13)を求め、その距離L(12-13)が最短となるよう
に点13を移動させる。このようにして、曲線10上の
任意の点12に関して、最短距離L(12-13)を求めるこ
とができる。次に、この任意の点12を曲線10上を、
下限値4から上限値9へと移動させた時に、前記最短距
離L(12-13)が最大となる点12を求める。この時の点
12が第1の分割点12’となる。
A first embodiment of the present invention will be described below with reference to the drawings. (Embodiment 1) FIG. 1 is a characteristic curve diagram showing a method of approximating a characteristic curve of a flow velocity-output value of a flow sensor according to a first embodiment of the present invention by a broken line. The horizontal axis represents the sensor output value (S), and the vertical axis represents the characteristic value (V) such as the flow velocity. Lower limit of 4
(S4, V4), and the upper limit value is 9 (S9, V9). White circles (∘) 4, 5, 6, 7, 8, 9 in the figure represent measurement points, a smooth curve 10 represents a regression curve in which six measurement points are approximated by a cubic polynomial, V = f (s ) Is shown. A straight line 11 indicates a straight line connecting the upper limit value and the lower limit value, V = g (s) = a · S + b. a
Indicates the slope of the straight line 11, and a = (V9-V4) / (S9
-S4). First, an arbitrary point 12 on the curve 10 is connected to an arbitrary point 13 on the straight line. The distance L (12-13) between the two points 12 and 13 when the point 13 is moved on the straight line 11 is obtained, and the point 13 is moved so that the distance L (12-13) becomes the shortest. In this way, the shortest distance L (12-13) can be obtained for the arbitrary point 12 on the curve 10. Next, this arbitrary point 12 is placed on the curve 10.
A point 12 at which the shortest distance L (12-13) is maximized when the lower limit value 4 is moved to the upper limit value 9 is obtained. The point 12 at this time becomes the first division point 12 '.

【0015】このようにして、第1の分割点12’と、
上限値9とを結ぶ直線14および第1の分割点12と、
下限値4とを結ぶ直線15とが、分割点が1つの場合の
折れ線近似直線14と15とになる。さらに、この第1
の分割点12’と、上限値9とを結ぶ直線14と曲線1
0および第1の分割点12’と、下限値4とを結ぶ直線
15と曲線10との間で、前記と同様にして、2つの最
短距離を求め、大きい方の最短距離を示す方を第2の分
割点とする。例えば、第2の分割点が、第1の分割点1
2’と上限値との間にある場合は、上限値と第2の分割
点とを結ぶ直線と、第2の分割点と第1の分割点とを結
ぶ直線と、第1の分割点と下限値とを結ぶ直線との3つ
の直線が分割数2つの場合の3つの近似直線となる。
In this way, the first division point 12 'and
A straight line 14 connecting the upper limit value 9 and the first dividing point 12,
The straight line 15 connecting the lower limit value 4 becomes the polygonal line approximation straight lines 14 and 15 when there is one division point. Furthermore, this first
Of the dividing line 12 'and the upper limit value 9 and the curve 1
Between the straight line 15 connecting 0 and the first division point 12 ′ and the lower limit value 4 and the curve 10, two shortest distances are obtained in the same manner as described above, and the one showing the larger shortest distance is determined as the first. 2 division points. For example, the second division point is the first division point 1
When it is between 2 ′ and the upper limit value, a straight line connecting the upper limit value and the second dividing point, a straight line connecting the second dividing point and the first dividing point, and a first dividing point Three straight lines connecting the lower limit value and the straight line are the three approximate straight lines when the number of divisions is two.

【0016】従って、出力値(S)の大きさにより、そ
れぞれに分割された折れ線近似直線を用いてセンサ特性
値、流速(V)を得る。このようにして、所望の分割数
(Nb)までの分割点を順次求め、(Nb−1)個の折れ
線近似直線を得る。複雑な曲線で示される特性値を、簡
単な近似直線に分割して置き換えることにより、センサ
出力値(S)から簡単な演算で、誤差の小さい流速など
の特性値(V)が得られる。
Therefore, depending on the magnitude of the output value (S), the sensor characteristic value and the flow velocity (V) are obtained by using the polygonal line approximation straight lines divided into the respective values. In this way, the division points up to the desired division number (Nb) are sequentially obtained, and (Nb-1) polygonal line approximation straight lines are obtained. By dividing the characteristic value indicated by a complicated curve into a simple approximate straight line and replacing it, a characteristic value (V) such as a flow velocity with a small error can be obtained by a simple calculation from the sensor output value (S).

【0017】以上説明したように、誤差(最短距離)の
大きいところから順次分割してゆくため、効率よく複雑
な特性曲線を、誤差の少ない折れ線近似直線に分割する
ことができる。
As described above, since the error (shortest distance) is firstly divided, the complicated characteristic curve can be efficiently divided into the polygonal line approximation lines with less error.

【0018】(実施例2)図2は、本発明の実施例2の
流量センサの流速−出力値の特性曲線を折れ線近似する
方法を示した特性曲線図。横軸はセンサの出力値(S)
を、縦軸は流速などの特性値(V)を示す。図中、図1
と同じ構成要素には同じ番号を付けた。まず最初に、曲
線10上の任意の一点16から、曲線10の接線17を
引く。任意の点16を曲線10上を、下限値4から上限
値9へと移動させ、この時の接線17が前記直線11と
平行となる点を第1の分割点16’とする。
(Embodiment 2) FIG. 2 is a characteristic curve diagram showing a method of approximating the characteristic curve of flow velocity-output value of a flow rate sensor of Embodiment 2 of the present invention by a broken line. The horizontal axis is the sensor output value (S)
And the vertical axis represents the characteristic value (V) such as the flow velocity. In the figure, FIG.
The same components as are numbered the same. First, a tangent line 17 of the curve 10 is drawn from an arbitrary point 16 on the curve 10. The arbitrary point 16 is moved from the lower limit value 4 to the upper limit value 9 on the curve 10, and the point at which the tangent line 17 at this time is parallel to the straight line 11 is defined as a first division point 16 '.

【0019】このようにして、第1の分割点16’と、
上限値9とを結ぶ直線18および第1の分割点16’
と、下限値4とを結ぶ直線19とが、分割点が1つの場
合の折れ線近似直線18と19とになる。
In this way, the first division point 16 'and
A straight line 18 connecting the upper limit value 9 and the first division point 16 '
And the straight line 19 connecting the lower limit value 4 are the polygonal line approximation straight lines 18 and 19 when the number of division points is one.

【0020】次に、第1の分割点16’と、上限値9と
を結ぶ直線18と曲線10との間および第1の分割点1
6’と、下限値4とを結ぶ直線19と曲線10との間と
で、前記と同様にして、直線18、19に平行な曲線1
0上の接線をそれぞれ引く。曲線10と直線18、直線
19間との距離を求め、大きい方の距離を示す接線の接
点を第2の分割点20とする。例えば、第2の分割点
が、第1の分割点16’と上限値との間にある場合は、
上限値と第2の分割点とを結ぶ直線と、第2の分割点と
第1の分割点とを結ぶ直線と、第1の分割点と下限値と
を結ぶ直線との3つの直線が分割数2つの場合の3つの
近似直線となる。このように所望の分割数(Nb)まで
の分割点を順次求め、(Nb−1)個の折れ線近似直線
を得る。このようにして、複雑な曲線で示される特性値
を、簡単な近似直線に置き換えることにより、センサ出
力値(S)から簡単な演算で、誤差の小さい流速などの
特性値(V)が得られる。
Next, between the straight line 18 connecting the first dividing point 16 'and the upper limit value 9 and the curve 10 and the first dividing point 1
6'and the line between the straight line 19 connecting the lower limit value 4 and the curve 10 are parallel to the straight lines 18 and 19 in the same manner as described above.
Draw the tangent lines on 0 respectively. The distance between the curve 10 and the straight line 18 and the straight line 19 is obtained, and the contact point of the tangent line indicating the larger distance is set as the second division point 20. For example, when the second division point is between the first division point 16 'and the upper limit value,
Three straight lines, a straight line connecting the upper limit value and the second dividing point, a straight line connecting the second dividing point and the first dividing point, and a straight line connecting the first dividing point and the lower limit value, are divided. There are three approximate straight lines in the case of the number two. In this way, the division points up to the desired division number (Nb) are sequentially obtained, and (Nb-1) polygonal line approximation straight lines are obtained. In this way, by replacing the characteristic value indicated by the complicated curve with a simple approximate straight line, the characteristic value (V) such as the flow velocity with a small error can be obtained by a simple calculation from the sensor output value (S). .

【0021】(実施例3)図3は、本発明の実施例3の
流量センサの流速−出力値の特性曲線を折れ線近似する
方法を示した特性曲線図。図中、図1と同じ構成要素に
は同じ番号を付けた。
(Embodiment 3) FIG. 3 is a characteristic curve diagram showing a method of approximating the characteristic curve of flow velocity-output value of a flow sensor of Embodiment 3 of the present invention by a broken line. In the figure, the same components as those in FIG. 1 are assigned the same numbers.

【0022】まず最初に、曲線10上の任意の一点21
から、直線11へ垂線22を引き、交点を23とする。
任意の点21を曲線10上を、下限値4から上限値9へ
と移動させ、この時の2点21、23間の距離L(21-2
3)を求め、この距離L(21-23)が最大となる曲線10上
の点を第1の分割点21’とする。
First, an arbitrary point 21 on the curve 10
Then, a perpendicular line 22 is drawn to the straight line 11, and the intersection is 23.
The arbitrary point 21 is moved from the lower limit value 4 to the upper limit value 9 on the curve 10, and the distance L (21-2
3) is obtained, and the point on the curve 10 where this distance L (21-23) is maximum is set as the first division point 21 '.

【0023】このようにして、第1の分割点21’と、
上限値9とを結ぶ直線24および第1の分割点21’
と、下限値4とを結ぶ直線25とが、分割点が1つの場
合の折れ線近似直線24と25とになる。
In this way, the first division point 21 'and
A straight line 24 connecting the upper limit value 9 and the first division point 21 '
And the straight line 25 connecting the lower limit value 4 become the polygonal line approximation straight lines 24 and 25 when the number of division points is one.

【0024】次に、第1の分割点21’と、上限値9と
を結ぶ直線24と曲線10および第1の分割点21’
と、下限値4とを結ぶ直線25と曲線10との間で、前
記と同様にして、曲線10からそれぞれの直線に直交す
る垂線を引き、交点を求め、それぞれの垂線の長さを比
較し、大きい距離を示す方の交点を第2の分割点26と
する。例えば、第2の分割点26が、第1の分割点2
1’と上限値との間にある場合は、上限値と第2の分割
点とを結ぶ直線と、第2の分割点と第1の分割点とを結
ぶ直線と、第1の分割点と下限値とを結ぶ直線との3つ
の直線が分割数2つの場合の3つの近似直線となる。こ
のように所望の分割数(Nb)までの分割点を順次求
め、(Nb−1)個の折れ線近似直線を得る。このよう
に複雑な曲線で示される特性値を、簡単な近似直線に置
き換えることにより、センサ出力値(S)から簡単な演
算で、誤差の小さい流速などの特性値(V)が得られ
る。
Next, the straight line 24 connecting the first division point 21 'and the upper limit value 9, the curve 10 and the first division point 21'.
And a straight line 25 connecting the lower limit value 4 and the curve 10 in the same manner as above, draw perpendicular lines from the curve 10 orthogonal to the respective straight lines, find intersections, and compare the lengths of the respective perpendicular lines. , The intersection point indicating the larger distance is the second division point 26. For example, the second division point 26 is the first division point 2
When it is between 1 ′ and the upper limit value, a straight line connecting the upper limit value and the second dividing point, a straight line connecting the second dividing point and the first dividing point, and a first dividing point Three straight lines connecting the lower limit value and the straight line are the three approximate straight lines when the number of divisions is two. In this way, the division points up to the desired division number (Nb) are sequentially obtained, and (Nb-1) polygonal line approximation straight lines are obtained. By replacing the characteristic value represented by such a complicated curve with a simple approximate straight line, the characteristic value (V) such as the flow velocity with a small error can be obtained by a simple calculation from the sensor output value (S).

【0025】このように誤差(直線間の距離)の大きい
ところから順次分割してゆくため、効率よく複雑な特性
曲線を、折れ線近似直線に分割することができ、誤差の
すくない近似直線が得られる。
Since the error (distance between straight lines) is sequentially divided in this manner, a complicated characteristic curve can be efficiently divided into polygonal line approximation lines, and an approximation line with less error can be obtained. .

【0026】(実施例4)図4は、本発明の実施例4の
流量センサの流速−出力値の特性曲線を折れ線近似する
方法を示した特性曲線図。図中、図1と同じ構成要素に
は同じ番号を付けた。まず最初に、曲線10上の任意の
一点27から、出力軸へ垂線28を引き、直線11との
交点を29とする。任意の点27を曲線10上を、下限
値4から上限値9へと移動させ、この時の2点27、2
9間の距離L(27-29)を求め、この距離Lが最大となる
曲線10上の点を第1の分割点27’とする。
(Embodiment 4) FIG. 4 is a characteristic curve diagram showing a method of approximating the characteristic curve of flow velocity-output value of a flow sensor of Embodiment 4 of the present invention by a broken line. In the figure, the same components as those in FIG. 1 are assigned the same numbers. First, a perpendicular 28 is drawn from the arbitrary point 27 on the curve 10 to the output shaft, and the intersection with the straight line 11 is 29. The arbitrary point 27 is moved on the curve 10 from the lower limit value 4 to the upper limit value 9, and the two points 27, 2 at this time are moved.
The distance L (27-29) between 9 is obtained, and the point on the curve 10 where this distance L is maximum is set as the first division point 27 '.

【0027】このようにして、第1の分割点27’と、
上限値9とを結ぶ直線30および第1の分割点27’
と、下限値4とを結ぶ直線31とが、分割点が1つの場
合の折れ線近似直線30、31とになる。
In this way, the first division point 27 'and
A straight line 30 connecting the upper limit value 9 and the first division point 27 '
And a straight line 31 connecting the lower limit value 4 become the polygonal line approximation straight lines 30 and 31 in the case where there is one division point.

【0028】次に、第1の分割点27’と、上限値9と
を結ぶ直線30と曲線10および第1の分割点27’、
下限値4とを結ぶ直線31と曲線10との間で、前記と
同様にして、それぞれより出力軸に垂線を引き、それぞ
れの直線との交点を求め、それぞれの2点間の距離Lを
比較し、大きい距離を示す方を第2の分割点32とす
る。例えば、第2の分割点32が、第1の分割点27’
と上限値との間にある場合は、上限値と第2の分割点と
を結ぶ直線と、第2の分割点と第1の分割点とを結ぶ直
線と、第1の分割点と下限値とを結ぶ直線との3つの直
線が分割数2つの場合の3つの近似直線となる。このよ
うに所望の分割数(Nb)までの分割点を順次求め、
(Nb−1)個の折れ線近似直線を得る。このように複
雑な曲線で示される特性値を、簡単な近似直線に置き換
えることにより、センサ出力値(S)から簡単な演算
で、誤差の小さい流速などの特性値(V)が得られる。
Next, a straight line 30 connecting the first division point 27 'and the upper limit value 9, the curve 10 and the first division point 27',
Between the straight line 31 connecting the lower limit value 4 and the curve 10, in the same manner as above, a perpendicular line is drawn from each of the output shafts, the intersection with each straight line is obtained, and the distance L between each two points is compared. However, the one indicating the larger distance is set as the second division point 32. For example, the second division point 32 is the first division point 27 '.
And between the upper limit value and the upper limit value, a straight line connecting the upper limit value and the second dividing point, a straight line connecting the second dividing point and the first dividing point, and the first dividing point and the lower limit value. The three straight lines connecting with and are the three approximate straight lines when the number of divisions is two. In this way, dividing points up to the desired dividing number (Nb) are sequentially obtained,
(Nb-1) polygonal line approximation straight lines are obtained. By replacing the characteristic value represented by such a complicated curve with a simple approximate straight line, the characteristic value (V) such as the flow velocity with a small error can be obtained by a simple calculation from the sensor output value (S).

【0029】このように誤差(直線間の距離)の大きい
ところから順次分割してゆくため、効率よく複雑な特性
曲線を、折れ線近似直線に分割することができ、誤差の
すくない近似直線が得られる。
As described above, since the error (distance between straight lines) is sequentially divided, the complicated characteristic curve can be efficiently divided into broken line approximation straight lines, and an approximation straight line with less error can be obtained. .

【0030】なお、以上の説明で測定点をあらかじめn
次多項式からなる回帰曲線を用いて近似直線を分割し
た。このため測定点に誤差が入っていても適度にならさ
れ、例えば、各測定点間を直線で結んで近似直線を得た
場合に比べ、センサ出力値から流速などのセンサ特性値
を演算する場合に、発生する誤差が小さくなり、また近
似直線間の誤差のばらつきも小さくなる。
In the above description, the measurement point is set to n in advance.
The approximate straight line was divided using a regression curve composed of a polynomial of degree. Therefore, even if there is an error in the measurement points, it is properly leveled. For example, when calculating the sensor characteristic value such as the flow velocity from the sensor output value compared with the case where an approximate straight line is obtained by connecting each measurement point with a straight line. In addition, the error that occurs is small, and the variation in error between the approximate straight lines is also small.

【0031】(実施例5)図5は、本発明の実施例5の
フルイディック流量計33の要部概略構成図。34はガ
スの流れ方向を示す矢印、35、36はガスの流入口、
流出口、37は流入口のノズル部を示し、37で示され
る熱線式フローセンサはノズル部37の底面に配置され
る。38、39はフルイディック発振のための支柱を、
40はターゲットを示す。流体が矢印34の方向に流れ
ると、ノズル部36で流体発振を生じる。この発振周波
数を検知し、流量計として動作しするが、低流領域では
流体発振が停止する。この低流量域では、熱線式フロー
センサがノズル部を流れる流体の流速を検知し、流量計
として動作する。前記で説明した熱線式フローセンサを
用いて構成すると、簡単な演算で、誤差の少ない流速が
得られるため、応答性に優れた、誤差の少ない、流量計
ができる。また、簡単な演算しかできない低価格のCP
Uでこれらの演算ができるので、流量計を低価格で実現
できる。
(Embodiment 5) FIG. 5 is a schematic view of the essential parts of a fluidic flowmeter 33 according to a fifth embodiment of the present invention. 34 is an arrow indicating the flow direction of gas, 35 and 36 are gas inlets,
An outflow port, 37 is a nozzle part of an inflow port, and the hot wire type flow sensor indicated by 37 is arranged on the bottom surface of the nozzle part 37. 38 and 39 are columns for fluidic oscillation,
40 shows a target. When the fluid flows in the direction of arrow 34, fluid oscillation occurs in the nozzle portion 36. The oscillation frequency is detected and the flow meter operates, but the fluid oscillation stops in the low flow region. In this low flow rate region, the hot wire type flow sensor detects the flow velocity of the fluid flowing through the nozzle portion and operates as a flow meter. When the hot wire flow sensor described above is used, a flow rate with a small error can be obtained by a simple calculation, so that a flowmeter with excellent responsiveness and a small error can be obtained. Also, a low-cost CP that can only perform simple calculations
Since these operations can be performed by U, the flow meter can be realized at a low price.

【0032】[0032]

【発明の効果】以上のように本発明によれば、以下の効
果が得られる。
As described above, according to the present invention, the following effects can be obtained.

【0033】(1)特性曲線上の上限値、下限値とを結
ぶ直線と、この特性曲線上の任意の点から前記直線上の
任意の点への最短距離を求め、この最短距離が最大とな
る特性曲線上の点を分割点として折れ線近似特性を与え
た流量センサとすることにより、折れ線近似直線から簡
単な演算でセンサ出力値から、流速などのセンサ特性値
を得ることができ、誤差も少なくなる。
(1) A straight line connecting an upper limit value and a lower limit value on the characteristic curve and a shortest distance from an arbitrary point on the characteristic curve to an arbitrary point on the straight line are obtained. By using a point on the characteristic curve as a dividing point to provide a flow rate sensor that is given a polygonal line approximation characteristic, it is possible to obtain sensor characteristic values such as the flow velocity from the sensor output value by a simple calculation from the polygonal line approximation line, and there are also errors. Less.

【0034】(2)特性曲線上の上限値、下限値とを結
ぶ直線と、この特性曲線上の任意の点から引いた特性曲
線の接線が、前記直線と平行となる点を分割点として折
れ線近似特性を与えたて流量センサとすることにより、
折れ線近似直線から簡単な演算でセンサ出力値から、流
速などのセンサ特性値を得ることができ、誤差も少なく
なる。また、複雑な特性曲線を簡単に折れ線近似直線と
することもできる。
(2) A straight line connecting the upper limit value and the lower limit value on the characteristic curve and a tangent line of the characteristic curve drawn from an arbitrary point on the characteristic curve are parallel to the straight line, and the polygonal line is a dividing line. By giving an approximate characteristic and using it as a flow sensor,
The sensor characteristic value such as the flow velocity can be obtained from the sensor output value by a simple calculation from the polygonal line approximation line, and the error is reduced. Further, a complicated characteristic curve can be easily made into a polygonal line approximation straight line.

【0035】(3)特性曲線上の上限値、下限値とを結
ぶ直線と、この特性曲線上の任意の点から前記直線に直
行する直交線を引き、前記直線との交点を求め、前記任
意の点と、直交点との距離が最大となる特性曲線上の点
を分割点として折れ線近似特性を与えた流量センサとす
ることにより、折れ線近似直線から簡単な演算でセンサ
出力値から、流速などのセンサ特性値を得ることがで
き、誤差も少なくなる。
(3) A straight line connecting the upper limit value and the lower limit value on the characteristic curve and an orthogonal line orthogonal to the straight line are drawn from an arbitrary point on the characteristic curve, the intersection point with the straight line is determined, and the arbitrary point is set. The point on the characteristic curve that maximizes the distance between the point and the orthogonal point is a dividing point, and the flow rate sensor is given a polygonal line approximation characteristic. The sensor characteristic value can be obtained, and the error is reduced.

【0036】(4)特性曲線上の上限値、下限値とを結
ぶ直線と、この特性曲線上の任意の点から垂直線を引
き、前記直線と交点を求め、任意の点と交点との距離が
最大となる特性曲線上の点を分割点として折れ線近似特
性を与えた流量センサとすることにより、折れ線近似直
線から簡単な演算でセンサ出力値から、流速などのセン
サ特性値を得ることができ、誤差も少なくなる。また、
より一層簡単に、複雑な特性曲線を近似直線に分割でき
る。
(4) A straight line connecting an upper limit value and a lower limit value on the characteristic curve and a vertical line is drawn from an arbitrary point on the characteristic curve to obtain an intersection with the straight line, and a distance between the arbitrary point and the intersection. By using the flow rate sensor with the polygonal line approximation characteristics using the point on the characteristic curve with the maximum value as the dividing point, it is possible to obtain the sensor characteristic value such as the flow velocity from the sensor output value by a simple calculation from the polygonal line approximation line. , The error is reduced. Also,
It is possible to divide a complicated characteristic curve into approximate straight lines more easily.

【0037】(5)測定点をあらかじめn次多項式から
なる回帰曲線に変換することにより、測定値にある程度
の誤差が混入していても、近似直線にはそれほど大きな
誤差として入ることがなくなる。
(5) By converting the measurement points into a regression curve consisting of an n-th degree polynomial in advance, even if some error is included in the measured value, it does not enter the approximation straight line as such a large error.

【0038】(6)実施例1〜4で説明した流量センサ
でフルイディック流量計を構成したので、簡単な演算
で、誤差の少ない流量計を実現できる。また、流量計の
低価格化に有効である。
(6) Since the fluidic flowmeter is composed of the flow rate sensors described in Embodiments 1 to 4, it is possible to realize a flowmeter with a small error by a simple calculation. It is also effective in reducing the price of flow meters.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の流量センサの出力特性
FIG. 1 is an output characteristic diagram of a flow sensor according to a first embodiment of the present invention.

【図2】本発明の第2の実施例の流量センサの出力特性
FIG. 2 is an output characteristic diagram of a flow sensor according to a second embodiment of the present invention.

【図3】本発明の第3の実施例の流量センサの出力特性
FIG. 3 is an output characteristic diagram of a flow sensor according to a third embodiment of the present invention.

【図4】本発明の第4の実施例の流量センサの出力特性
FIG. 4 is an output characteristic diagram of a flow sensor according to a fourth embodiment of the present invention.

【図5】本発明の第5の実施例の流量計の断面図FIG. 5 is a sectional view of a flowmeter according to a fifth embodiment of the present invention.

【図6】熱線式流量センサの特性図FIG. 6 is a characteristic diagram of a hot wire type flow sensor.

【符号の説明】[Explanation of symbols]

4 センサ特性下限値 9 センサ特性下限値 10 センサ特性曲線 11 上限値と下限値を結ぶ直線 12 センサ特性曲線の任意の点 13 直線上の任意の点 12’ 実施例1の第1の分割点 16’ 実施例2の第1の分割点 17 曲線10上の接線 20 実施例2の第2の分割点 21’ 実施例3の第1の分割点 22 垂直線 27’ 実施例4の第1の分割点 28 垂直線 32 実施例4の第2の分割点 35 フルイディック流量計 36 ノズル部 37 熱線式フローセンサ 40 ターゲット 4 Lower limit value of sensor characteristic 9 Lower limit value of sensor characteristic 10 Sensor characteristic curve 11 Straight line connecting upper limit value and lower limit value 12 Any point of sensor characteristic curve 13 Any point on straight line 12 'First division point of Example 1 16 'First division point of Example 2 17 Tangent on curve 10 20 Second division point of Example 2 21' First division point of Example 3 22 Vertical line 27 'First division of Example 4 Point 28 Vertical line 32 Second division point of Example 4 35 Fluidic flow meter 36 Nozzle portion 37 Hot wire type flow sensor 40 Target

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】特性曲線上の上限値、下限値とを結ぶ直線
と、この特性曲線上の任意の点から前記直線上の任意の
点への最短距離を求め、この最短距離が最大となる特性
曲線上の点を分割点として折れ線近似特性を与える流量
センサ。
1. A straight line connecting an upper limit value and a lower limit value on a characteristic curve and a shortest distance from an arbitrary point on the characteristic curve to an arbitrary point on the straight line, and the shortest distance becomes maximum. A flow rate sensor that gives polygonal line approximation characteristics using points on the characteristic curve as dividing points.
【請求項2】特性曲線上の上限値、下限値とを結ぶ直線
と、この特性曲線上の任意の点から引いた特性曲線の接
線が、前記直線と平行となる点を分割点として折れ線近
似特性を与える流量センサ。
2. A polygonal line approximation with a straight line connecting an upper limit value and a lower limit value on the characteristic curve and a tangent line of the characteristic curve drawn from an arbitrary point on the characteristic curve being parallel to the straight line with the dividing point as a dividing point. A flow sensor that gives characteristics.
【請求項3】特性曲線上の上限値、下限値とを結ぶ直線
と、この特性曲線上の任意の点から前記直線に直行する
直交線を引き、前記直線との交点を求め、前記任意の点
と、直交点との距離が最大となる特性曲線上の点を分割
点として折れ線近似特性を与える流量センサ。
3. A straight line connecting an upper limit value and a lower limit value on a characteristic curve and an orthogonal line orthogonal to the straight line are drawn from an arbitrary point on the characteristic curve to obtain an intersection point with the straight line, A flow rate sensor that provides a polygonal line approximation characteristic with a point on the characteristic curve that maximizes the distance between the point and the orthogonal point as the dividing point.
【請求項4】特性曲線上の上限値、下限値とを結ぶ直線
と、この特性曲線上の任意の点から垂直線を引き、前記
直線と交点を求め、任意の点と交点との距離が最大とな
る特性曲線上の点を分割点として折れ線近似特性を与え
る流量センサ。
4. A straight line connecting an upper limit value and a lower limit value on a characteristic curve and a vertical line from an arbitrary point on the characteristic curve, an intersection point is obtained, and a distance between the arbitrary point and the intersection point is calculated. A flow rate sensor that gives a polygonal line approximation characteristic with the point on the maximum characteristic curve as the dividing point.
【請求項5】請求項1〜4項のいずれか1項に記載の流
量センサで構成される流量計。
5. A flow meter comprising the flow sensor according to any one of claims 1 to 4.
JP4991496A 1996-03-07 1996-03-07 Flow rate sensor and flowmeter utilizing the same Withdrawn JPH09243431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4991496A JPH09243431A (en) 1996-03-07 1996-03-07 Flow rate sensor and flowmeter utilizing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4991496A JPH09243431A (en) 1996-03-07 1996-03-07 Flow rate sensor and flowmeter utilizing the same

Publications (1)

Publication Number Publication Date
JPH09243431A true JPH09243431A (en) 1997-09-19

Family

ID=12844290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4991496A Withdrawn JPH09243431A (en) 1996-03-07 1996-03-07 Flow rate sensor and flowmeter utilizing the same

Country Status (1)

Country Link
JP (1) JPH09243431A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006125989A (en) * 2004-10-28 2006-05-18 Denso Corp Load sensor, load detection method of load sensor, and pedestrian protection system
JP2013053841A (en) * 2011-08-10 2013-03-21 Yazaki Corp Flow rate calibration method, flow rate calibration device, and reduced heat quantity calculating device
JP2015105875A (en) * 2013-11-29 2015-06-08 富士通株式会社 Approximate function creation program, approximate function creation method, approximate function creation device, and state-of-charge estimation program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006125989A (en) * 2004-10-28 2006-05-18 Denso Corp Load sensor, load detection method of load sensor, and pedestrian protection system
JP2013053841A (en) * 2011-08-10 2013-03-21 Yazaki Corp Flow rate calibration method, flow rate calibration device, and reduced heat quantity calculating device
JP2015105875A (en) * 2013-11-29 2015-06-08 富士通株式会社 Approximate function creation program, approximate function creation method, approximate function creation device, and state-of-charge estimation program

Similar Documents

Publication Publication Date Title
CN101438135B (en) Single and multiphase fluid measurements
US6092409A (en) System for validating calibration of a coriolis flowmeter
CN101839737B (en) Mass flow meter, mass flow controller, and mass flow meter system and mass flow controller system including the same
US20080302169A1 (en) Method for detecting corrosion, erosion or product buildup on vibrating element densitometers and coriolis flowmeters and calibration validation
US10724879B2 (en) Flow measuring device operating on the vortex counter principle
JP3487589B2 (en) Flow coefficient setting method and flow measurement device using the same
JPH09243431A (en) Flow rate sensor and flowmeter utilizing the same
JP2004093179A (en) Thermal type flowmeter
CN106017582A (en) A pitot tube flow measuring method based on the tube diameter dichotomy principle
JP3805030B2 (en) Flow rate conversion data creation method and flow meter for flow sensor
CN1263255A (en) Volume or mass flowmeter
JP3252187B2 (en) Flowmeter
JPH0319492B2 (en)
JP2929356B2 (en) Flowmeter
JPH0119062Y2 (en)
JP2965242B2 (en) Mass flow meter converter
SU1120244A1 (en) Flow velocity transmitter
JP3036218B2 (en) Flowmeter
JPH0810186B2 (en) Density meter
RU2641505C1 (en) Information and measuring system for measurement of flow and quantity of gas
JP3146603B2 (en) Fluidic meter controller
US9175995B2 (en) Inferential coriolis mass flowmeter for determining a mass flowrate of a fluid by using algorithm derived partially from coriolis force
JPH11248503A (en) Flow meter and gas meter
RU1795287C (en) Method of measuring gas mass flow rate
JPH06258104A (en) Flowrate meter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040823

A131 Notification of reasons for refusal

Effective date: 20041109

Free format text: JAPANESE INTERMEDIATE CODE: A131

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20050111