JPH06258104A - Flowrate meter - Google Patents

Flowrate meter

Info

Publication number
JPH06258104A
JPH06258104A JP5043550A JP4355093A JPH06258104A JP H06258104 A JPH06258104 A JP H06258104A JP 5043550 A JP5043550 A JP 5043550A JP 4355093 A JP4355093 A JP 4355093A JP H06258104 A JPH06258104 A JP H06258104A
Authority
JP
Japan
Prior art keywords
flow rate
data
coefficient
output signal
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5043550A
Other languages
Japanese (ja)
Other versions
JP3057949B2 (en
Inventor
Koichi Ueki
浩一 植木
Koichi Takemura
晃一 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5043550A priority Critical patent/JP3057949B2/en
Publication of JPH06258104A publication Critical patent/JPH06258104A/en
Application granted granted Critical
Publication of JP3057949B2 publication Critical patent/JP3057949B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To accurately measure flowrate of gas and liquid. CONSTITUTION:A coefficient data group obtained from data sampled in advance out of fluid flowrate and the output signal of a flowrate detection means 8 are stored in a data memory means 10 and a correction factor for the scattering of flowrate detection means 8 is input to a correction data input means 11. Then the coefficient data group is corrected with a correction means 12 and a gradient is operated with the corrected coefficient group. And with using the output signal detected with the flowrate detection means 8, the corrected coefficient data of the data memory means 10, the operated gradient value and Lagrange function, the non-linear characteristic of the coefficient showing the relation between the flowrate and the flowrate detection means 8 is approximated by interpolation to obtain flowrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、都市ガス、LPGガス
等の気体や水道水などの液体等の流体流量を計測する流
量計に係わり、特に流量検出センサーとしてフルイディ
ック素子を用いた流量計で、流量計間の器差を簡単且つ
速く修正し流量センサーの出力信号より高精度の演算機
能を有する流量計に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow meter for measuring the flow rate of gas such as city gas, LPG gas or liquid such as tap water, and particularly to a flow meter using a fluidic element as a flow rate detecting sensor. Thus, the present invention relates to a flow meter which can easily and quickly correct the instrumental difference between the flow meters and has a highly accurate calculation function than the output signal of the flow sensor.

【0002】[0002]

【従来の技術】従来、この種の流量計は、例えば特開平
3−44512号公報に示されているように、図4、図
5のような構成になっていた。
2. Description of the Related Art Conventionally, a flow meter of this type has a structure as shown in FIGS. 4 and 5, as disclosed in Japanese Patent Laid-Open No. 3-44512.

【0003】即ち、図4の従来の流量計において、1は
流量計で、2はガス配管、3はフルイディック発振素子
で、流体のもつ運動エネルギーを利用して流体発振を生
じさせる。4は圧電膜センサーで、流体発振の周波数を
検出する。5はフローセンサで小流量域の流量を検出す
る。6は遮断弁で、異常な使用状態を検出するとガスの
供給を遮断する。7は制御装置である。
That is, in the conventional flowmeter of FIG. 4, 1 is a flowmeter, 2 is a gas pipe, and 3 is a fluidic oscillation element, which causes fluid oscillation by utilizing the kinetic energy of the fluid. A piezoelectric film sensor 4 detects the frequency of fluid oscillation. A flow sensor 5 detects a flow rate in a small flow rate range. A shutoff valve 6 shuts off the gas supply when an abnormal use state is detected. Reference numeral 7 is a control device.

【0004】図5に制御装置7の特性を示す。ガス配管
2を流れる流体はフルイディック発信素子3を通過する
時で流体発振を生じる。そのときの発振周波数Fと流体
流量とのフルイディック発振素子3で関係が一般にQ=
A・F+Bなる直線近似式が成立することを利用して流
量を求める。しかしフルイディック発振素子3は計測す
る全流量域で前述の直線式は成立しない。従って直線近
似が可能な発振周波数範囲毎に直線近似式の定数A、B
を変えて流量を求める。図5は周波数F0で直線近似式
が切り替わる場合である。
FIG. 5 shows the characteristics of the control device 7. The fluid flowing through the gas pipe 2 causes fluid oscillation when passing through the fluidic transmission element 3. The relationship between the oscillation frequency F and the fluid flow rate at that time is generally Q =
The flow rate is obtained by utilizing the fact that the linear approximation formula A · F + B holds. However, the fluidic oscillating element 3 does not hold the above-described linear equation in the entire flow rate range to be measured. Therefore, the constants A and B of the linear approximation equation are set for each oscillation frequency range where linear approximation is possible.
To obtain the flow rate. FIG. 5 shows a case where the linear approximation formula is switched at the frequency F0.

【0005】次に定数A、Bはバラツキがあり16段階
に分割しあらかじめ設定しておく。そして周波数範囲が
F0までの領域においてA0、B0の最適な組合せを16
段階の中より選ぶ。同様に周波数がF0以上の場合、A
1、B1の最適な組合せを16段階の中から選択し設定す
る。以上の処理を行った後流量計測をし圧電膜センサ4
から検出した周波数より流量を求める。
Next, since the constants A and B have variations, they are divided into 16 steps and set in advance. Then, the optimum combination of A0 and B0 is 16 in the frequency range up to F0.
Choose from among the stages. Similarly, if the frequency is F0 or higher, A
The optimum combination of 1 and B1 is selected from 16 steps and set. After performing the above processing, the flow rate is measured and the piezoelectric film sensor 4
Calculate the flow rate from the frequency detected from.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上記従来
の構成では、流量と振動周波数(あるいは周期)の関係
を示す定数を16段階しか設定していないため、特に設
定した段階の間に最適値がある場合、器差が大きくな
り、その結果流量を精度良く計測できず、また積算流量
値にも影響するという課題があった。
However, in the above-mentioned conventional configuration, since the constant indicating the relationship between the flow rate and the vibration frequency (or cycle) is set only in 16 steps, there is an optimum value especially between the set steps. In this case, there is a problem that the instrumental difference becomes large and, as a result, the flow rate cannot be accurately measured and the integrated flow rate value is also affected.

【0007】本発明は上記課題を解決するもので、流量
検出手段の信号より正確な流量演算をおこなえる流量計
を提供することを目的としたものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a flow meter capable of performing a more accurate flow rate calculation from the signal of the flow rate detecting means.

【0008】[0008]

【課題を解決するための手段】本発明は上記目的を達成
するため、流体流量を検出する流量検出手段と、予め前
記流量検出手段の出力信号と流体流量に対応した前記流
量検出手段の出力信号とから求めた係数群とを記憶した
データ記憶手段と、前記データ記憶手段のデータを補正
する値を入力する補正データ入力手段と、前記補正デー
タで前記データ記憶手段のデータ値を補正する補正手段
と、前記補正手段で補正された係数より前記流量検出手
段の出力信号に対応した係数を近似するラグランジェ関
数記憶手段と、予め前記流量検出手段の出力信号と前記
補正手段で補正されたデータ群とより前記ラグランジェ
関数記憶手段の係数勾配を演算する勾配演算手段と、前
記流量検出手段の出力信号と前記勾配演算手段の勾配と
前記ラグランジェ関数記憶手段に格納されたラグランジ
ェ関数とから流量を演算する流量演算手段とを有するも
のである。
In order to achieve the above object, the present invention provides a flow rate detecting means for detecting a fluid flow rate, an output signal of the flow rate detecting means and an output signal of the flow rate detecting means corresponding to the fluid flow rate in advance. Data storage means for storing the coefficient group obtained from the above, correction data input means for inputting a value for correcting the data of the data storage means, and correction means for correcting the data value of the data storage means with the correction data. A Lagrangian function storage means for approximating a coefficient corresponding to the output signal of the flow rate detection means from the coefficient corrected by the correction means, and an output signal of the flow rate detection means and a data group corrected by the correction means in advance. The gradient calculating means for calculating the coefficient gradient of the Lagrange function storing means, the output signal of the flow rate detecting means, the gradient of the gradient calculating means, and the Lagrange Those having a flow rate calculation means for calculating a flow rate from the Lagrange function stored in the number storage means.

【0009】[0009]

【作用】本発明は上記構成によって、流体流量と流量検
出手段の出力信号との関係を示す係数を補正データ入力
手段より入力した補正値をもとに補正手段で最適値に補
正する。その補正された係数データをラグランジェ関数
で近似し、その時の流量検出手段の出力信号に対応した
係数をもとに流体流量を検出する流量検出手段の出力信
号と補正手段で補正された各データ点を通るラグランジ
ェ関数とから瞬時流量を演算し更に積算流量を求める。
According to the present invention, with the above configuration, the correction means corrects the coefficient indicating the relationship between the fluid flow rate and the output signal of the flow rate detection means to the optimum value based on the correction value input from the correction data input means. The corrected coefficient data is approximated by the Lagrangian function, and the output signal of the flow rate detecting means for detecting the fluid flow rate based on the coefficient corresponding to the output signal of the flow rate detecting means at that time and each data corrected by the correcting means The instantaneous flow rate is calculated from the Lagrangian function passing through the points, and the integrated flow rate is obtained.

【0010】このように流体流量と流量検出手段の出力
信号との非線形な関係を示す関数を補正データ入力手段
で正確に補正して流量を求めるので、流量誤差を極めて
小さく、高精度にもとめることができる。その結果ガス
の使用量である積算値も正確に計測できる。
As described above, since the function showing the non-linear relationship between the fluid flow rate and the output signal of the flow rate detecting means is accurately corrected by the correction data inputting means to obtain the flow rate, the flow rate error can be made extremely small and highly accurate. You can As a result, the integrated value, which is the amount of gas used, can be accurately measured.

【0011】[0011]

【実施例】以下本発明の一実施例を図1を参照して説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG.

【0012】図1において、図4、図5と同相当物には
同一番号を付した。図1は本発明の実施例の流量計のブ
ロック図である。図1において、8は流量検出手段で、
複数の流量検出手段より構成される。一例として8aは
大流量域を計測する第1の流量検出手段で、例えばフル
イディック発振素子3を用いて流体発振を発生させ、流
体の発振周波数を例えば圧電センサー、サーミスタ等を
用いて圧力−電圧変化、熱−抵抗変化として検出し、ま
た8bは小流量域を計測する第2の流量検出手段で、例
えば熱線式センサーにより流速を求める。あるいは全流
量域を一つの流量検出手段8で検出することも可能であ
る。
In FIG. 1, the same parts as those in FIGS. 4 and 5 are designated by the same reference numerals. FIG. 1 is a block diagram of a flow meter according to an embodiment of the present invention. In FIG. 1, 8 is a flow rate detecting means,
It is composed of a plurality of flow rate detecting means. As an example, 8a is a first flow rate detecting means for measuring a large flow rate region, for example, fluid oscillation is generated using the fluidic oscillating element 3, and the oscillation frequency of the fluid is pressure-voltage using a piezoelectric sensor, a thermistor or the like. Change, heat-resistance change, and 8b is a second flow rate detecting means for measuring a small flow rate region, for example, a flow velocity is obtained by a heat ray sensor. Alternatively, the entire flow rate range can be detected by one flow rate detecting means 8.

【0013】10はデータ記憶手段で、予め計測したい
流量範囲でサンプリングした流体流量とその時の流量検
出手段8の出力信号とのサンプリングデータより流体流
量と流量検出手段8の関係を示す係数を係数を求め、係
数と流量検出手段8の出力信号とのペアで記憶してい
る。11は補正データ入力手段で、第1の流量検出手段
8aのバラツキや第2の流量検出手段8bのバラツキを
補正する値が入力される。あるいは設定器(図示せず)
などを介し補正値を補正データ入力手段に送信する。1
2は補正手段で補正データ入力手段11に入力された補
正値でデータ記憶手段10に格納された係数データ群を
補正する。
Reference numeral 10 denotes a data storage means, which determines a coefficient indicating a relationship between the fluid flow rate and the flow rate detection means 8 from sampling data of a fluid flow rate sampled in a flow rate range to be measured in advance and an output signal of the flow rate detection means 8 at that time. The obtained coefficient is stored as a pair of the coefficient and the output signal of the flow rate detecting means 8. Reference numeral 11 is a correction data inputting means for inputting a value for correcting the variation of the first flow rate detecting means 8a and the variation of the second flow rate detecting means 8b. Or setting device (not shown)
The correction value is transmitted to the correction data inputting means via, for example. 1
A correction unit 2 corrects the coefficient data group stored in the data storage unit 10 with the correction value input to the correction data input unit 11.

【0014】13はラグランジェ関数記憶手段で、与え
られた係数のデータ点を通過する関数を近似する多項式
関数である。14は勾配演算手段で、データ記憶手段1
0に格納された係数及び流量検出手段8の出力信号とよ
り係数データ間の勾配を求める。15は切換手段で、第
1の流量検出手段8aあるいは第2の流量検出手段8b
で流量計測するのかを判定し切り換える。16は流量演
算手段で、流量検出手段8で検出した出力信号とラグラ
ンジェ関数記憶手段13に格納されたラグランジェ関数
とデータ記憶手段10に格納されたデータ群と勾配演算
手段14で求めた勾配とより、そのときの瞬時流量を演
算し求める。17は積算流量演算手段で、求めた流量を
積算し積算値を求める。18は表示手段で、積算値等を
表示する。
Reference numeral 13 is a Lagrangian function storing means, which is a polynomial function approximating a function passing through a data point of a given coefficient. Reference numeral 14 is a gradient calculation means, which is a data storage means 1
The coefficient between the coefficient data stored in 0 and the output signal of the flow rate detection means 8 is used to determine the gradient between the coefficient data. Reference numeral 15 is a switching means, which is the first flow rate detecting means 8a or the second flow rate detecting means 8b.
Switch to determine whether to measure the flow rate with. Reference numeral 16 is a flow rate calculation means, which is an output signal detected by the flow rate detection means 8, a Lagrange function stored in the Lagrange function storage means 13, a data group stored in the data storage means 10, and a gradient calculated by the gradient calculation means 14. From, the instantaneous flow rate at that time is calculated and obtained. Reference numeral 17 denotes an integrated flow rate calculation means, which integrates the obtained flow rates to obtain an integrated value. Reference numeral 18 is a display means for displaying the integrated value and the like.

【0015】次に上記構成の動作を図2を用いて説明す
る。ガスが使用され始めるとガス流量を流量検出手段8
によって例えば電圧信号などの信号形態で検出する。こ
のとき流体流量と流量検出手段の出力信号とは非線形な
特性を有し、その時の流体流量と流量検出手段19の出
力信号の関係を示す係数は図2に示すように非線形な特
性を有する。そこで予め流量と流量検出手段8の出力信
号との関係を測定し、いくつかサンプリングし、係数を
求め設定器(図示せず)を介してデータ記憶手段に10
に転送する。設定器とは流量計測に必要なデータ、例え
ば流量と流量検出手段の出力信号とを入力しデータ伝送
する装置である。第1の流量検出手段8a及び第2の流
量検出手段8bの係数はバラツキがあり、各々の流量検
出手段8に応じて補正する必要がある。そこで設定器等
を介し補正データ入力手段11にバラツキの補正値を送
る。次に補正手段12でデータ記憶手段10に格納され
た全ての係数データを補正値で補正する。補正された係
数データ群は勾配演算手段14に送られる。
Next, the operation of the above configuration will be described with reference to FIG. When the gas starts to be used, the gas flow rate is detected by the flow rate detecting means 8
Is detected in the form of a signal such as a voltage signal. At this time, the fluid flow rate and the output signal of the flow rate detecting means have a non-linear characteristic, and the coefficient indicating the relationship between the fluid flow rate and the output signal of the flow rate detecting means 19 at that time has a non-linear characteristic as shown in FIG. Therefore, the relationship between the flow rate and the output signal of the flow rate detection means 8 is measured in advance, several samplings are performed, the coefficient is calculated, and the data is stored in the data storage means 10 via a setting device (not shown).
Transfer to. The setting device is a device for inputting data necessary for flow rate measurement, for example, the flow rate and the output signal of the flow rate detecting means and transmitting the data. The coefficients of the first flow rate detecting means 8a and the second flow rate detecting means 8b have variations, and it is necessary to correct them according to each flow rate detecting means 8. Therefore, the variation correction value is sent to the correction data input means 11 via a setting device or the like. Next, the correction means 12 corrects all the coefficient data stored in the data storage means 10 with the correction values. The corrected coefficient data group is sent to the gradient calculating means 14.

【0016】ラグランジェ関数記憶手段13は、データ
記憶手段10にサンプリングし格納され、補正手段12
で補正された係数データ間の係数を補間近似するラグラ
ンジェ関数を格納している。一方、勾配演算手段14で
は、データ記憶手段10に格納され且つ補正された係数
と流量検出手段19の出力信号とからラグランジェ関数
に使用する勾配値を演算する。以上が図3のP1、P2
である。
The Lagrange function storage means 13 is sampled and stored in the data storage means 10, and the correction means 12 is used.
The Lagrange function for interpolating and approximating the coefficient between the coefficient data corrected by is stored. On the other hand, the gradient calculating means 14 calculates the gradient value used for the Lagrangian function from the coefficient stored and corrected in the data storing means 10 and the output signal of the flow rate detecting means 19. The above is P1 and P2 in FIG.
Is.

【0017】ラグランジェ関数δ(F)は一例として次に
示す様な関数を用いる。
As the Lagrange function δ (F), the following function is used as an example.

【0018】[0018]

【数1】 [Equation 1]

【0019】今回ラグランジェ関数記憶手段13に格納
されたラグランジェ関数は上記式でn=1の場合の関数
である。即ち図2に示す非線形特性の係数を補正手段1
1で補正された係数データ間で直線近似する。ここで、
δ(F)は流量検出手段8の出力信号Fに対応した係数であ
る。g(F)はデータ記憶手段19に格納された係数デー
タ間の差分を示す。Fi、Fjはデータ記憶手段19に
格納された流量検出手段の出力信号の補正値で、i番
目、j番目の値を示すある。Fは流量検出手段8の出力
信号で任意の値を示す。図2において、横軸は流量検出
手段8の検出信号で、縦軸は係数を示す。計測しようと
する流量範囲に対応した検出信号の領域を、最も精度良
く近似できるように任意に分割する。いま出力信号領域
をn点分割したとする。それぞれの境界信号をF1
2、・・Fi、Fj・・、Fnとし、その時の係数値、
即ち流量と流量検出手段8の出力信号との比で与えられ
る値ををδ(F1)、δ(F2)、・・、δ(Fn)、とする。
The Lagrange function stored in the Lagrange function storage means 13 this time is a function in the case of n = 1 in the above equation. That is, the non-linear characteristic coefficient shown in FIG.
A linear approximation is performed between the coefficient data corrected in 1. here,
δ (F) is a coefficient corresponding to the output signal F of the flow rate detecting means 8. g (F) indicates a difference between coefficient data stored in the data storage means 19. Fi and Fj are correction values of the output signal of the flow rate detection means stored in the data storage means 19, and show i-th and j-th values. F is an output signal of the flow rate detecting means 8 and shows an arbitrary value. In FIG. 2, the horizontal axis represents the detection signal of the flow rate detecting means 8 and the vertical axis represents the coefficient. The area of the detection signal corresponding to the flow rate range to be measured is arbitrarily divided so that the most accurate approximation can be made. It is assumed that the output signal area is divided into n points. Let each boundary signal be F 1 ,
F 2 , ..., Fi, Fj ..., F n, and coefficient values at that time,
That is, the values given by the ratio between the flow rate and the output signal of the flow rate detecting means 8 are δ (F 1 ), δ (F 2 ), ..., δ (F n ).

【0020】勾配演算手段14は、データ記憶手段10
に格納され補正手段12で補正された係数データと流量
検出手段8の出力信号より勾配を求める。例えば、分割
領域のi番目とj番目間の勾配は、KF=g(Fi)/
(Fj−Fi)として与えられる。従って、ラグランジ
ェ関数記憶手段13に格納されたラグランジェ関数は、
δi(F)=KF・(F−Fi)となる。
The gradient calculating means 14 is the data storing means 10.
The gradient is obtained from the coefficient data stored in the correction data corrected by the correction means 12 and the output signal of the flow rate detection means 8. For example, the gradient between the i-th and j-th divided areas is KF = g (F i ) /
Given as (Fj-Fi). Therefore, the Lagrange function stored in the Lagrange function storage unit 13 is
δi (F) = KF · (F−Fi).

【0021】次に、瞬時流量Qは流量演算手段16で、
係数δ(F)と流量検出手段8の出力信号Fとから関係式
Q=δ(F)・Fより求める。即ち流量検出手段8で検出
した信号Fを前述の式に代入し流量を求める。積算流量
演算手段17は瞬時流量Qを加算し、使用合計の積算流
量を求める。表示手段18は求めた積算流量値等を表示
する。以上が図3のP3,P4,P5,P6である。
Next, the instantaneous flow rate Q is calculated by the flow rate calculation means 16.
From the coefficient δ (F) and the output signal F of the flow rate detecting means 8, the relational expression Q = δ (F) · F is obtained. That is, the signal F detected by the flow rate detecting means 8 is substituted into the above equation to obtain the flow rate. The integrated flow rate calculation means 17 adds the instantaneous flow rate Q to obtain the total used integrated flow rate. The display means 18 displays the calculated integrated flow rate value and the like. The above are P3, P4, P5 and P6 in FIG.

【0022】このように、非線形特性を有する係数を使
用する流量検出手段8の特性に合わせ、予め格納したデ
ータ記憶手段10の係数データ群を補正データ入力手段
11を介し入力した補正値で最も器差が少なくなるよう
に補正し、更に前述のラグランジェ関数を用いて補間近
似するので、検出した流量検出手段8の出力信号に対す
る係数を正確に求めることが出来、かつ補正処理も簡単
かつ連続無段階の行え、その結果流量を高精度で求めら
れ、また積算流量などの流量計測をも正確に求めれる。
As described above, the coefficient data group of the data storage means 10 stored in advance according to the characteristics of the flow rate detecting means 8 using the coefficient having the nonlinear characteristic is the most corrected value inputted through the correction data input means 11. Since the correction is performed so as to reduce the difference and the interpolation approximation is performed using the above-mentioned Lagrangian function, the coefficient for the detected output signal of the flow rate detecting means 8 can be accurately obtained, and the correction process is simple and continuous. The steps can be performed, and as a result, the flow rate can be obtained with high accuracy, and the flow rate measurement such as the integrated flow rate can also be accurately obtained.

【0023】本発明は流体流量を計測するフルイディッ
ク式流量計の例をあげたが、他の例えば水道メータなど
の流量計に関しても上記の内容を適用できる。
Although the present invention has exemplified the fluidic type flow meter for measuring the flow rate of the fluid, the above contents can be applied to other flow meters such as water meters.

【0024】[0024]

【発明の効果】以上説明したように本発明の流量計は、
予めデータ記憶手段にサンプリングした流量と流量検出
手段の出力信号との関係を示す係数データを記憶させて
おき、補正データ入力手段に流量検出手段のばらつきを
補正する補正値を入力しその補正値で希有数データ群を
補正し、更に勾配演算手段で補正手段で補正された係数
データより流量演算手段で使用するラグランジェ関数に
必要な勾配値を演算処理しておき、例えばガス等の流体
を使用開始するとそのときの流体流量を流量検出手段で
検出し、データ記憶手段の係数値と検出した出力信号と
勾配演算手段の勾配値とラグランジェ関数記憶手段に格
納されたラグランジェ関数とから瞬時流量を求め、次に
積算流量を演算し求めるので、非線形な特性を有しかつ
流量検出手段のバラツキを補正した係数で流量を求める
ので、簡単にかつ連続無段階に補正でき高精度で正確に
流量計測を行えるという効果がある。
As described above, the flowmeter of the present invention is
Coefficient data indicating the relationship between the sampled flow rate and the output signal of the flow rate detection means is stored in the data storage means in advance, and a correction value for correcting the variation of the flow rate detection means is input to the correction data input means. The rare data group is corrected, and the gradient value required for the Lagrangian function used in the flow rate calculation unit is calculated from the coefficient data corrected by the correction unit in the gradient calculation unit, and a fluid such as gas is used. When started, the fluid flow rate at that time is detected by the flow rate detecting means, and the instantaneous flow rate is obtained from the coefficient value of the data storing means, the detected output signal, the gradient value of the gradient calculating means and the Lagrangian function stored in the Lagrangian function storing means. Then, the integrated flow rate is calculated to obtain the flow rate. Therefore, the flow rate is calculated with a coefficient that has non-linear characteristics and the variation of the flow rate detection means is corrected. There is an effect that allows the accurate flow measurement with high accuracy can be corrected in connection steplessly.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における流量計の制御ブロッ
ク図
FIG. 1 is a control block diagram of a flow meter according to an embodiment of the present invention.

【図2】同流量計の流量検出手段と流量との関係を示す
係数の特性図
FIG. 2 is a characteristic diagram of coefficients showing the relationship between the flow rate detecting means of the flowmeter and the flow rate.

【図3】同流量計の動作を示すフローチャートFIG. 3 is a flowchart showing the operation of the flow meter.

【図4】従来の流量計のシステム図[Fig. 4] System diagram of a conventional flow meter

【図5】同流量計の制御装置の特性図FIG. 5 is a characteristic diagram of the control device of the same flow meter.

【符号の説明】[Explanation of symbols]

8 流量検出手段 10 データ記憶手段 11 補正データ入力手段 12 補正手段 13 ラグランジェ関数記憶手段 14 勾配演算手段 16 流量演算手段 8 flow rate detection means 10 data storage means 11 correction data input means 12 correction means 13 Lagrange function storage means 14 gradient calculation means 16 flow rate calculation means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】流体流量を検出する流量検出手段と、予め
前記流量検出手段の出力信号と流体流量に対応した前記
流量検出手段の出力信号とから求めた係数群とを記憶し
たデータ記憶手段と、前記データ記憶手段のデータを補
正する値を入力する補正データ入力手段と、前記補正デ
ータで前記データ記憶手段のデータ値を補正する補正手
段と、前記補正手段で補正された係数より前記流量検出
手段の出力信号に対応した係数を近似するラグランジェ
関数記憶手段と、予め前記流量検出手段の出力信号と前
記補正手段で補正されたデータ群とより前記ラグランジ
ェ関数記憶手段の係数勾配を演算する勾配演算手段と、
前記流量検出手段の出力信号と前記勾配演算手段の勾配
と前記ラグランジェ関数記憶手段に格納されたラグラン
ジェ関数とから流量を演算する流量演算手段とからなる
流量計。
1. A flow rate detecting means for detecting a fluid flow rate, and a data storage means for storing a coefficient group obtained in advance from an output signal of the flow rate detecting means and an output signal of the flow rate detecting means corresponding to the fluid flow rate. Correction data input means for inputting a value for correcting the data in the data storage means, correction means for correcting the data value in the data storage means with the correction data, and the flow rate detection based on the coefficient corrected by the correction means The coefficient gradient of the Lagrangian function storage means is calculated from the Lagrange function storage means that approximates the coefficient corresponding to the output signal of the means, and the output signal of the flow rate detection means and the data group corrected by the correction means in advance. Gradient calculating means,
A flow meter comprising a flow rate calculating means for calculating a flow rate from the output signal of the flow rate detecting means, the gradient of the gradient calculating means and the Lagrange function stored in the Lagrange function storing means.
JP5043550A 1993-03-04 1993-03-04 Flowmeter Expired - Fee Related JP3057949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5043550A JP3057949B2 (en) 1993-03-04 1993-03-04 Flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5043550A JP3057949B2 (en) 1993-03-04 1993-03-04 Flowmeter

Publications (2)

Publication Number Publication Date
JPH06258104A true JPH06258104A (en) 1994-09-16
JP3057949B2 JP3057949B2 (en) 2000-07-04

Family

ID=12666870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5043550A Expired - Fee Related JP3057949B2 (en) 1993-03-04 1993-03-04 Flowmeter

Country Status (1)

Country Link
JP (1) JP3057949B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6592552B1 (en) * 1997-09-19 2003-07-15 Cecil C. Schmidt Direct pericardial access device and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016158850A (en) * 2015-03-01 2016-09-05 幸爾 奥田 Pillow cover with cushion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6592552B1 (en) * 1997-09-19 2003-07-15 Cecil C. Schmidt Direct pericardial access device and method

Also Published As

Publication number Publication date
JP3057949B2 (en) 2000-07-04

Similar Documents

Publication Publication Date Title
US6556931B1 (en) Apparatus and method for compensating mass flow rate of a material when the density of the material causes an unacceptable error in flow rate
JP2011191315A (en) Method and apparatus for operating coriolis flowmeters at cryogenic temperatures
JPH0574008B2 (en)
CA1131342A (en) Acoustic flowmeter with reynolds number compensation
US5321992A (en) Measurement of gas flows with enhanced accuracy
JP3487589B2 (en) Flow coefficient setting method and flow measurement device using the same
US4005603A (en) Apparatus for measuring fluid flow
JP3057949B2 (en) Flowmeter
JP3103700B2 (en) Flowmeter
JP3976302B2 (en) Weighing device
JPH11183231A (en) Integrating flow meter and gas meter using it
JP2008014834A (en) Ultrasonic flowmeter
JPH06221884A (en) Flowmeter
JPH074995A (en) Method of flow rate measurement and acoustic-displacement type flowmeter
JP3036217B2 (en) Flowmeter
JPH06137910A (en) Flowmeter
JPH05273007A (en) Flowmeter
JP3146602B2 (en) Fluidic meter controller
JP3036218B2 (en) Flowmeter
JP3146603B2 (en) Fluidic meter controller
JPH05273009A (en) Controlling device for fluidic meter
JPS60114717A (en) Gas-flow-rate calibrating device
JPH0319492B2 (en)
JPH1082672A (en) Flowmeter
JPH08136299A (en) Fluidic type gas meter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080421

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees